Sett Use, Density and Breeding Phenology of Badgers in Mediterranean Agro-Sylvo-Pastoral Systems
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sett Survey
2.3. Sett Monitoring
2.4. Sett Characterization
2.5. Group Size and Breeding Phenology
2.6. Data Analysis
2.6.1. Drivers of Sett Use
2.6.2. Badger Density Estimation
3. Results
3.1. Drivers of Sett Use Pattern
3.2. Social Groups Size and Density Estimates
3.3. Breeding Phenology
4. Discussion
4.1. Drivers of Sett Use Pattern
4.2. Badger Social Group Structure and Density
4.3. Breeding Phenology
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bekoff, M.; Daniels, T.J.; Gittleman, J.L. Life history patterns and the comparative social ecology of carnivores. Ann. Rev. Ecol. Syst. 1984, 15, 191–232. [Google Scholar] [CrossRef]
- Messeri, P. A review of carnivore group-living. Ital. J. Zool. 1983, 50, 29–33. [Google Scholar] [CrossRef]
- Mech, D.; Boitani, L. Wolves Behavior, Ecology, and Conservation; The University of Chicago Press: Chicago, IL, USA, 2003; p. 448. [Google Scholar]
- Roper, T.J. Badger; Harper Collins Publisher: London, UK, 2010; p. 386. [Google Scholar]
- Revilla, E.; Palomares, F. Spatial organization, group living and ecological correlates in low-density populations of Eurasian badgers, Meles meles. J. Anim. Ecol. 2002, 71, 497–512. [Google Scholar] [CrossRef]
- Neal, E.; Cheeseman, C. Badgers; T & AD Poyser Ltd.: London, UK, 1996; p. 271. [Google Scholar]
- Johnson, D.D.P.; Jetz, W.; Macdonald, D.W. Environmental correlates of badger social spacing across Europe. J. Biogeog. 2002, 29, 411–425. [Google Scholar] [CrossRef] [Green Version]
- Roca, C.P.; La Haye, M.J.J.; Jongejans, E. Environmental drivers of the distribution and density of the European badger (Meles meles): A review. Lutra 2014, 57, 87–109. [Google Scholar]
- Jimenez, J.; Nunez-Arjona, J.C.; Rueda, C.; Gonzalez, L.M.; Garcia-Dominguez, F.; Munoz-Igualada, J.; Lopez-Bao, J.V. Estimating carnivore community structures. Sci. Rep. 2017, 7, 41036. [Google Scholar] [CrossRef] [PubMed]
- Molina-Vacas, G.; Bonet-Arboli, V.; Rafart-Plaza, E.; Rodríguez-Teijeiro, J.D. Spatial ecology of European badgers (Meles meles L.) in Mediterranean habitats of the north-eastern Iberian Peninsula. I: Home range size, spatial distribution and social organization. Vie Milieu 2009, 59, 223–232. [Google Scholar]
- Revilla, E.; Delibes, M.; Travaini, A.; Palomares, F. Physical and population parameters of the Eurasian badgers (Meles meles L.) from Mediterranean Spain. Z. Saugetierkd. 1999, 64, 269–276. [Google Scholar]
- Rosalino, L.M.; Macdonald, D.W.; Santos-Reis, M. Spatial structure and land-cover use in a low-density Mediterranean population of Eurasian badgers. Can. J. Zool. 2004, 82, 1493–1502. [Google Scholar] [CrossRef]
- Rosalino, L.M.; Macdonald, D.W.; Santos-Reis, M. Resource dispersion and badger population density in Mediterranean woodlands: Is food, water or geology the limiting factor? Oikos 2005, 110, 441–452. [Google Scholar] [CrossRef]
- Rosalino, L.M.; Guedes, D.; Cabecinha, D.; Serronha, A.; Grilo, C.; Santos-Reis, M.; Monterroso, P.; Carvalho, J.; Fonseca, C.; Pardavilla, X.; et al. Climate and landscape changes as driving forces for future range shift in southern populations of the European badger. Sci. Rep. 2019, 9, 3155. [Google Scholar] [CrossRef] [Green Version]
- Thuiller, W.; Lavergne, S.; Roquet, C.; Boulangeat, I.; Lafourcade, B.; Araujo, M.B. Consequences of climate change on the tree of life in Europe. Nature 2011, 470, 531–534. [Google Scholar] [CrossRef] [PubMed]
- Lara-Romero, C.; Virgós, E.; Revilla, E. Sett density as an estimator of population density in the European badger Meles meles. Mamm. Rev. 2012, 42, 78–84. [Google Scholar] [CrossRef]
- Diserens, T.A.; Bubnicki, J.W.; Schutgens, E.; Rokx, K.; Kowalczyk, R.; Kuijper, D.P.J.; Churski, M. Fossoriality in a risky landscape: Badger sett use varies with perceived wolf risk. J. Zool. 2021, 313, 76–85. [Google Scholar] [CrossRef]
- Brøseth, H.; Bevanger, K.; Knutsen, B. Function of multiple badger Meles meles setts: Distribution and utilization. Wildl. Biol. 1997, 3, 89–96. [Google Scholar] [CrossRef]
- Kaneko, Y.; Newman, C.; Buesching, C.D.; Macdonald, D.W. Variations in badger (Meles meles) sett microclimate: Differential cub survival between main and subsidiary setts, with implications for artificial sett construction. Int. J. Ecol. 2010, 2010, 859586. [Google Scholar] [CrossRef] [Green Version]
- Blondel, J. The “design” of Mediterranean landscapes: A millennial story of Humans and ecological systems during the historic period. Hum. Ecol. 2006, 34, 713–729. [Google Scholar] [CrossRef]
- Rosalino, L.M.; Macdonald, D.W.; Santos-Reis, M. Activity rhythms, movements and patterns of sett use by badgers, Meles meles, in a Mediterranean woodland. Mammalia 2005, 69, 395–408. [Google Scholar] [CrossRef]
- Hipólito, D.; Santos-Reis, M.; Rosalino, L.M. Effects of agro-forestry activities, cattle-raising practices and food-related factors in badger sett location and use in Portugal. Mamm. Biol. 2016, 81, 194–200. [Google Scholar] [CrossRef]
- Rafart, E. Ecologia del Comportamiento del Tejón: Sociabilidad, Organización Espacial y Problemas de Conservación. Ph.D. Universitat de Barcelona, Barcelona, Spain, 2005. Ph.D. Thesis, Universitat de Barcelona, Barcelona, Spain, 2005. [Google Scholar]
- Revilla, E.; Palomares, F.; Fernández, N. Characteristics, location and selection of diurnal resting dens by Eurasian badgers (Meles meles) in a low density area. J. Zool. 2001, 255, 291–299. [Google Scholar] [CrossRef]
- Remonti, L.; Balestrieri, A.; Prigioni, C. Factors determining badger Meles meles sett location in agricultural ecosystems of NW Italy. Folia Zool. 2006, 55, 19–27. [Google Scholar]
- Byrne, A.W.; Sleeman, P.D.; O’Keeffe, J.; Davenport, J. The ecology of the European badger (Meles meles) in Ireland: A review. Biol. Environ. Proc. R. Irish Acad. 2012, 112, 105–132. [Google Scholar] [CrossRef] [Green Version]
- Macdonald, D.W.; Newman, C.; Dean, J.; Buesching, C.D.; Johnson, P.J. The distribution of Eurasian badger, Meles meles, setts in a high density area: Field observations contradict the sett dispersion hypothesis. Oikos 2004, 106, 295–307. [Google Scholar] [CrossRef]
- Good, T.C.; Hindenlang, K.; Imfeld, S.; Nievergelt, B. A habitat analysis of badger (Meles meles L.) setts in a semi-natural forest. Mamm. Biol. 2001, 66, 204–214. [Google Scholar]
- Silva, A.P.; Curveira-Santos, G.; Kilshaw, K.; Newman, C.; Macdonald, D.W.; Simões, L.G.; Rosalino, L.M. Climate and anthropogenic factors determine site occupancy in Scotland’s Northern-range badger population: Implications of context-dependent responses under environmental change. Divers. Distrib. 2017, 23, 627–639. [Google Scholar] [CrossRef]
- Kurek, P. Spatial distribution of badger (Meles meles) setts and fox (Vulpes vulpes) dens in relation to human impact and environmental availability. Acta Zool. Litu. 2011, 21, 17–23. [Google Scholar] [CrossRef]
- Grilo, C.; Bissonette, J.A.; Santos-Reis, M. Spatial–temporal patterns in Mediterranean carnivore road casualties: Consequences for mitigation. Biol. Conserv. 2009, 142, 301–313. [Google Scholar] [CrossRef]
- Carpio, A.J.; Hillström, L.; Tortosa, F.S. Effects of wild boar predation on nests of wading birds in various Swedish habitats. Eur. J. Wildl. Res. 2016, 62, 423–430. [Google Scholar] [CrossRef]
- Stewart, P.D.; Anderson, C.; Macdonald, D.W. A mechanism for passive range exclusion: Evidence from the European badger (Meles meles). J. Theor. Biol. 1997, 184, 279–289. [Google Scholar] [CrossRef]
- Yamaguchi, N.; Dugdale, H.L.; Macdonald, D.W. Female receptiveity, embryonic diapause, and superfetation in the European badger (Meles Meles: Implications for the reproductive tactics of males and females. Q. Rev. Biol. 2006, 81, 33–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonçalves, P.; Alcobia, S.; Simões, L.; Santos-Reis, M. Effects of management options on mammal richness in a Mediterranean agro-silvo-pastoral system. Agrofor. Syst. 2012, 85, 383–395. [Google Scholar] [CrossRef]
- Gonçalves, P.; Alcobia, S.; Santos-reis, M. Atlas doa Mamíferos na Charneca do Infantado; Companhia das Lezírias S.A./Centro de Biologia Ambiental (FCUL): Lisboa, Portugal, 2013; p. 92. [Google Scholar]
- Rovero, F.; Zimmermann, F. Camera Trapping for Wildlife Research; Pelagic Publishing: Exeter, UK, 2016; p. 320. [Google Scholar]
- Henderson, P.A.; Southwood, T.R.E. Ecological Methods, 4th ed.; Wiley-Blackwell: Chichester, NY, USA, 2016; p. 632. [Google Scholar]
- QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. 2012. Available online: http://qgis.osgeo.org (accessed on 10 May 2017).
- Barros, A.L.; Curveira-Santos, G.; Marques, T.A.; Santos-reis, M. Accounting for detection unveils the intricacy of wild boar and rabbit co-occurrence patterns in a Mediterranean landscape. Sci. Rep. 2020, 10, 6651. [Google Scholar] [CrossRef]
- Larivière, S.; Ferguson, S.H. Evolution of induced ovulation in North American carnivores. J. Mammal. 2003, 84, 937–947. [Google Scholar] [CrossRef] [Green Version]
- Zuur, A.F.; Ieno, E.N.; Smith, G.M. Analysing Ecological Data; Springer: New York, NY, USA, 2007; p. 672. [Google Scholar]
- Legendre, P. Spatial autocorrelation: Trouble or new paradigm? Ecology 1993, 74, 1659–1673. [Google Scholar] [CrossRef]
- Fowler, J.; Cohen, L.; Jarvis, P. Practical Statistics for Field Biology; John Wiley & Sons: Chichester, NY, USA, 1998; p. 272. [Google Scholar]
- Burnham, K.P.; Anderson, D.R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach; Springer: New York, NY, USA, 2002; p. 488. [Google Scholar]
- Kühn, I. Incorporating spatial autocorrelation may invert observed patterns. Divers. Distrib. 2007, 13, 66–69. [Google Scholar] [CrossRef]
- Symonds, M.R.E.; Moussalli, A. A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behav. Ecol. Sociobiol 2010, 65, 13–21. [Google Scholar] [CrossRef]
- Arnold, T.W. Uninformative parameters and model selection using Akaike’s Information Criterion. J. Wildl. Manag. 2010, 74, 1175–1178. [Google Scholar] [CrossRef]
- Judge, J.; Wilson, G.; Macarthur, R.; Delahay, R.J.; McDonald, R.A. Density and abundance of badger social groups in England and Wales in 2011–2013. Sci. Rep. 2014, 4, 3809. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Luo, Z.; Li, C.; Li, C.; Jiang, Z. Biogeographical patterns of the diet of Palearctic badger: Is badger an earthworm specialist predator? Chin. Sci. Bull. 2013, 58, 2255–2261. [Google Scholar] [CrossRef] [Green Version]
- Kurek, P.; Kapusta, P.; Holeksa, J. Burrowing by badgers (Meles meles) and foxes (Vulpes vulpes) changes soil conditions and vegetation in a European temperate forest. Ecol. Res. 2014, 29, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Rosalino, L.M.; Santos-Reis, M. Fruit consumption by carnivores in Mediterranean Europe. Mamm. Rev. 2009, 39, 67–78. [Google Scholar] [CrossRef]
- Balestrieri, A.; Remonti, L. Reduction of badger (Meles meles) setts damage to artificial elements of the territory. Hystrix 2000, 11, 95–98. [Google Scholar] [CrossRef]
- Hipólito, D.; Santos-Reis, M.; Rosalino, L.M. European badger (Meles meles) diet in an agroforestry and cattle ranching area of Central-West Portugal. Wildl. Biol. Pract. 2016, 12, 1–13. [Google Scholar] [CrossRef]
- Clarke, G.P.; White, P.C.; Harris, S. Effects of roads on badger Meles meles populations in south-west England. Biol. Conserv. 1998, 86, 117–124. [Google Scholar] [CrossRef]
- Kowalczyk, R.; Zalewski, A.; Jedrzejewska, B.; Jedrzejewski, W. Spatial organization and demography of badgers (Meles meles) in Bialowieza Primeval Forest, Poland, and the influence of earthworms on badgers densities in Europe. Can. J. Zool. 2003, 81, 74–87. [Google Scholar] [CrossRef] [Green Version]
- Balestrieri, A.; Cardarelli, E.; Pandini, M.; Remonti, L.; Saino, N.; Prigioni, C. Spatial organisation of European badger (Meles meles) in northern Italy as assessed by camera-trapping. Eur. J. Wildl. Res. 2016, 62, 219–226. [Google Scholar] [CrossRef]
- Rogers, L.M.; Cheeseman, C.L.; Mallinson, P.J.; Clifton-Hadley, R. The demography of a high-density badger (Meles meles) population in the west of England. J. Zool. 1997, 242, 705–728. [Google Scholar] [CrossRef]
- Virgós, E.; Llorente, M.; Cortés, Y. Geographical variation in genet (Genetta genetta) diet: A literature review. Mamm. Rev. 1999, 29, 117–126. [Google Scholar] [CrossRef]
- Corner, L.A.L.; Stuart, L.J.; Kelly, D.J.; Marples, N.M. Reproductive Biology Including Evidence for Superfetation in the European Badger Meles meles (Carnivora: Mustelidae). PLoS ONE 2015, 10, e0138093. [Google Scholar] [CrossRef] [PubMed]
- Peláez, M.; Gaillard, J.-M.; Bollmann, K.; Heurich, M.; Rehnus, M. Large-scale variation in birth timing and synchrony of a large herbivore along the latitudinal and altitudinal gradients. J. Anim. Ecol. 2020, 89, 1906–1917. [Google Scholar] [CrossRef] [PubMed]
- Do Linh San, E.; Ferrari, N.; Weber, J.-M. Quelques observations sur la période de mise bas et le succès reproductif du blaireau (Meles meles) dans l’Ouest de la Suisse. Bull. Soc. Neuchâtel. Sci. Nat. 2003, 126, 101–114. [Google Scholar]
Pattern | Hypothesis | Reasoning | Supporting References |
---|---|---|---|
Density | H1—Badger’s density will be lower when compared to the species core range area, but within the limits reported for Iberian populations | Studies implemented in Iberia estimate a population density of 0.13–0.67 ind./km2, significantly lower than that estimated for central/west European populations (mean = 9.2 ind./km2, SD = 10.5) | [4,9,10,11,12] |
Sett use pattern | H2—Sett use is promoted by the occurrence of dense vegetation surrounding the sett | In human-shaped landscapes, the occurrence of dense vegetation provides a more protective context, where animals may socially interact more safely (including cubs) | [24,25] |
H3—Setts located in areas with a easily diggable and well-drained soil will be more frequently used | Badgers prefer well drained and cohesive soils as sett sites | [26,27] | |
H4—Sett use is promoted by the proximity to feeding patches (e.g., olive yards, wildlife feeding stations) | Sett location near patches providing food resources allows badgers to save energy and time in their foraging bouts | [22,28] | |
H5—Setts subject to high disturbance (e.g., cattle, roads proximity) will be less used by badgers | Anthropogenic disturbance is known to affect sett use by badgers | [22,29,30,31] | |
H6—Setts located in areas where perceived competition can be high will be less used | Evidence exist that the presence of wild boars constrains badgers presence, due to resource competition. Inter-group competition is also considered a passive range exclusion mechanism. | [32,33] | |
Reproduction phenology | H7—Badger mating peaks in January/February and cubs will start emerging from the setts in April | Badger mating can occur all year round, with two peaks in Winter/Spring (main) and Summer/Autumn; cubs emerge eight weeks after. | [11,34] |
H8—Litters will be composed of 2–3 cubs | Although available data for Portugal indicate 3-4 cubs/litter, the average values for most badger populations is lower | [12,34] |
Variable | Description | Type | Range/Units | |
---|---|---|---|---|
H2 | Tree | Tree cover | Ordinal | 1–5 (1—low; 5—high) 1,2 |
Shrubs | Shrub cover | Continuous | Percentage 1,2 | |
Herbs | Herbaceous cover | Continuous | Percentage 1,2 | |
Shrub_H | Shrub mean high | Continuous | Cm 1,2 | |
Bare_soil | Bare soil cover | Continuous | Percentage 1,2 | |
Veg_div | Vegetation diversity | Continuous | 0–1 (Simpson diversity index) | |
Understory | Dominant understory | Categorical | 4 Categories (Cattle pastures, Shrubland, Natural pastures, Natural pastures with shrubs) | |
Land use | Type of land use | Categorical | 4 categories (Cork oak woodland, Mixes wood, Natural pasture, Pine forest) | |
H3 | Soil_mat | Main soil material | Categorical | 4 categories (Sand, Rock, Silt/Clay, Roads 3) 1 |
Soil | Type of soil | 2 Categories (Podzols, Regosols) | ||
H4 | Dist_ol | Distance to the nearest olive yard | Continuous | m |
Dist_piv | Distance to the nearest watering pivot | Continuous | m | |
Dist_feed | Distance to the nearest game artificial feeders | Continuous | m | |
Dist_wat | Distance to the nearest water source | Continuous | m | |
H5 | Grazz_16–17 | Grazing pressure between 2016–2017 | Continuous | Grazing intensity 4 |
Grazz_07–17 | Cumulative grazing pressure between 2007–2017 | Continuous | Grazing intensity 4 | |
N_grazz | Number of consecutive years, since 2007, without cattle grazing | Continuous | Number of years | |
Dist_road | Distance to the nearest paved road | Continuous | m | |
Dist_road2 | Distance to the nearest dirt road | Continuous | m | |
H6 | Dist_sett | Distance to the nearest badger sett | Continuous | m |
Wildboar | Wild boar abundance | Continuous | Number of wild boar signs [40] |
Original Variable | Component 1 | Component 2 |
---|---|---|
Tree | −0.431 | - |
Shrubs | −0.501 | −0.398 |
Herbs | −0.507 | −0.132 |
Shrub_H | −0.547 | −0.271 |
Bare_soil | −0.114 | 0.865 |
Model | df | LogLik | AICc | ΔAICc | Weight | Overall ΔAICc | |
---|---|---|---|---|---|---|---|
Null | 1 | −87.721 | 169.6 | 0 | - | 11.0 | |
H2—Vegetation | Understory + Veg_div + PCA1 | 6 | −73.950 | 163.0 | 0 | 0.209 | 4.4 |
Understory + Veg_div | 5 | −75.574 | 163.3 | 0.3 | 0.182 | 4.7 | |
Veg_div | 2 | −70.981 | 164.3 | 1.3 | 0.107 | 5.7 | |
Veg_div + PCA1 | 3 | −78.977 | 164.8 | 1.8 | 0.088 | 6.2 | |
H3—Soil | Soil_mat | 4 | −75.027 | 159.4 | 0 | 0.781 | 0.8 |
H4—Food | Dist_ol | 2 | −82.114 | 168.6 | 0 | 0.346 | 10.0 |
Dist_ol + Dist_wat | 3 | −81.902 | 170.6 | 2.0 | 0.128 | 12.0 | |
H5—Disturbance | Dist_road2 + Grazz_16–17 | 3 | −78.930 | 164.7 | 0 | 0.255 | 6.1 |
Dist_road2 + Grazz_16–17 + N_grazz | 4 | −78.370 | 166.1 | 1.4 | 0.123 | 7.5 | |
Grazz_16–17 | 2 | −81.036 | 166.5 | 1.8 | 0.104 | 7.9 | |
H6—Competition | Dist_sett | 2 | −83.464 | 171.3 | 0 | 0.223 | 12.7 |
Wildboar | 2 | −83.715 | 171.8 | 0.5 | 0.174 | 13.2 | |
Combined hypothesis | Soil_mat + Veg_div | 5 | −73.204 | 158.6 | 0 | 0.151 | 0 |
Dist_road2 + Grazz_16-17 + Veg_div | 4 | −74.792 | 159.0 | 0.4 | 0.123 | 0.4 | |
Soil_mat + Grazz_16-17 + Veg_div | 6 | −72.095 | 159.3 | 0.7 | 0.104 | 0.7 | |
Soil_mat | 4 | −75.027 | 159.4 | 0.8 | 0.097 | 0.8 | |
Veg_div + Grazz_16-17 | 3 | −76.340 | 159.5 | 0.9 | 0.095 | 0.9 |
Variable | β | SE | z-Value | p | 95% CI | Relative Importance |
---|---|---|---|---|---|---|
Intercept | 0.719 | 0.601 | 1.175 | 0.240 | [−0.480, 1.919] | - |
Soil_mat (Silt/clay) | −0.740 | 0.244 | 2.919 | 0.004 | [−1.237, −0.243] | 0.62 |
Soil_mat (Rock) | −0.115 | 0.246 | 0.450 | 0.653 | [−0.618, 0.388] | 0.62 |
Soil_mat (Roads) | 0.264 | 0.403 | 0.629 | 0.530 | [−0.559, 1.087] | 0.62 |
Veg_div | 1.989 | 0.862 | 2.122 | 0.034 | [0.145, 3.651] | 0.83 |
Dist_road2 | −0.157 | 0.091 | 1.662 | 0.096 | [−0.342, 0.028] | 0.22 |
Grazz_16-17 | 0.194 | 0.092 | 2.041 | 0.041 | [0.007, 0.381] | 0.56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, M.; Rosalino, L.M.; Alcobia, S.; Santos-Reis, M. Sett Use, Density and Breeding Phenology of Badgers in Mediterranean Agro-Sylvo-Pastoral Systems. Animals 2021, 11, 2663. https://doi.org/10.3390/ani11092663
Silva M, Rosalino LM, Alcobia S, Santos-Reis M. Sett Use, Density and Breeding Phenology of Badgers in Mediterranean Agro-Sylvo-Pastoral Systems. Animals. 2021; 11(9):2663. https://doi.org/10.3390/ani11092663
Chicago/Turabian StyleSilva, Marcelo, Luís Miguel Rosalino, Sandra Alcobia, and Margarida Santos-Reis. 2021. "Sett Use, Density and Breeding Phenology of Badgers in Mediterranean Agro-Sylvo-Pastoral Systems" Animals 11, no. 9: 2663. https://doi.org/10.3390/ani11092663
APA StyleSilva, M., Rosalino, L. M., Alcobia, S., & Santos-Reis, M. (2021). Sett Use, Density and Breeding Phenology of Badgers in Mediterranean Agro-Sylvo-Pastoral Systems. Animals, 11(9), 2663. https://doi.org/10.3390/ani11092663