Translational Approach to Induce and Evaluate Verocytotoxic E. coli O138 Based Disease in Piglets
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Housing and Experimental Challenge
2.2. Zootechnical Evaluation and Sample Collection
2.3. Microbiological Analysis
2.4. Histopathology and Immunohistochemistry
2.5. Immunoenzmatic Assay
2.6. RNA Extraction, Reverse Transcription and Real-Time PCR Assays
2.7. Statistical Analysis
3. Results
3.1. Zootechnical and Clinical Evaluation
3.2. Microbiological Analysis
3.3. Histology and Immunohistochemistry
3.4. Immune Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dumont, B.; Fortun-Lamothe, L.; Jouven, M.; Thomas, M.; Tichit, M. Prospects from agroecology and industrial ecology for animal production in the 21st century. Animal 2013, 7, 1028–1043. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.; Jordan, D.; Chapman, T.; Chin, J.-C.; Barton, M.; Do, T.; Fahy, V.; Fairbrother, J.; Trott, D. Antimicrobial resistance and virulence gene profiles in multi-drug resistant enterotoxigenic Escherichia coli isolated from pigs with post-weaning diarrhoea. Vet. Microbiol. 2010, 145, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Hejna, M.; Gottardo, D.; Baldi, A.; Dell’Orto, V.; Cheli, F.; Zaninelli, M.; Rossi, L. Nutritional ecology of heavy metals. Animal 2018, 12, 2156–2170. [Google Scholar] [CrossRef] [Green Version]
- Dell’Anno, M.; Reggi, S.; Caprarulo, V.; Hejna, M.; Sgoifo Rossi, C.A.; Callegari, M.L.; Baldi, A.; Rossi, L. Evaluation of Tannin Extracts, Leonardite and Tributyrin Supplementation on Diarrhoea Incidence and Gut Microbiota of Weaned Piglets. Animals 2021, 11, 1693. [Google Scholar] [CrossRef] [PubMed]
- Dell’Anno, M.; Hejna, M.; Sotira, S.; Caprarulo, V.; Reggi, S.; Pilu, R.; Miragoli, F.; Callegari, M.L.; Panseri, S.; Rossi, L. Evaluation of leonardite as a feed additive on lipid metabolism and growth of weaned piglets. Anim. Feed Sci. Technol. 2020, 266, 114519. [Google Scholar] [CrossRef]
- Sotira, S.; Dell’Anno, M.; Caprarulo, V.; Hejna, M.; Pirrone, F.; Callegari, M.L.; Tucci, T.V.; Rossi, L. Effects of Tributyrin Supplementation on Growth Performance, Insulin, Blood Metabolites and Gut Microbiota in Weaned Piglets. Animals 2020, 10, 726. [Google Scholar] [CrossRef]
- Fairbrother, J.M.; Nadeau, É.; Gyles, C.L. Escherichia coli in postweaning diarrhea in pigs: An update on bacterial types, pathogenesis, and prevention strategies. Anim. Health Res. Rev. 2005, 6, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luise, D.; Spinelli, E.; Correa, F.; Salvarani, C.; Bosi, P.; Trevisi, P. Effects of E. coli bivalent vaccine and of host genetic susceptibility to E. coli on the growth performance and faecal microbial profile of weaned pigs. Livest. Sci. 2020, 241, 104247. [Google Scholar] [CrossRef]
- Frydendahl, K. Prevalence of serogroups and virulence genes in Escherichia coli associated with postweaning diarrhoea and edema disease in pigs and a comparison of diagnostic approaches. Vet. Microbiol. 2002, 85, 169–182. [Google Scholar] [CrossRef]
- Beutin, L.; Krüger, U.; Krause, G.; Miko, A.; Martin, A.; Strauch, E. Evaluation of major types of Shiga toxin 2E-producing Escherichia coli bacteria present in food, pigs, and the environment as potential pathogens for humans. Appl. Environ. Microbiol. 2008, 74, 4806–4816. [Google Scholar] [CrossRef] [Green Version]
- Mattsson, S.; Wallgren, P. Phenotyping of E. coli serotypes associated to oedema disease. Acta Vet. Scand. 2008, 50, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Tan, C.; Tang, X.; Zhang, X.; Ding, Y.; Zhao, Z.; Wu, B.; Cai, X.; Liu, Z.; He, Q.; Chen, H. Serotypes and virulence genes of extraintestinal pathogenic Escherichia coli isolates from diseased pigs in China. Vet. J. 2012, 192, 483–488. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Rump, L.; Ju, W.; Shao, J.; Zhao, S.; Brown, E.; Meng, J. Virulence characterization of non-O157 Shiga toxin-producing Escherichia coli isolates from food, humans and animals. Food Microbiol. 2015, 50, 20–27. [Google Scholar] [CrossRef] [PubMed]
- EU Commission. Regulation EC 1831/2003. of the European Parliament and of the Council, of 22 September 2003 on Additives for Use in Animal Nutrition (Text with EEA Relevance); EU Commission: Brussels, Belgium, 2003. [Google Scholar]
- Hejna, M.; Onelli, E.; Moscatelli, A.; Bellotto, M.; Cristiani, C.; Stroppa, N.; Rossi, L. Heavy-Metal Phytoremediation from Livestock Wastewater and Exploitation of Exhausted Biomass. Int. J. Environ. Res. Public Health 2021, 18, 2239. [Google Scholar] [CrossRef]
- Hejna, M.; Moscatelli, A.; Onelli, E.; Baldi, A.; Pilu, S.; Rossi, L. Evaluation of concentration of heavy metals in animal rearing system. Ital. J. Anim. Sci. 2019, 18, 1372–1384. [Google Scholar] [CrossRef] [Green Version]
- Slifierz, M.; Friendship, R.; Weese, J. Zinc oxide therapy increases prevalence and persistence of methicillin-resistant staphylococcus aureus in pigs: A randomized controlled trial. Zoonoses Public Health 2015, 62, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Allen, H.K.; Levine, U.Y.; Looft, T.; Bandrick, M.; Casey, T.A. Treatment, promotion, commotion: Antibiotic alternatives in food-producing animals. Trends Microbiol. 2013, 21, 114–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossi, L.; Dell’Orto, V.; Vagni, S.; Sala, V.; Reggi, S.; Baldi, A. Protective effect of oral administration of transgenic tobacco seeds against verocytotoxic Escherichia coli strain in piglets. Vet. Res. Commun. 2014, 38, 39–49. [Google Scholar] [CrossRef]
- Dell’Anno, M.; Sotira, S.; Rebucci, R.; Reggi, S.; Castiglioni, B.; Rossi, L. In vitro evaluation of antimicrobial and antioxidant activities of algal extracts. Ital. J. Anim. Sci. 2020, 19, 103–113. [Google Scholar] [CrossRef] [Green Version]
- Coddens, A.; Loos, M.; Vanrompay, D.; Remon, J.P.; Cox, E. Cranberry extract inhibits in vitro adhesion of F4 and F18+ Escherichia coli to pig intestinal epithelium and reduces in vivo excretion of pigs orally challenged with F18+ verotoxigenic E. coli. Vet. Microbiol. 2017, 202, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Bonetti, A.; Tugnoli, B.; Piva, A.; Grilli, E. Towards Zero Zinc Oxide: Feeding Strategies to Manage Post-Weaning Diarrhea in Piglets. Animals 2021, 11, 642. [Google Scholar] [CrossRef]
- Sun, Y.; Kim, S. Intestinal challenge with enterotoxigenic Escherichia coli in pigs, and nutritional intervention to prevent postweaning diarrhea. Anim. Nutr. 2017, 3, 322–330. [Google Scholar] [CrossRef]
- Luise, D.; Motta, V.; Bertocchi, M.; Salvarani, C.; Clavenzani, P.; Fanelli, F.; Pagotto, U.; Bosi, P.; Trevisi, P. Effect of Mucine 4 and Fucosyltransferase 1 genetic variants on gut homoeostasis of growing healthy pigs. J. Anim. Physiol. Anim. Nutr. 2019, 103, 801–812. [Google Scholar] [CrossRef] [PubMed]
- Luise, D.; Lauridsen, C.; Bosi, P.; Trevisi, P. Methodology and application of Escherichia coli F4 and F18 encoding infection models in post-weaning pigs. J. Anim. Sci. Biotechnol. 2019, 10, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Meijerink, E.; Fries, R.; Vögeli, P.; Masabanda, J.; Wigger, G.; Stricker, C.; Neuenschwander, S.; Bertschinger, H.; Stranzinger, G. Two α (1, 2) fucosyltransferase genes on porcine chromosome 6q11 are closely linked to the blood group inhibitor (S) and Escherichia coli F18 receptor (ECF18R) loci. Mamm. Genome 1997, 8, 736–741. [Google Scholar] [CrossRef]
- European Parliament. Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes (Text with EEA relevance); EU Parliament: Strasbourg, France, 2010. [Google Scholar]
- Rossi, L.; Di Giancamillo, A.; Reggi, S.; Domeneghini, C.; Baldi, A.; Sala, V.; Dell’Orto, V.; Coddens, A.; Cox, E.; Fogher, C. Expression of verocytotoxic Escherichia coli antigens in tobacco seeds and evaluation of gut immunity after oral administration in mouse model. J. Vet. Sci. 2013, 14, 263–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madec, F.; Bridoux, N.; Bounaix, S.; Cariolet, R.; Duval-Iflah, Y.; Hampson, D.J.; Jestin, A. Experimental models of porcine post-weaning colibacillosis and their relationship to post-weaning diarrhoea and digestive disorders as encountered in the field. Vet. Microbiol. 2000, 72, 295–310. [Google Scholar] [CrossRef]
- Farina, C.; Goglio, A.; Conedera, G.; Minelli, F.; Caprioli, A. Antimicrobial susceptibility of Escherichia coli O157 and other enterohaemorrhagic Escherichia coli isolated in Italy. Eur. J. Clin. Microbiol. Infect. Dis. 1996, 15, 351–353. [Google Scholar] [CrossRef]
- Rüssmann, H.; Kothe, E.; Schmidt, H.; Franke, S.; Harmsen, D.; Caprioli, A.; Karch, H. Genotyping of Shiga-like toxin genes in non-O157 Escherichia coli strains associated with haemolytic uraemic syndrome. J. Med. Microbiol. 1995, 42, 404–410. [Google Scholar] [CrossRef]
- Karch, H.; Böhm, H.; Schmidt, H.; Gunzer, F.; Aleksic, S.; Heesemann, J. Clonal structure and pathogenicity of Shiga-like toxin-producing, sorbitol-fermenting Escherichia coli O157: H. J. Clin. Microbiol. 1993, 31, 1200–1205. [Google Scholar] [CrossRef] [Green Version]
- Hsu, S.-M.; Raine, L.; Fanger, H. Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: A comparison between ABC and unlabeled antibody (PAP) procedures. J. Histochem. Cytochem. 1981, 29, 577–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riva, F.; Rahman, M.; Turin, L.; Ceciliani, F.; Russo, S.; Tribbioli, G.; Lecchi, C. TIR8 receptor expression in bovine tissues. Vet. Immunol. Immunopathol. 2010, 136, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Turin, L.; Tribbioli, G.; Invernizzi, P.; Grati, F.; Crema, S.; Laible, G.; Riva, F. Fetal microchimerism in normal and embryo transfer bovine pregnancies. Vet. Res. Commun. 2007, 31, 205–207. [Google Scholar] [CrossRef]
- Meijerink, E.; Neuenschwander, S.; Fries, R.; Dinter, A.; Bertschinger, H.U.; Stranzinger, G.; Vögeli, P. A DNA polymorphism influencing α (1, 2) fucosyltransferase activity of the pig FUT1 enzyme determines susceptibility of small intestinal epithelium to Escherichia coli F18 adhesion. Immunogenetics 2000, 52, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Turin, L.; Riva, F. Toll-like receptor family in domestic animal species. Crit. Rev. Immunol. 2008, 28, 513–538. [Google Scholar] [CrossRef]
- Pié, S.; Lallès, J.P.; Blazy, F.; Laffitte, J.; Sève, B.; Oswald, I. Weaning is associated with an upregulation of expression of inflammatory cytokines in the intestine of piglets. J. Nutr. 2004, 134, 641–647. [Google Scholar] [CrossRef] [Green Version]
- Kunz-Ebrecht, S.R.; Mohamed-Ali, V.; Feldman, P.J.; Kirschbaum, C.; Steptoe, A. Cortisol responses to mild psychological stress are inversely associated with proinflammatory cytokines. Brain Behav. Immun. 2003, 17, 373–383. [Google Scholar] [CrossRef]
- Stuyven, E.; Cox, E.; Vancaeneghem, S.; Arnouts, S.; Deprez, P.; Goddeeris, B. Effect of β-glucans on an ETEC infection in piglets. Vet. Immunol. Immunopathol. 2009, 128, 60–66. [Google Scholar] [CrossRef]
- Weström, B.; Svendsen, J.; Ohlsson, B.; Tagesson, C.; Karlsson, B. Intestinal transmission of macromolecules (BSA and FITC-labelled dextrans) in the neonatal pig. Neonatology 1984, 46, 20–26. [Google Scholar] [CrossRef]
- García, G.R.; Dogi, C.A.; Ashworth, G.E.; Berardo, D.; Godoy, G.; Cavaglieri, L.R.; de Moreno de LeBlanc, A.; Greco, C.R. Effect of breast feeding time on physiological, immunological and microbial parameters of weaned piglets in an intensive breeding farm. Vet. Immunol. Immunopathol. 2016, 176, 44–49. [Google Scholar] [CrossRef]
Ingredient, g/kg | Basal Diet | High Protein Diet |
---|---|---|
Barley | 228.000 | 161.880 |
Wheat flakes | 168.000 | 119.280 |
Wheat meal | 134.000 | 95.140 |
Maize flakes | 112.000 | 79.520 |
Barley flakes | 72.600 | 51.546 |
Soy protein concentrate | 70.000 | 49.700 |
Soybean meal | - | 28.000 |
Whey | 55.600 | 39.476 |
Maize meal | 52.000 | 36.920 |
Fish meal (herring) | 39.700 | 28.187 |
Monohydrate dextrose | 37.100 | 26.341 |
Spray-dried plasma | 27.100 | 19.241 |
Coconut oil | 27.000 | 19.170 |
Soybean oil | 16.000 | 11.360 |
Dicalcium phosphate | 5.200 | 3.692 |
Calcium carbonate | 1.100 | 0.781 |
Sodium butyrate 30% 1 | 2.190 | 1.555 |
L-Lys | 6.700 | 4.757 |
DL-Met | 3.220 | 2.286 |
L-Thr | 3.040 | 2.158 |
L-Trp | 1.220 | 0.866 |
Vitamin/mineral premix 2 | 3.270 | 2.322 |
Vitamin E 50% | 0.140 | 0.099 |
Additives: phytase 3, xylanase 4, Acidifiers 5, feed flavours | 16.550 | 11.750 |
Calculated Composition | ||
Dry matter | 90.33 | 88.50 |
CP | 17.80 | 25.42 |
EE | 5.87 | 4.57 |
CF | 2.19 | 3.20 |
Ashes | 4.46 | 5.17 |
Starch + sugar | 51.51 | 38.88 |
Lysine | 1.48 | 1.73 |
NE Mcal/kg | 2.60 | 3.56 |
Gene | Nucleotide Sequence (5′ to 3′) | Accession Number (GenBank) |
---|---|---|
TLR-2, F | GACACCGCCATCCTCATTCT | GU138028 |
TLR-2, R | CTTCCCGCTGCGTCTCAT | |
TLR-4, F | GCCTTTCTCTCCTGCCTGAG | AB188301 |
TLR-4, R | AGCTCCATGCATTGGTAACTAATG | |
IFN-γ, F | GCCAGGCGCCCTTTTTTA | NM_213948 |
IFN- γ, R | CTCTCCTCTTTCCAATTCTTCAAAAT | |
IL1-β, F | ACGGTGACAACAATAATGACCTGT | NM_214055 |
IL1-β, R | CAAGGTCCAGGTTTTGGGTG | |
MHC-I, F | CGCACAGACTTTCCGAGTG | AF464005 |
MHC-I, R | GTCTGGTCCCAAGTAGCAG | |
MHC-II, F | CAAGCACTGGGAGTTTGAAG | DQ883222 |
MHC-II, R | ACACCCTTGATGATGAGGAC | |
β-actin, F | CTCCTTCCTGGGCATGGAG | DQ845171 |
β-actin, R | GAGTTGAAGGTGGTCTCGTGG |
Controls | Infected | Significance | |||||
---|---|---|---|---|---|---|---|
Median | Min | Max | Median | Min | Max | p > t | |
Epiphora_Σ3 | 1.00 | 1.00 | 3.00 | 2.50 | 1.00 | 6.00 | 0.0342 |
Epiphora_Σ9 | 5.00 | 3.00 | 10.00 | 8.00 | 3.00 | 14.00 | 0.3031 |
Oedema_Σ3 | 1.00 | 0.00 | 2.00 | 2.00 | 1.00 | 3.00 | 00345 |
Oedema_Σ9 | 3.00 | 2.00 | 5.00 | 9.00 | 7.00 | 14.00 | 0.0061 |
Vitality_Σ3 | 0.00 | 0.00 | 0.00 | 2.00 | 1.00 | 4.00 | 0.0004 |
Vitality_Σ9 | 0.00 | 0.00 | 0.00 | 2.00 | 1.00 | 14.00 | 0.0048 |
Depression_Σ3 | 0.00 | 0.00 | 1.00 | 1.00 | 0.00 | 3.00 | 0.0099 |
Depression_Σ9 | 0.00 | 0.00 | 1.00 | 5.00 | 2.00 | 12.00 | 0.0052 |
Hair_Σ3 | 1.50 | 1.00 | 2.00 | 2.00 | 0.00 | 4.00 | 0.5432 |
Hair_Σ9 | 7.00 | 5.00 | 8.00 | 10.50 | 7.00 | 20.00 | 0.0203 |
Perineal area_Σ3 | 0.50 | 0.00 | 2.00 | 1.00 | 0.00 | 3.00 | 0.5774 |
Perineal area_Σ9 | 0.50 | 0.00 | 6.00 | 3.50 | 0.00 | 9.00 | 0.2279 |
Faecal score_Σ3 | 4.00 | 3.00 | 7.00 | 6.00 | 1.00 | 9.00 | 0.2764 |
Faecal score_Σ9 | 10.00 | 5.00 | 11.00 | 11.50 | 5.00 | 25.00 | 0.3891 |
Time | Method | Parameter | Controls | Infected | Significance | ||||
---|---|---|---|---|---|---|---|---|---|
Median | Min | Max | Median | Min | Max | p > t | |||
3 days post-infection | Histology | Infiltrates of lymphocytes | 2.00 | 2.00 | 2.00 | 2.00 | 1.00 | 3.00 | 1.0000 |
Epithelial regeneration | 0.50 | 0.00 | 1.00 | 0.00 | 0.00 | 1.00 | 0.5762 | ||
Fusion of villi | 0.50 | 0.00 | 2.00 | 1.00 | 0.00 | 2.00 | 0.5428 | ||
Oedema | 0.50 | 0.00 | 1.00 | 0.00 | 0.00 | 1.00 | 0.5762 | ||
T-Atrophy | 0.50 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 | 0.5762 | ||
Stroma | 0.50 | 0.00 | 1.00 | 0.50 | 0.00 | 1.00 | 1.0000 | ||
Follicular hyperplasia | 0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 1.00 | 0.2636 | ||
Immunohistochemistry | CD3 in epithelium | 4.00 | 4.00 | 4.00 | 3.00 | 2.00 | 3.00 | 0.0455 | |
CD3 in lamina propria | 4.00 | 4.00 | 4.00 | 3.50 | 3.00 | 4.00 | 0.2636 | ||
CD20 in epithelium | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.0000 | ||
CD20 in lamina propria | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.00 | 0.4795 | ||
lba1 in villus | 4.00 | 4.00 | 4.00 | 4.00 | 3.00 | 4.00 | 0.4795 | ||
lb1 in crypts | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 3.00 | 0.4795 | ||
IgG in luminal surface | 1.00 | 0.00 | 2.00 | 0.50 | 0.00 | 2.00 | 0.8026 | ||
IgG in villus axis | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.00 | 0.4795 | ||
IgG in crypts | 2.50 | 2.00 | 3.00 | 2.00 | 1.00 | 2.00 | 0.1709 | ||
IgA-S luminal surface | 0.50 | 0.00 | 1.00 | 0.50 | 0.00 | 1.00 | 1.0000 | ||
IgA in villus axis | 0.50 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.1573 | ||
IgA in crypts | 1.00 | 0.00 | 2.00 | 2.00 | 1.00 | 2.00 | 0.4113 | ||
9 days post-infection | Histology | Infiltrates of lymphocytes | 1.00 | 1.00 | 1.00 | 2.00 | 1.00 | 3.00 | 0.0102 |
Epithelial regeneration | 0.00 | 0.00 | 1.00 | 1.00 | 0.00 | 2.00 | 0.2453 | ||
Fusion of villi | 0.00 | 0.00 | 1.00 | 1.00 | 0.00 | 2.00 | 0.1670 | ||
Oedema | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 1.00 | 1.0000 | ||
T-Atrophy | 0.50 | 0.00 | 2.00 | 0.00 | 0.00 | 1.00 | 0.3074 | ||
Stroma | 1.50 | 0.00 | 2.00 | 0.00 | 0.00 | 2.00 | 0.1670 | ||
Follicular hyperplasia | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.0000 | ||
Immunohistochemistry | CD3 in epithelium | 2.50 | 2.00 | 3.00 | 3.50 | 3.00 | 4.00 | 0.0261 | |
CD3 in lamina propria | 3.00 | 3.00 | 3.00 | 3.00 | 2.00 | 4.00 | 0.6547 | ||
CD20 in epithelium | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.0000 | ||
CD20 in lamina propria | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.0000 | ||
lba1 in villus | 4.00 | 3.00 | 4.00 | 4.00 | 3.00 | 4.00 | 0.6000 | ||
lb1 in crypts | 2.00 | 2.00 | 3.00 | 2.00 | 2.00 | 3.00 | 0.6785 | ||
IgG in luminal surface | 0.50 | 0.00 | 2.00 | 0.00 | 0.00 | 1.00 | 0.3074 | ||
IgG in villus axis | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.00 | 0.4795 | ||
IgG in crypts | 2.00 | 2.00 | 3.00 | 2.50 | 2.00 | 3.00 | 0.4279 | ||
IgA-S luminal surface | 0.00 | 0.00 | 2.00 | 0.00 | 0.00 | 1.00 | 0.9187 | ||
IgA in villus axis | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.0000 | ||
IgA in crypts | 2.00 | 1.00 | 2.00 | 2.00 | 2.00 | 3.00 | 0.1175 |
Group | Method | Parameter | Day 3 | Day 9 | Significance | ||||
---|---|---|---|---|---|---|---|---|---|
Median | Min | Max | Median | Min | Max | p > t | |||
Infected | Histology | Infiltrates of lymphocytes | 2.00 | 1.00 | 3.00 | 2.00 | 1.00 | 3.00 | 0.7739 |
Epithelial regeneration | 0.00 | 0.00 | 1.00 | 1.00 | 0.00 | 2.00 | 0.2453 | ||
Fusion of villi | 1.00 | 0.00 | 2.00 | 1.00 | 0.00 | 2.00 | 1.0000 | ||
Oedema | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 1.00 | 1.0000 | ||
T-Atrophy | 1.00 | 0.00 | 1.00 | 0.00 | 0.00 | 1.00 | 0.1128 | ||
Stroma | 0.50 | 0.00 | 1.00 | 0.00 | 0.00 | 2.00 | 0.8465 | ||
Follicular hyperplasia | 0.50 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.0359 | ||
Immunohistochemistry | CD3 in epithelium | 3.00 | 2.00 | 3.00 | 3.50 | 3.00 | 4.00 | 0.0528 | |
CD3 in lamina propria | 3.50 | 3.00 | 4.00 | 3.00 | 2.00 | 4.00 | 0.3329 | ||
CD20 in epithelium | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.0000 | ||
CD20 in lamina propria | 1.00 | 1.00 | 2.00 | 1.00 | 1.00 | 1.00 | 0.1573 | ||
lba1 in villus | 4.00 | 3.00 | 4.00 | 4.00 | 3.00 | 4.00 | 0.6000 | ||
lb1 in crypts | 2.00 | 2.00 | 3.00 | 2.00 | 2.00 | 3.00 | 0.6785 | ||
IgG in luminal surface | 0.50 | 0.00 | 2.00 | 0.00 | 0.00 | 1.00 | 0.3074 | ||
IgG in villus axis | 1.00 | 1.00 | 2.00 | 1.00 | 1.00 | 2.00 | 0.6000 | ||
IgG in crypts | 2.00 | 1.00 | 2.00 | 2.50 | 2.00 | 3.00 | 0.0528 | ||
IgA-S luminal surface | 0.50 | 0.00 | 1.00 | 0.00 | 0.00 | 1.00 | 0.6918 | ||
IgA in villus axis | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.0000 | ||
IgA in crypts | 2.00 | 1.00 | 2.00 | 2.00 | 2.00 | 3.00 | 0.1175 | ||
Controls | Histology | Infiltrates of lymphocytes | 2.00 | 2.00 | 2.00 | 1.00 | 1.00 | 1.00 | 0.0253 |
Epithelial regeneration | 0.50 | 0.00 | 1.00 | 0.00 | 0.00 | 1.00 | 0.5762 | ||
Fusion of villi | 0.50 | 0.00 | 2.00 | 0.00 | 0.00 | 1.00 | 0.5762 | ||
Oedema | 0.50 | 0.00 | 1.00 | 0.00 | 0.00 | 1.00 | 0.5762 | ||
T-Atrophy | 0.50 | 0.00 | 1.00 | 0.50 | 0.00 | 2.00 | 0.8026 | ||
Stroma | 0.50 | 0.00 | 1.00 | 1.50 | 0.00 | 2.00 | 0.3329 | ||
Follicular hyperplasia | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.0000 | ||
Immunohistochemistry | CD3 in epithelium | 4.00 | 4.00 | 4.00 | 2.50 | 2.00 | 3.00 | 0.0528 | |
CD3 in lamina propria | 4.00 | 4.00 | 4.00 | 3.00 | 3.00 | 3.00 | 0.0253 | ||
CD20 in epithelium | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.0000 | ||
CD20 in lamina propria | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.0000 | ||
lba1 in villus | 4.00 | 4.00 | 4.00 | 4.00 | 3.00 | 4.00 | 0.4795 | ||
lb1 in crypts | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 3.00 | 0.4795 | ||
IgG in luminal surface | 1.00 | 0.00 | 2.00 | 0.50 | 0.00 | 2.00 | 0.8026 | ||
IgG in villus axis | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.0000 | ||
IgG in crypts | 2.50 | 2.00 | 3.00 | 2.00 | 2.00 | 3.00 | 0.5762 | ||
IgA-S luminal surface | 0.50 | 0.00 | 1.00 | 0.00 | 0.00 | 2.00 | 0.7842 | ||
IgA in villus axis | 0.50 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.1573 | ||
IgA in crypts | 1.00 | 0.00 | 2.00 | 2.00 | 1.00 | 2.00 | 0.4113 |
Time | Method | Parameter | Day 3 | Day 9 | Significance | ||||
---|---|---|---|---|---|---|---|---|---|
Median | Min | Max | Median | Min | Max | p > t | |||
Infected | Real-Time PCR 1 | MHC-I (lymph nodes) | 42.34 | 12.86 | 42.34 | 65.79 | 0.07 | 176.07 | 0.4969 |
MHC-II (lymph nodes) | 0.46 | 0.25 | 0.66 | 0.735 | 0.01 | 1.31 | 0.0894 | ||
IFN-γ (jejunum) | 6.80 | 0.03 | 213.04 | 0.89 | 0.10 | 36.89 | 0.3082 | ||
IL-1β (jejunum) | 0.51 | 0.45 | 0.81 | 0.63 | 0.17 | 1.23 | 0.7336 | ||
TLR2 (jejunum) | 1.19 | 0.25 | 15.94 | 0.53 | 0.11 | 2.58 | 0.2345 | ||
TLR4 (jejunum) | 0.51 | 0.48 | 2.35 | 0.49 | 0.17 | 1.62 | 0.4439 | ||
ELISA | IgA serum (mg/mL) | 0.51 | 0.12 | 0.57 | 0.19 | 0.10 | 0.70 | 0.3436 | |
IgA scrape (µg/mL) | 99.44 | 98.32 | 156.01 | 98.16 | 96.83 | 104.22 | 0.3949 | ||
CXC9L scrape (ng/mg TP) | 0.96 | 0.15 | 2.88 | 1.98 | 0.66 | 4.55 | 0.1742 | ||
TNF-α scrape (ng/mg TP) | 0.37 | 0.07 | 1.62 | 0.72 | 0.35 | 1.15 | 0.3494 | ||
IL_8 scrape (ng/mg TP) | 3.33 | 0.25 | 4.55 | 3.42 | 2.11 | 5.19 | 0.7341 | ||
IL-1 scrape (pg/mL) | 0.07 | 0.01 | 0.21 | 0.07 | 0.02 | 0.12 | 0.8649 | ||
Controls | Real-Time PCR 1 | MHC-I (lymph nodes) | 13.27 | 13.04 | 13.50 | 5.80 | 0.23 | 37.40 | 0.3545 |
MHC-II (lymph nodes) | 0.65 | 0.51 | 0.78 | 0.72 | 0.00 | 1.62 | 1.0000 | ||
IFN-γ (jejunum) | 11.42 | 1.36 | 21.48 | 0.47 | 0.04 | 4.27 | 0.1649 | ||
IL-1β (jejunum) | 0.57 | 0.12 | 1.01 | 0.53 | 0.37 | 0.76 | 1.0000 | ||
TLR2 (jejunum) | 0.78 | 0.58 | 0.98 | 0.40 | 0.36 | 0.79 | 0.1649 | ||
TLR4 (jejunum) | 1.09 | 0.36 | 1.82 | 0.41 | 0.38 | 0.51 | 1.0000 | ||
ELISA | IgA serum (mg/mL) | 0.57 | 0.54 | 0.59 | 0.23 | 0.16 | 0.39 | 0.0641 | |
IgA scrape (µg/mL) | 98.94 | 96.67 | 101.20 | 105.49 | 99.89 | 112.95 | 0.3545 | ||
CXC9L scrape (ng/mg TP) | 1.10 | 0.98 | 1.22 | 2.20 | 1.56 | 2.84 | 0.0641 | ||
TNF-α scrape (ng/mg TP) | 0.34 | 0.31 | 0.37 | 0.81 | 0.57 | 0.98 | 0.0641 | ||
IL_8 scrape (ng/mg TP) | 1.74 | 1.69 | 1.79 | 3.22 | 1.49 | 4.31 | 0.3545 | ||
IL-1 scrape (pg/mL) | 0.06 | 0.06 | 0.06 | 0.11 | 0.06 | 0.16 | 0.1336 |
Time | Method | Parameter | Controls | Infected | Significance | ||||
---|---|---|---|---|---|---|---|---|---|
Median | Min | Max | Median | Min | Max | p > t | |||
3 days post-infection | Real-Time PCR 1 | MHC-I (lymph nodes) | 13.27 | 13.04 | 13.50 | 42.34 | 12.86 | 42.34 | 0.3545 |
MHC-II (lymph nodes) | 0.65 | 0.51 | 0.78 | 0.46 | 0.25 | 0.66 | 0.1649 | ||
IFN-γ (jejunum) | 11.42 | 1.36 | 21.48 | 6.80 | 0.03 | 213.04 | 1.0000 | ||
IL-1β (jejunum) | 0.57 | 0.12 | 1.01 | 0.51 | 0.45 | 0.81 | 1.0000 | ||
TLR2 (jejunum) | 0.78 | 0.58 | 0.98 | 1.19 | 0.25 | 15.94 | 0.6434 | ||
TLR4 (jejunum) | 1.09 | 0.36 | 1.82 | 0.51 | 0.48 | 2.35 | 0.6434 | ||
ELISA | IgA serum (mg/mL) | 0.57 | 0.54 | 0.59 | 0.51 | 0.12 | 0.57 | 0.1649 | |
IgA scrape (µg/mL) | 98.94 | 96.67 | 101.20 | 99.44 | 98.32 | 156.01 | 0.6386 | ||
CXC9L scrape (ng/mg TP) | 1.10 | 0.98 | 1.22 | 0.96 | 0.15 | 2.88 | 1.0000 | ||
TNF-α scrape (ng/mg TP) | 0.34 | 0.31 | 0.37 | 0.37 | 0.07 | 1.62 | 1.0000 | ||
IL_8 scrape (ng/mg TP) | 1.74 | 1.69 | 1.79 | 3.33 | 0.25 | 4.55 | 0.3545 | ||
IL-1 scrape (pg/mL) | 0.06 | 0.06 | 0.06 | 0.07 | 0.01 | 0.21 | 1.0000 | ||
9 days post-infection | Real-Time PCR 1 | MHC-I (lymph nodes) | 5.80 | 0.23 | 37.40 | 65.79 | 0.07 | 176.07 | 0.1742 |
MHC-II (lymph nodes) | 0.72 | 0.00 | 1.62 | 0.735 | 0.01 | 1.31 | 1.0000 | ||
IFN-γ (jejunum) | 0.47 | 0.04 | 4.27 | 0.89 | 0.10 | 36.89 | 0.2345 | ||
IL-1β (jejunum) | 0.53 | 0.37 | 0.76 | 0.63 | 0.17 | 1.23 | 0.8649 | ||
TLR2 (jejunum) | 0.40 | 0.36 | 0.79 | 0.53 | 0.11 | 2.58 | 0.7341 | ||
TLR4 (jejunum) | 0.41 | 0.38 | 0.51 | 0.49 | 0.17 | 1.62 | 0.3949 | ||
ELISA | IgA serum (mg/mL) | 0.23 | 0.16 | 0.39 | 0.19 | 0.10 | 0.70 | 0.7048 | |
IgA scrape (µg/mL) | 105.49 | 99.89 | 112.95 | 98.16 | 96.83 | 104.22 | 0.0740 | ||
CXC9L scrape (ng/mg TP) | 2.20 | 1.56 | 2.84 | 1.98 | 0.66 | 4.55 | 1.0000 | ||
TNF-α scrape (ng/mg TP) | 0.81 | 0.57 | 0.98 | 0.72 | 0.35 | 1.15 | 0.8651 | ||
IL_8 scrape (ng/mg TP) | 3.22 | 1.49 | 4.31 | 3.42 | 2.11 | 5.19 | 0.6104 | ||
IL-1 scrape (pg/mL) | 0.11 | 0.06 | 0.16 | 0.07 | 0.02 | 0.12 | 0.1980 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rossi, L.; Turin, L.; Alborali, G.L.; Demartini, E.; Filipe, J.F.S.; Riva, F.; Riccaboni, P.; Scanziani, E.; Trevisi, P.; Dall’Ara, P.; et al. Translational Approach to Induce and Evaluate Verocytotoxic E. coli O138 Based Disease in Piglets. Animals 2021, 11, 2415. https://doi.org/10.3390/ani11082415
Rossi L, Turin L, Alborali GL, Demartini E, Filipe JFS, Riva F, Riccaboni P, Scanziani E, Trevisi P, Dall’Ara P, et al. Translational Approach to Induce and Evaluate Verocytotoxic E. coli O138 Based Disease in Piglets. Animals. 2021; 11(8):2415. https://doi.org/10.3390/ani11082415
Chicago/Turabian StyleRossi, Luciana, Lauretta Turin, Giovanni Loris Alborali, Eugenio Demartini, Joel Fernando Soares Filipe, Federica Riva, Pietro Riccaboni, Eugenio Scanziani, Paolo Trevisi, Paola Dall’Ara, and et al. 2021. "Translational Approach to Induce and Evaluate Verocytotoxic E. coli O138 Based Disease in Piglets" Animals 11, no. 8: 2415. https://doi.org/10.3390/ani11082415
APA StyleRossi, L., Turin, L., Alborali, G. L., Demartini, E., Filipe, J. F. S., Riva, F., Riccaboni, P., Scanziani, E., Trevisi, P., Dall’Ara, P., Dell’Anno, M., & Baldi, A. (2021). Translational Approach to Induce and Evaluate Verocytotoxic E. coli O138 Based Disease in Piglets. Animals, 11(8), 2415. https://doi.org/10.3390/ani11082415