Genome-Wide Association Study for Fatty Acid Composition in American Angus Cattle
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Selection
2.2. Sampling and DNA Isolation
2.3. Genotype Data
2.4. Fatty Acid Profile
2.5. Statistical Analysis
3. Results and Discussion
3.1. Fatty Acid Data Statistics
3.2. Posterior Residual and Genetic Variance, Heritability Estimation
3.3. Genome-Wide Association Study
3.4. Correlation within Genomic Regions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Laborde, F.L.; Mandell, I.B.; Tosh, J.J.; Wilton, J.W.; Buchanan-Smith, J.G. Breed effects on growth performance, carcass characteristics, fatty acid composition, and palatability attributes in finishing steers. J. Anim. Sci. 2001, 79, 355–365. [Google Scholar] [CrossRef] [PubMed]
- Vernooij, R.W.M.; Zeraatkar, D.; Han, M.A.; El Dib, R.; Zworth, M.; Milio, K.; Sit, D.; Lee, Y.; Gomaa, H.; Valli, C.; et al. Patterns of red and processed meat consumption and risk for cardiometabolic and cancer outcomes a systematic review and meta-analysis of cohort studies. Ann. Intern. Med. 2019, 171, 732–741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valli, C.; Rabassa, M.; Johnston, B.C.; Kuijpers, R.; Prokop-Dorner, A.; Zajac, J.; Storman, D.; Storman, M.; Bala, M.M.; Solà, I.; et al. Health-related values and preferences regarding meat consumption a mixed-methods systematic review. Ann. Intern. Med. 2019, 171, 742–755. [Google Scholar] [CrossRef] [PubMed]
- Han, M.A.; Zeraatkar, D.; Guyatt, G.H.; Vernooij, R.W.M.; El Dib, R.; Zhang, Y.; Algarni, A.; Leung, G.; Storman, D.; Valli, C.; et al. Reduction of red and processed meat intake and cancer mortality and incidence a systematic review and meta-analysis of cohort studies. Ann. Intern. Med. 2019, 171, 711–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeraatkar, D.; Han, M.A.; Guyatt, G.H.; Vernooij, R.W.M.; El Dib, R.; Cheung, K.; Milio, K.; Zworth, M.; Bartoszko, J.J.; Valli, C.; et al. Red and processed meat consumption and risk for all-cause mortality and cardiometabolic outcomes a systematic review and meta-analysis of cohort studies. Ann. Intern. Med. 2019, 171, 703–710. [Google Scholar] [CrossRef] [Green Version]
- Zeraatkar, D.; Johnston, B.C.; Bartoszko, J.; Cheung, K.; Bala, M.M.; Valli, C.; Rabassa, M.; Sit, D.; Milio, K.; Sadeghirad, B.; et al. Effect of lower versus higher red meat intake on cardiometabolic and cancer outcomes a systematic review of randomized trials. Ann. Intern. Med. 2019, 171, 721–731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnston, B.C.; Zeraatkar, D.; Han, M.A.; Vernooij, R.W.M.; Valli, C.; El Dib, R.; Marshall, C.; Stover, P.J.; Fairweather-Taitt, S.; Wójcik, G.; et al. Unprocessed red meat and processed meat consumption: Dietary guideline recommendations from the nutritional recommendations (NUTRIRECS) consortium. Ann. Intern. Med. 2019, 171, 756–764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Martins, T.S.; de Lemos, M.V.A.; Mueller, L.F.; Baldi, F.; de Amorim, T.R.; Ferrinho, A.M.; Muñoz, J.A.; de Fuzikawa, I.H.S.; de Moura, G.V.; Gemelli, J.L.; et al. Fat Deposition, Fatty Acid Composition, and Its Relationship with Meat Quality and Human Health. In Meat Science and Nutrition; IntechOpen: London, UK, 2018; pp. 17–37. Available online: https://www.intechopen.com/chapters/61577 (accessed on 15 August 2021). [CrossRef] [Green Version]
- Yen, C.-L.E.; Stone, S.J.; Koliwad, S.; Harris, C.; Farese, R.V. Thematic Review Series: Glycerolipids. DGAT enzymes and triacylglycerol biosynthesis. J. Lipid Res. 2008, 49, 2283–2301. [Google Scholar] [CrossRef] [Green Version]
- Venkata Reddy, B.; Sivakumar, A.S.; Jeong, D.W.; Woo, Y.-B.; Park, S.-J.; Lee, S.-Y.; Byun, J.-Y.; Kim, C.-H.; Cho, S.-H.; Hwang, I. Beef quality traits of heifer in comparison with steer, bull and cow at various feeding environments. Anim. Sci. J. 2015, 86, 1–16. [Google Scholar] [CrossRef]
- Vahmani, P.; Mapiye, C.; Prieto, N.; Rolland, D.C.; McAllister, T.A.; Aalhus, J.L.; Dugan, M.E.R. The scope for manipulating the polyunsaturated fatty acid content of beef: A review. J. Anim. Sci. Biotechnol. 2015, 6, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cesar, A.S.M.; Regitano, L.C.A.; Mourão, G.B.; Tullio, R.R.; Lanna, D.P.D.; Nassu, R.T.; Mudado, M.A.; Oliveira, P.S.N.; do Nascimento, M.L.; Chaves, A.S.; et al. Genome-wide association study for intramuscular fat deposition and composition in Nellore cattle. BMC Genet. 2014, 15, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelly, M.J.; Tume, R.K.; Fortes, M.; Thompson, J.M. Whole-genome association study of fatty acid composition in a diverse range of beef cattle breeds. J. Anim. Sci. 2014, 92, 1895–1901. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, B.; Niu, H.; Zhang, W.; Xu, L.; Xu, L.; Chen, Y.; Zhang, L.; Gao, X.; Gao, H.; et al. Genome wide association study identifies SNPs associated with fatty acid composition in Chinese Wagyu cattle. J. Anim. Sci. Biotechnol. 2019, 10, 27. [Google Scholar] [CrossRef] [Green Version]
- Garmyn, A.J.; Hilton, G.G.; Mateescu, R.G.; Morgan, J.B.; Reecy, J.M.; Tait, J.G.; Beitz, D.C.; Duan, Q.; Schoonmaker, J.P.; Mayes, M.S.; et al. Estimation of relationships between mineral concentration and fatty acid composition of longissimus muscle and beef palatability traits. J. Anim. Sci. 2011, 89, 2849–2858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sargolzaei, M.; Chesnais, J.P.; Schenkel, F.S. A new approach for efficient genotype imputation using information from relatives. BMC Genom. 2014, 15, 478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kramer, L.M.; Abdel Ghaffar, M.A.; Koltes, J.E.; Fritz-Waters, E.R.; Mayes, M.S.; Sewell, A.D.; Weeks, N.T.; Garrick, D.J.; Fernando, R.L.; Ma, L.; et al. Epistatic interactions associated with fatty acid concentrations of beef from angus sired beef cattle. BMC Genom. 2016, 17, 891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saatchi, M.; Garrick, D.J.; Tait, R.G.; Mayes, M.S.; Drewnoski, M.; Schoonmaker, J.; Diaz, C.; Beitz, D.C.; Reecy, J.M. Genome-wide association and prediction of direct genomic breeding values for composition of fatty acids in Angus beef cattlea. BMC Genom. 2013, 14, 730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meuwissen, T.H.E.; Hayes, B.J.; Goddard, M.E. Prediction of total genetic value using genome-wide dense marker maps. Genetics 2001, 157, 1819–1829. [Google Scholar] [CrossRef] [PubMed]
- Garrick, D.J.; Fernando, R.L. Implementing a QTL detection study (GWAS) using genomic prediction methodology. Methods Mol. Biol. 2013, 1019, 275–298. [Google Scholar] [CrossRef]
- Habier, D.; Fernando, R.L.; Kizilkaya, K.; Garrick, D.J. Extension of the bayesian alphabet for genomic selection. BMC Bioinform. 2011, 12, 186. [Google Scholar] [CrossRef] [Green Version]
- Kizilkaya, K.; Fernando, R.L.; Garrick, D.J. Genomic prediction of simulated multibreed and purebred performance using observed fifty thousand single nucleotide polymorphism genotypes. J. Anim. Sci. 2010, 88, 544–551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Ekine-Dzivenu, C.; Vinsky, M.; Basarab, J.; Aalhus, J.; Dugan, M.E.R.; Fitzsimmons, C.; Stothard, P.; Li, C. Genome-wide association and genomic prediction of breeding values for fatty acid composition in subcutaneous adipose and longissimus lumborum muscle of beef cattle. BMC Genet. 2015, 16, 135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, P.J.; Chowdhary, B.P.; Raudsepp, T. Characterization of the bovine pseudoautosomal region and comparison with sheep, goat, and other mammalian pseudoautosomal regions. Cytogenet. Genome Res. 2009, 126, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Gellatly, S.A.; Kalujnaia, S.; Cramb, G. Cloning, tissue distribution and sub-cellular localisation of phospholipase C X-domain containing protein (PLCXD) isoforms. Biochem. Biophys. Res. Commun. 2012, 424, 651–656. [Google Scholar] [CrossRef]
- Buchanan, J.W.; Reecy, J.M.; Garrick, D.J.; Duan, Q.; Beitz, D.C.; Koltes, J.E.; Saatchi, M.; Koesterke, L.; Mateescu, R.G. Deriving Gene Networks from SNP Associated with Triacylglycerol and Phospholipid Fatty Acid Fractions from Ribeyes of Angus Cattle. Front. Genet. 2016, 7, 116. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Knight, T.J.; Reecy, J.M.; Beitz, D.C. DNA polymorphisms in bovine fatty acid synthase are associated with beef fatty acid composition. Anim. Genet. 2008, 39, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Narukami, T.; Sasazaki, S.; Oyama, K.; Nogi, T.; Taniguchi, M.; Mannen, H. Effect of DNA polymorphisms related to fatty acid composition in adipose tissue of Holstein cattle. Anim. Sci. J. 2011, 82, 406–411. [Google Scholar] [CrossRef]
- Yokota, S.; Sugita, H.; Ardiyanti, A.; Shoji, N.; Nakajima, H.; Hosono, M.; Otomo, Y.; Suda, Y.; Katoh, K.; Suzuki, K. Contributions of FASN and SCD gene polymorphisms on fatty acid composition in muscle from Japanese Black cattle. Anim. Genet. 2012, 43, 790–792. [Google Scholar] [CrossRef]
- Maharani, D.; Jung, Y.; Jung, W.Y.; Jo, C.; Ryoo, S.H.; Lee, S.H.; Yeon, S.H.; Lee, J.H. Association of five candidate genes with fatty acid composition in Korean cattle. Mol. Biol. Rep. 2012, 39, 6113–6121. [Google Scholar] [CrossRef]
- Li, C.; Sun, D.; Zhang, S.; Wang, S.; Wu, X.; Zhang, Q.; Liu, L.; Li, Y.; Qiao, L. Genome wide association study identifies 20 novel promising genes associated with milk fatty acid traits in Chinese Holstein. PLoS ONE 2014, 9, e96186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donnelly, C.; Olsen, A.M.; Lewis, L.D.; Eisenberg, B.L.; Eastman, A.; Kinlaw, W.B. Conjugated linoleic acid (CLA) inhibits expression of the spot 14 (THRSP) and fatty acid synthase genes and impairs the growth of human breast cancer and liposarcoma cells. Nutr. Cancer 2009, 61, 114–122. [Google Scholar] [CrossRef] [Green Version]
- La, B.; Oh, D.; Lee, Y.; Shin, S.; Lee, C.; Chung, E.; Yeo, J. Association of bovine fatty acid composition with novel missense nucleotide polymorphism in the thyroid hormone-responsive (THRSP) gene. Anim. Genet. 2013, 44, 118. [Google Scholar] [CrossRef] [PubMed]
- Graugnard, D.E.; Berger, L.L.; Faulkner, D.B.; Loor, J.J. High-starch diets induce precocious adipogenic gene network up-regulation in longissimus lumborum of early-weaned Angus cattle. Br. J. Nutr. 2010, 103, 953–963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McClure, M.C.; Morsci, N.S.; Schnabel, R.D.; Kim, J.W.; Yao, P.; Rolf, M.M.; McKay, S.D.; Gregg, S.J.; Chapple, R.H.; Northcutt, S.L.; et al. A genome scan for quantitative trait loci influencing carcass, post-natal growth and reproductive traits in commercial Angus cattle. Anim. Genet. 2010, 41, 597–607. [Google Scholar] [CrossRef] [PubMed]
- Long, J.Z.; Roche, A.M.; Berdan, C.A.; Louie, S.M.; Roberts, A.J.; Svensson, K.J.; Dou, F.Y.; Bateman, L.A.; Mina, A.I.; Deng, Z.; et al. Ablation of PM20D1 reveals N-acyl amino acid control of metabolism and nociception. Proc. Natl. Acad. Sci. USA 2018, 115, E6937–E6945. [Google Scholar] [CrossRef] [Green Version]
- Long, J.Z.; Svensson, K.J.; Bateman, L.A.; Lin, H.; Kamenecka, T.; Lokurkar, I.A.; Lou, J.; Rao, R.R.; Chang, M.R.R.; Jedrychowski, M.P.; et al. The Secreted Enzyme PM20D1 Regulates Lipidated Amino Acid Uncouplers of Mitochondria. Cell 2016, 166, 424–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunawardhana, L.P.; Baines, K.J.; Mattes, J.; Murphy, V.E.; Simpson, J.L.; Gibson, P.G. Differential DNA methylation profiles of infants exposed to maternal asthma during pregnancy. Pediatr. Pulmonol. 2014, 49, 852–862. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.; Wang, S.; Tian, J.; Chu, L.; Li, H. Epistatic effect between ACACA and FABP2 gene on abdominal fat traits in broilers. J. Genet. Genom. 2010, 37, 505–512. [Google Scholar] [CrossRef]
- Estellé, J.; Mercadé, A.; Pérez-Enciso, M.; Pena, R.N.; Silió, L.; Sánchez, A.; Folch, J.M. Evaluation of FABP2 as candidate gene for a fatty acid composition QTL in porcine chromosome 8. J. Anim. Breed. Genet. 2009, 126, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Aksanov, O.; Green, P.; Birk, R.Z. BBS4 directly affects proliferation and differentiation of adipocytes. Cell. Mol. Life Sci. 2014, 71, 3381–3392. [Google Scholar] [CrossRef] [PubMed]
- Prieto-Echagüe, V.; Lodh, S.; Colman, L.; Bobba, N.; Santos, L.; Katsanis, N.; Escande, C.; Zaghloul, N.A.; Badano, J.L. BBS4 regulates the expression and secretion of FSTL1, a protein that participates in ciliogenesis and the differentiation of 3T3-L1. Sci. Rep. 2017, 7, 9765. [Google Scholar] [CrossRef] [PubMed]
- Miltiadou, D.; Hager-Theodorides, A.L.; Symeou, S.; Constantinou, C.; Psifidi, A.; Banos, G.; Tzamaloukas, O. Variants in the 3′ untranslated region of the ovine acetyl-coenzyme A acyltransferase 2 gene are associated with dairy traits and exhibit differential allelic expression. J. Dairy Sci. 2017, 100, 6285–6297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rzehak, P.; Heinrich, J.; Klopp, N.; Schaeffer, L.; Hoff, S.; Wolfram, G.; Illig, T.; Linseisen, J. Evidence for an association between genetic variants of the fatty acid desaturase 1 fatty acid desaturase 2 (FADS1 FADS2) gene cluster and the fatty acid composition of erythrocyte membranes. Br. J. Nutr. 2009, 101, 20–26. [Google Scholar] [CrossRef] [Green Version]
- Park, W.J.; Kothapalli, K.S.D.; Reardon, H.T.; Kim, L.Y.; Brenna, J.T. Novel fatty acid desaturase 3 (FADS3) transcripts generated by alternative splicing. Gene 2009, 446, 28–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, J.; Torta, F.; Masai, K.; Lucast, L.; Czapla, H.; Tanner, L.B.; Narayanaswamy, P.; Wenk, M.R.; Nakatsu, F.; De Camilli, P. PI4P/phosphatidylserine countertransport at ORP5- and ORP8-mediated ER—Plasma membrane contacts. Science 2015, 349, 428–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pollock, R.A.; Zaman, L.; Chandran, V.; Gladman, D.D. Epigenome-wide analysis of sperm cells identifies IL22 as a possible germ line risk locus for psoriatic arthritis. PLoS ONE 2019, 14, e0212043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, H.; Kokoeva, M.V.; Inouye, K.; Tzameli, I.; Yin, H.; Flier, J.S. TLR4 links innate immunity and fatty acid-induced insulin resistance. J. Clin. Investig. 2006, 116, 3015–3025. [Google Scholar] [CrossRef] [PubMed]
- Matsuhashi, T.; Maruyama, S.; Uemoto, Y.; Kobayashi, N.; Mannen, H.; Abe, T.; Sakaguchi, S.; Kobayashi, E. Effects of bovine fatty acid synthase, stearoyl-coenzyme A desaturase, sterol regulatory element-binding protein 1, and growth hormone gene polymorphisms on fatty acid composition and carcass traits in Japanese Black cattle. J. Anim. Sci. 2011, 89, 12–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, D.; Lee, Y.; Lee, C.; Chung, E.; Yeo, J. Association of bovine fatty acid composition with missense nucleotide polymorphism in exon7 of peroxisome proliferator-activated receptor gamma gene. Anim. Genet. 2012, 43, 474. [Google Scholar] [CrossRef]
- Widmann, P.; Nuernberg, K.; Kuehn, C.; Weikard, R. Association of an ACSL1 gene variant with polyunsaturated fatty acids in bovine skeletal muscle. BMC Genet. 2011, 12, 96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orrù, L.; Cifuni, G.F.; Piasentier, E.; Corazzin, M.; Bovolenta, S.; Moioli, B. Association analyses of single nucleotide polymorphisms in the LEP and SCD1 genes on the fatty acid profile of muscle fat in Simmental bulls. Meat Sci. 2011, 87, 344–348. [Google Scholar] [CrossRef] [PubMed]
- Hoashi, S.; Hinenoya, T.; Tanaka, A.; Ohsaki, H.; Sasazaki, S.; Taniguchi, M.; Oyama, K.; Mukai, F.; Mannen, H. Association between fatty acid compositions and genotypes of FABP4 and LXR-alpha in Japanese Black cattle. BMC Genet. 2008, 9, 84. [Google Scholar] [CrossRef] [Green Version]
- Abe, T.; Saburi, J.; Hasebe, H.; Nakagawa, T.; Misumi, S.; Nade, T.; Nakajima, H.; Shoji, N.; Kobayashi, M.; Kobayashi, E. Novel mutations of the FASN gene and their effect on fatty acid composition in japanese black beef. Biochem. Genet. 2009, 47, 397–411. [Google Scholar] [CrossRef] [PubMed]
- Uemoto, Y.; Abe, T.; Tameoka, N.; Hasebe, H.; Inoue, K.; Nakajima, H.; Shoji, N.; Kobayashi, M.; Kobayashi, E. Whole-genome association study for fatty acid composition of oleic acid in Japanese Black cattle. Anim. Genet. 2011, 42, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Mullur, R.; Liu, Y.Y.; Brent, G.A. Thyroid hormone regulation of metabolism. Physiol. Rev. 2014, 94, 355–382. [Google Scholar] [CrossRef] [Green Version]
- Yao, D.W.; Luo, J.; He, Q.Y.; Wu, M.; Shi, H.B.; Wang, H.; Wang, M.; Xu, H.F.; Loor, J.J. Thyroid hormone responsive (THRSP) promotes the synthesis of medium-chain fatty acids in goat mammary epithelial cells. J. Dairy Sci. 2016, 99, 3124–3133. [Google Scholar] [CrossRef] [Green Version]
- Damiano, F.; Rochira, A.; Gnoni, A.; Siculella, L. Action of thyroid hormones, T3 and T2, on hepatic fatty acids: Differences in metabolic effects and molecular mechanisms. Int. J. Mol. Sci. 2017, 18, 744. [Google Scholar] [CrossRef]
- Boschetti, E.; Bordoni, A.; Meluzzi, A.; Castellini, C.; Dal Bosco, A.; Sirri, F. Fatty acid composition of chicken breast meat is dependent on genotype-related variation of FADS1 and FADS2 gene expression and desaturating activity. Animal 2016, 10, 700–708. [Google Scholar] [CrossRef]
- Schaeffer, L.; Gohlke, H.; Müller, M.; Heid, I.M.; Palmer, L.J.; Kompauer, I.; Demmelmair, H.; Illig, T.; Koletzko, B.; Heinrich, J. Common genetic variants of the FADS1 FADS2 gene cluster and their reconstructed haplotypes are associated with the fatty acid composition in phospholipids. Hum. Mol. Genet. 2006, 15, 1745–1756. [Google Scholar] [CrossRef]
- Jornayvaz, F.R.; Lee, H.Y.; Jurczak, M.J.; Alves, T.C.; Guebre-Egziabher, F.; Guigni, B.A.; Zhang, D.; Samuel, V.T.; Silva, J.E.; Shulman, G.I. Thyroid hormone receptor-α gene knockout mice are protected from diet-induced hepatic insulin resistance. Endocrinology 2012, 153, 583–591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, X.; Hou, S.; Zhang, D.; Xia, H.; Wang, Y.C.; Jiang, J.; Yin, H.; Ying, H. Regulation of fatty acid composition and lipid storage by thyroid hormone in mouse liver. Cell Biosci. 2014, 4, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinha, R.A.; Singh, B.K.; Yen, P.M. Thyroid hormone regulation of hepatic lipid and carbohydrate metabolism. Trends Endocrinol. Metab. 2014, 25, 538–545. [Google Scholar] [CrossRef] [PubMed]
- Rudolph, M.C.; Monks, J.; Burns, V.; Phistry, M.; Marians, R.; Foote, M.R.; Bauman, D.E.; Anderson, S.M.; Neville, M.C. Sterol regulatory element binding protein and dietary lipid regulation of fatty acid synthesis in the mammary epithelium. Am. J. Physiol. Endocrinol. Metab. 2010, 299, 918–927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Trait | Mean | SD | CV% |
---|---|---|---|
C10:0 | 0.04 | 0.07 | 196.81 |
C12:0 | 0.06 | 0.06 | 90.09 |
C13:0 | 0.01 | 0.07 | 1105.43 |
C14:0 | 2.71 | 0.58 | 21.21 |
C14:1 | 0.57 | 0.20 | 34.78 |
C15:0 | 0.59 | 0.33 | 55.61 |
C16:0 | 26.57 | 1.80 | 6.79 |
C16:1 | 3.49 | 0.71 | 20.38 |
C17:0 | 1.34 | 0.39 | 29.14 |
C17:1 | 1.07 | 0.37 | 34.65 |
C18:0 | 13.62 | 1.91 | 14.01 |
C18:1 c9 | 38.55 | 2.79 | 7.24 |
C18:1 c11 | 0.10 | 0.10 | 106.32 |
C18:1 c12 | 0.25 | 0.16 | 63.85 |
C18:1 c13 | 0.10 | 0.10 | 105.96 |
C18:1 t6/9 | 0.13 | 0.23 | 178.88 |
C18:1 t10/11 | 3.58 | 1.39 | 38.84 |
C18:1 t12 | 0.07 | 0.24 | 355.96 |
C18:1 t15 | 1.03 | 0.51 | 48.92 |
C18:2 | 3.94 | 1.31 | 33.33 |
CLA c9t11 | 0.13 | 0.13 | 104.68 |
CLA t10c12 | 0.05 | 0.09 | 174.15 |
C18:3 n3 | 0.17 | 0.16 | 92.47 |
C18:3 n6 | 0.02 | 0.03 | 222.57 |
C20:0 | 0.02 | 0.04 | 178.69 |
C20:1 | 0.09 | 0.11 | 116.14 |
C20:2 | 0.04 | 0.05 | 131.67 |
C20:3 n3 | 0.02 | 0.09 | 378.10 |
C20:3 n6 | 0.12 | 0.17 | 139.19 |
C20:4 | 0.77 | 0.38 | 48.84 |
C20:5 | 0.13 | 0.29 | 215.61 |
C22:0 | 0.11 | 0.15 | 135.98 |
C22:1 | 0.01 | 0.06 | 1073.49 |
C22:4 | 0.06 | 0.14 | 215.40 |
C22:5 | 0.13 | 0.17 | 127.20 |
C22:6 | 0.08 | 0.16 | 194.83 |
C23:0 | 0.07 | 0.18 | 256.19 |
C24:0 | 0.14 | 0.37 | 258.53 |
SFA | 45.29 | 2.39 | 5.27 |
MUFA | 49.04 | 2.79 | 5.70 |
PUFA | 5.67 | 1.85 | 32.66 |
MCFA | 3.98 | 0.80 | 20.02 |
LCFA | 96.02 | 0.80 | 0.83 |
n3 | 0.54 | 0.55 | 101.90 |
n6 | 5.13 | 1.64 | 32.04 |
n3/n6 | 0.11 | 0.13 | 117.97 |
AI | 0.69 | 0.09 | 12.91 |
PUFA/SFA | 0.13 | 0.04 | 34.10 |
UFA/SFA | 1.21 | 0.12 | 9.72 |
MUFA/SFA | 1.09 | 0.11 | 10.35 |
C14:1/C14:0 | 0.21 | 0.05 | 25.99 |
C16:0/C14:0 | 10.19 | 2.05 | 20.07 |
C16:1/C16:0 | 0.13 | 0.02 | 18.66 |
C17:1/C17:0 | 0.88 | 1.50 | 170.85 |
C18:0/C16:0 | 0.52 | 0.09 | 16.80 |
C16:1-C18:1/C16:0-C18:0 | 1.18 | 0.12 | 10.28 |
Trait | σ2e, g × 10−10 | σ2g, g × 10−10 | h2 |
---|---|---|---|
SFA | 3.995 | 1.029 | 0.200 |
C10:0 | 0.005 | 0.000 | 0.072 |
C12:0 | 0.003 | 0.000 | 0.021 |
C13:0 | 0.002 | 0.003 | 0.610 |
C14:0 | 0.226 | 0.080 | 0.262 |
C15:0 | 0.071 | 0.002 | 0.023 |
C16:0 | 2.267 | 0.568 | 0.200 |
C17:0 | 0.066 | 0.005 | 0.077 |
C18:0 | 2.133 | 0.426 | 0.166 |
C20:0 | 0.001 | 0.000 | 0.298 |
C22:0 | 0.012 | 0.000 | 0.023 |
C23:0 | 0.031 | 0.001 | 0.019 |
C24:0 | 0.099 | 0.012 | 0.111 |
MUFA | 4.932 | 0.879 | 0.151 |
C14:01 | 0.023 | 0.007 | 0.232 |
C16:1 | 0.420 | 0.083 | 0.165 |
C17:1 | 0.058 | 0.003 | 0.045 |
C18:1 cis-9 | 5.390 | 1.089 | 0.168 |
C18:1 cis-11 | 0.011 | 0.000 | 0.016 |
C18:1 cis-12 | 0.018 | 0.002 | 0.104 |
C18:1 cis-13 | 0.012 | 0.000 | 0.015 |
C18:1 trans-6/9 | 0.044 | 0.006 | 0.121 |
C18:1 trans-10/11 | 1.397 | 0.103 | 0.068 |
C18:1 trans-12 | 0.032 | 0.029 | 0.478 |
C18:1 trans-15 | 0.217 | 0.006 | 0.029 |
C20:1 | 0.004 | 0.000 | 0.014 |
C22:1 | 0.004 | 0.000 | 0.102 |
PUFA | 2.404 | 0.067 | 0.027 |
C18:02 | 1.228 | 0.043 | 0.034 |
C18:3 n-3 | 0.014 | 0.000 | 0.019 |
C18:3 n-6 | 0.001 | 0.000 | 0.016 |
C20:2 | 0.002 | 0.000 | 0.016 |
C20:3 n-3 | 0.009 | 0.000 | 0.014 |
C20:3 n-6 | 0.025 | 0.002 | 0.062 |
C20:4 | 0.109 | 0.003 | 0.025 |
C20:5 | 0.070 | 0.008 | 0.105 |
C22:4 | 0.015 | 0.001 | 0.045 |
C22:5 | 0.017 | 0.000 | 0.018 |
C22:6 | 0.019 | 0.004 | 0.191 |
CLA c9t11 | 0.015 | 0.000 | 0.025 |
CLA t10c12 | 0.007 | 0.000 | 0.042 |
n-3 | 0.190 | 0.027 | 0.124 |
n-6 | 1.942 | 0.057 | 0.029 |
n-3/n-6 | 51.527 | 15.985 | 0.237 |
AI | 11.039 | 1.014 | 0.084 |
MCFA | 0.444 | 0.134 | 0.232 |
LCFA | 0.445 | 0.133 | 0.231 |
MUFA/SFA | 0.012 | 0.002 | 0.134 |
PUFA/SFA | 3.856 | 0.887 | 0.187 |
UFA/SFA | 0.007 | 0.004 | 0.359 |
C14:1/C14:0 | 0.001 | 0.001 | 0.026 |
C16:0/C14:0 | 2.290 | 0.916 | 0.286 |
C16:1/C16:0 | 0.000 | 0.000 | 0.266 |
C16:1,C18:1/C16:0,C18:0 | 0.013 | 0.002 | 0.131 |
C17:1/C17:0 | 0.058 | 0.003 | 0.045 |
C18:0/C16:0 | 0.004 | 0.002 | 0.005 |
Trait | PPI 1 | BTA_Mb | Start SNP–End SNP | SNP | Var % | Map Position |
---|---|---|---|---|---|---|
C10:0 | 0.944 | 10_99 | rs381994440–rs1116598207 | 258 | 16.78 | 99005624–99999474 |
C13:0 | 0.987 | 21_10 | rs445662296–rs722133270 | 249 | 7.88 | 10001943–10995552 |
0.989 | 6_65 | rs723554673–rs377954800 | 159 | 41.63 | 65014180–65999168 | |
0.989 | 6_66 | rs461561099–rs721295607 | 237 | 33.69 | 66005071–66997033 | |
0.942 | 6_95 | rs525139052–rs714396520 | 250 | 3.24 | 95004561–95991513 | |
C14:0 | 1 | 10_19 | rs457389817–rs721999834 | 231 | 9.29 | 19000816–19989351 |
1 | 19_51 | rs475360660–rs383058850 | 204 | 54.85 | 51028723–51996481 | |
1 | 26_21 | rs1118223446–rs475475724 | 186 | 7.39 | 21002029–21996318 | |
1 | 29_18 | rs136831403–rs438026448 | 82 | 23.08 | 18005978–18986358 | |
C14:1 | 1 | 10_19 | rs457389817–rs721999834 | 231 | 14.66 | 19000816–19989351 |
1 | 19_51 | rs475360660–rs383058850 | 204 | 34.52 | 51028723–51996481 | |
1 | 26_21 | rs1118223446–rs475475724 | 186 | 20.19 | 21002029–21996318 | |
1 | 29_18 | rs136831403–rs438026448 | 82 | 18.14 | 18005978–18986358 | |
C16:0 | 1 | 19_51 | rs475360660–rs383058850 | 204 | 49.93 | 51028723–51996481 |
1 | 29_18 | rs136831403–rs438026448 | 82 | 21.78 | 18005978–18986358 | |
C16:1 | 0.966 | 10_19 | rs457389817–rs721999834 | 231 | 7.78 | 19000816–19989351 |
1 | 19_51 | rs475360660–rs383058850 | 204 | 26.23 | 51028723–51996481 | |
1 | 26_21 | rs1118223446–rs475475724 | 186 | 13.85 | 21002029–21996318 | |
0.998 | 29_18 | rs136831403–rs438026448 | 82 | 16.12 | 18005978–18986358 | |
C17:0 | 0.984 | 19_42 | rs137786121–rs466240300 | 251 | 22.28 | 42004863–42996553 |
1 | 24_49 | rs381050710–rs477123921 | 155 | 33.23 | 49001908–49998425 | |
C17:1 | 0.984 | 24_49 | rs381050710–rs477123921 | 155 | 37.85 | 49001908–49998425 |
C18:0 | 0.92 | 26_21 | rs1118223446–rs475475724 | 186 | 7.98 | 21002029–21996318 |
1 | 29_18 | rs136831403–rs438026448 | 82 | 17.1 | 18005978–18986358 | |
C18:1 c9 | 1 | 19_51 | rs475360660–rs383058850 | 204 | 50.1 | 51028723–51996481 |
1 | 29_18 | rs136831403–rs438026448 | 82 | 12.23 | 18005978–18986358 | |
C18:1 c12 | 1 | 26_21 | rs1118223446–rs475475724 | 186 | 49.36 | 21002029–21996318 |
C18:1 t 6/9 | 0.944 | 27_39 | rs451168763–rs381689313 | 260 | 8.32 | 39005538–39990529 |
C18:1 t10/11 | 0.996 | 20_4 | rs721326040–rs460617564 | 255 | 23.47 | 4010324–4999564 |
C18:1 t12 | 0.922 | 10_96 | rs479600948–rs109335292 | 256 | 2.49 | 96019445–96996211 |
1 | 16_46 | rs478465218–rs797599032 | 224 | 11.46 | 46008112–46996022 | |
1 | 16_48 | rs135228863–rs474907119 | 317 | 9.63 | 48017181–48984950 | |
0.98 | 17_65 | rs378071414–rs525333053 | 285 | 7.51 | 65009493–65999327 | |
1 | 21_59 | rs472316688–rs451806225 | 389 | 2.81 | 59000097–59996736 | |
1 | 5_111 | rs468287514–rs444667395 | 276 | 5.12 | 111007549–111997116 | |
0.902 | 5_9 | rs516462777–rs1116817234 | 152 | 11.55 | 9015235–9989218 | |
C20:3 n6 | 0.924 | 3_86 | rs718706801–rs730733704 | 264 | 55.3 | 86003522–86991729 |
C20:5 | 1 | 29_49 | rs472519303–rs526164614 | 93 | 22.54 | 49009465–49997333 |
0.991 | 3_86 | rs718706801–rs730733704 | 264 | 55.49 | 86003522–86991729 | |
C22:1 | 0.993 | 21_10 | rs445662296–rs722133270 | 249 | 14.33 | 10001943–10995552 |
0.987 | 30_71 | rs458478290–rs481059659 | 65 | 36.65 | 71227458–71976081 | |
0.987 | 30_72 | rs524807927–rs135609351 | 29 | 88.09 | 72004959–72982639 | |
C22:4 | 0.924 | 25_11 | rs467215611–rs456314684 | 387 | 27.95 | 11001504–11999813 |
C22:6 | 0.96 | 25_11 | rs467215611–rs456314684 | 387 | 6.24 | 11001504–11999813 |
1 | 3_86 | rs718706801–rs730733704 | 264 | 76.04 | 86003522–86991729 | |
C24:0 | 1 | 16_65 | rs468954509–rs1117996716 | 305 | 50.06 | 65001270–65996849 |
0.946 | 3_86 | rs718706801–rs730733704 | 264 | 39.59 | 86003522–86991729 | |
SFA | 0.949 | 1_115 | rs436612027–rs715205098 | 224 | 6.43 | 115000891–115995052 |
0.998 | 16_4 | rs450830345–rs379811569 | 313 | 6.69 | 4004764–4992166 | |
1 | 19_51 | rs475360660–rs383058850 | 204 | 31.53 | 51028723–51996481 | |
1 | 26_21 | rs1118223446–rs475475724 | 186 | 12.23 | 21002029–21996318 | |
0.951 | 7_93 | rs443092875–rs378089989 | 143 | 6.46 | 93002992–93993941 | |
MUFA | 0.926 | 16_4 | rs450830345–rs379811569 | 313 | 5.63 | 4004764–4992166 |
1 | 19_51 | rs475360660–rs383058850 | 204 | 35.94 | 51028723–51996481 | |
0.913 | 26_21 | rs1118223446–rs475475724 | 186 | 9.54 | 21002029–21996318 | |
MCFA | 1 | 10_19 | rs457389817–rs721999834 | 231 | 11.22 | 19000816–19989351 |
1 | 19_51 | rs475360660–rs383058850 | 204 | 57.4 | 51028723–51996481 | |
1 | 29_18 | rs136831403–rs438026448 | 82 | 23.19 | 18005978–18986358 | |
LCFA | 1 | 10_19 | rs457389817–rs721999834 | 231 | 11.35 | 19000816–19989351 |
1 | 19_51 | rs475360660–rs383058850 | 204 | 57.3 | 51028723–51996481 | |
1 | 29_18 | rs136831403–rs438026448 | 82 | 23.02 | 18005978–18986358 | |
n3 | 1 | 29_49 | rs472519303–rs526164614 | 93 | 11.73 | 49009465–49997333 |
1 | 3_86 | rs718706801–rs730733704 | 264 | 76.51 | 86003522–86991729 | |
UFA/SFA | 0.982 | 1_115 | rs436612027–rs715205098 | 224 | 3.92 | 115000891–115995052 |
0.991 | 16_4 | rs450830345–rs379811569 | 313 | 3.24 | 4004764–4992166 | |
1 | 19_51 | rs475360660–rs383058850 | 204 | 15.35 | 51028723–51996481 | |
0.962 | 22_9 | rs446574361–rs134422456 | 247 | 1.87 | 9004252–9998969 | |
0.989 | 26_21 | rs1118223446–rs475475724 | 186 | 5.34 | 21002029–21996318 | |
0.931 | 26_32 | rs136160709–rs382889271 | 271 | 2.06 | 32010478–32984426 | |
0.993 | 7_93 | rs443092875–rs378089989 | 143 | 3.86 | 93002992–93993941 | |
MUFA/SFA | 0.989 | 16_4 | rs450830345–rs379811569 | 313 | 5.27 | 4004764–4992166 |
1 | 19_51 | rs475360660–rs383058850 | 204 | 35.99 | 51028723–51996481 | |
0.904 | 26_21 | rs1118223446–rs475475724 | 186 | 7.44 | 21002029–21996318 | |
C14:1/C14:0 | 1 | 26_21 | rs1118223446–rs475475724 | 186 | 52 | 21002029–21996318 |
C16:0/C14:0 | 1 | 19_51 | rs475360660–rs383058850 | 204 | 34.55 | 51028723–51996481 |
1 | 26_21 | rs1118223446–rs475475724 | 186 | 6.99 | 21002029–21996318 | |
1 | 29_18 | rs136831403–rs438026448 | 82 | 15.52 | 18005978–18986358 | |
0.947 | 29_42 | rs379690091–rs463588285 | 155 | 5.38 | 42001720–42991376 | |
C16:1/C16:0 | 0.984 | 10_19 | rs457389817–rs721999834 | 231 | 5.7 | 19000816–19989351 |
0.989 | 19_51 | rs475360660–rs383058850 | 204 | 6.14 | 51028723–51996481 | |
1 | 26_21 | rs1118223446–rs475475724 | 186 | 8.4 | 21002029–21996318 | |
0.96 | 26_29 | rs380753352–rs42912734 | 240 | 3.41 | 29000086–29997851 | |
0.964 | 29_18 | rs136831403–rs438026448 | 82 | 4.26 | 18005978–18986358 | |
0.935 | 6_7 | rs43449965–rs797424312 | 218 | 3.36 | 7050818–7999410 | |
C18:0/C16:0 | 0.824 | 15_75 | rs474144146–rs799862808 | 288 | 2.87 | 75000095–75998710 |
1 | 19_51 | rs475360660–rs383058850 | 204 | 13.38 | 51028723–51996481 | |
0.9 | 21_22 | rs449389929–rs437752920 | 258 | 2.43 | 22011632–22997995 | |
1 | 29_18 | rs136831403–rs438026448 | 82 | 15.26 | 18005978–18986358 | |
C16:1,C18:1/ C16:0,C18:0 | 0.995 | 16_4 | rs450830345–rs379811569 | 313 | 5.62 | 4004764–4992166 |
1 | 19_51 | rs475360660–rs383058850 | 204 | 31.51 | 51028723–51996481 |
Sr. | Region (BTA_Mb) | Gene | Traits |
---|---|---|---|
1 | 6_7 | FABP2 | C16:1/C16:0 |
2 | 10_19 | BBS4 | C14:0, C14:1, C16:1, MCFA, LCFA, C16:1/C16:0 |
3 | 16_4 | PFKFB2, IL10, RAB7B, PM20D1 | SFA, MUFA, MUFA/SFA, UFA/SFA, C16:1,C18:1/C16:0,C18:0 |
4 | 19_42 | THRA | C17:0 |
5 | 19_51 | FASN | C14:0, C14:1, C16:0, C16:0/C14:0, C16:1, C16:1/C16:0, C18:0/C16:0, C18:1 c9, LCFA, MCFA, MUFA, MUFA/SFA, SFA, UFA/SFA, C16:1,C18:1/C16:0,C18:0 |
6 | 24_49 | ACAA2 | C17:0, C17:1 |
7 | 26_21 | SCD | C14:0, C14:1, C14:1/C14:0, C16:0/C14:0, C16:1, C16:1/C16:0, C18:0, C18:1 c12, MUFA, MUFA/SFA, SFA, UFA/SFA |
8 | 29_18 | THRSP | C14:0, C14:1, C16:0, C16:0/C14:0, C16:1, C16:1/C16:0, C18:0, C18:0/C16:0, C18:1 c9, LCFA, MCFA |
9 | 29_42 | FADS2, FADS3 | C16:0/C14:0 |
10 | 29_49 | MOB2, INS, OSBPL5 | C20:5, n3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dawood, M.; Kramer, L.M.; Shabbir, M.I.; Reecy, J.M. Genome-Wide Association Study for Fatty Acid Composition in American Angus Cattle. Animals 2021, 11, 2424. https://doi.org/10.3390/ani11082424
Dawood M, Kramer LM, Shabbir MI, Reecy JM. Genome-Wide Association Study for Fatty Acid Composition in American Angus Cattle. Animals. 2021; 11(8):2424. https://doi.org/10.3390/ani11082424
Chicago/Turabian StyleDawood, Muhammad, Luke Matthew Kramer, Muhammad Imran Shabbir, and James Mark Reecy. 2021. "Genome-Wide Association Study for Fatty Acid Composition in American Angus Cattle" Animals 11, no. 8: 2424. https://doi.org/10.3390/ani11082424
APA StyleDawood, M., Kramer, L. M., Shabbir, M. I., & Reecy, J. M. (2021). Genome-Wide Association Study for Fatty Acid Composition in American Angus Cattle. Animals, 11(8), 2424. https://doi.org/10.3390/ani11082424