Animal Signals, Music and Emotional Well-Being
Abstract
:Simple Summary
Abstract
1. Introduction
2. Studies Involving Music and Animal Responses
3. A Critique of Past Research and Suggested Solutions
3.1. Matching Sensory Systems
3.2. Music Genres Are Not Uniform in Emotional Effects
3.3. Effects of Species-Appropriate Music
4. Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seyfarth, R.M.; Cheney, D.L.; Bergman, T.; Fischer, J.; Zuberbühler, K.; Hammerschmidt, K. The central importance of information in studies of animal communication. Anim. Behav. 2010, 80, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Rendall, D.; Owren, M.J.; Ryan, M. What do animal signals mean? Anim. Behav. 2009, 78, 233–240. [Google Scholar] [CrossRef]
- Owings, D.H.; Morton, E.S. Animal Vocal Communication: A New Approach; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Owren, M.J.; Rendall, D. Sound on the rebound: Bringing form and function back to the forefront in understanding nonhuman primate vocal signaling. Evol. Anthropol. 2001, 10, 58–71. [Google Scholar] [CrossRef]
- McConnell, P.B. Lessons from animal trainers: The effects of acoustic structure on an animal’s response. In Perspectives in Ethology; Bateson, P., Klopfer, P., Eds.; Plenum Press: New York, NY, USA, 1991; pp. 165–187. [Google Scholar]
- Fernald, A. Human maternal vocalizations to infants as biologically relevant signals: An evolutionary perspective. In The Adapted Mind; Barkow, J., Cosmides, L., Tooby, J., Eds.; Oxford University Press: New York, NY, USA, 1992; pp. 391–428. [Google Scholar]
- Altenmüller, E.; Kopiez, R.; Grewe, O. A contribution to the evolutionary basis of music: Lessons from the chill response. In Evolution of Emotional Communication; Altenmüller, E., Schmidt, S., Zimmermann, E., Eds.; Oxford University Press: Oxford, UK, 2013; pp. 313–335. [Google Scholar]
- Snowdon, C.T.; Zimmermann, E.; Altenmüller, E. Music evolution and neuroscience. In Progress in Brain Research; Altenmüller, E., Boller, F., Finger, S., Eds.; Elsevier: Oxford, UK, 2015; Volume 218, pp. 17–34. [Google Scholar]
- Koelsch, S. Brain and Music; Wiley-Blackwell: Oxford, UK, 2013. [Google Scholar]
- Ritvo, S.E.; Macdonald, S.E. Music as enrichment for Sumatran orangutans (Pongo abelii). J. Zoo Aquar. Res. 2016, 4, 1–8. [Google Scholar]
- Ogden, J.J.; Lindburg, D.H.; Maple, T.L. A preliminary study of the effects of ecologically relevant sounds on the behavior of captive lowland gorillas. Appl. Anim. Behav. Sci. 1994, 39, 163–176. [Google Scholar] [CrossRef]
- Wells, D.L.; Coleman, D.; Challis, M.G. A note on the effect of auditory stimulation on the behaviour and welfare of zoo-housed gorillas. Appl. Anim. Behav. Sci. 2006, 100, 327–332. [Google Scholar] [CrossRef]
- Robbins, L.; Margulis, S.W. Effects of auditory enrichment on gorillas. Zoo Biol. 2016, 33, 197–203. [Google Scholar] [CrossRef]
- Booker, J.S. An investigation of the auditory perception of western lowland gorillas in an enrichment study. Zoo Biol. 2016, 35, 398–408. [Google Scholar] [CrossRef] [PubMed]
- Wallace, E.K.; Altschul, D.; Körfer, K.; Bentl, B.; Kaeser, A.; Lambeth, S.; Waller, B.M.; Slocombe, K.E. Is music enriching for group housed chimpanzees (Pan troglodytes)? PLoS ONE 2017, 12, e0172672. [Google Scholar] [CrossRef] [Green Version]
- Videan, E.N.; Fritz, J.; Howell, S.; Murphy, J. Effects of two types and two genres of classical music on social behavior in captive chimpanzees (Pan troglodytes). J. Am. Assoc. Lab. Anim. Sci. 2007, 46, 66–70. [Google Scholar] [PubMed]
- Howell, S.; Schwandt, M.; Fritz, J.; Roeder, E.; Nelson, C. A stereo music system as environmental enrichment for captive chimpanzees. Lab. Anim. 2003, 32, 31. [Google Scholar] [CrossRef] [PubMed]
- Mingle, M.E.; Eppley, T.M.; Campbell, M.W.; Hall, K.; Horner, V.; de Waal, F.B.M. Chimpanzees prefer African and Indian music over silence. J. Comp. Psych. 2014, 40, 502–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugimoto, T.; Kobayashi, H.; Nobuyoshi, N.; Kiriyama, Y.; Takeshita, H.; Nakamura, T.; Hashiya, K. Preference for consonant music over dissonant music by an infant chimpanzee. Primates 2010, 51, 7–12. [Google Scholar] [CrossRef]
- Wallace, E.K.; Kingston-Jones, M.; Ford, M.; Semple, S. An investigation into the use of music as potential auditory enrichment for moloch gibbons (Hylobates moloch). Zoo Biol. 2013, 32, 423–426. [Google Scholar] [CrossRef] [PubMed]
- Shepherdson, D.; Bemment, N.; Carman, M.; Reynolds, S. Auditory enrichment for Lar gibbons. Int. Zoo Yearbook 1989, 28, 256–260. [Google Scholar] [CrossRef]
- Brent, L.; Weaver, D. The physiological and behavioral effects of radio music on singly housed baboons. J. Med. Primatol. 1996, 35, 370–374. [Google Scholar] [CrossRef] [PubMed]
- Zarei, S.; Sheibani, V.; Mansouri, F.A. Interaction of music and emotional stimuli in modulating working memory of macaque monkeys. Am. J. Primatol. 2019, 81, e22999. [Google Scholar] [CrossRef] [PubMed]
- McDermott, J.; Hauser, M.D. Nonhuman primates prefer slow tempos but dislike music overall. Cognition 2007, 104, 654–658. [Google Scholar] [CrossRef] [PubMed]
- Wells, D.L.; Irwin, R.M. Auditory stimulation as enrichment for zoo-housed Asian elephants (Elephas maximus). Anim. Welfare 2008, 17, 335–340. [Google Scholar]
- Kogan, L.R.; Schoenfeld-Tacher, R.; Simon, A.A. Behavioral effects of auditory stimulation in kenneled dogs. J. Vet. Behav. 2012, 7, 268–275. [Google Scholar] [CrossRef]
- Wells, D.L.; Graham, J.; Hepper, P.G. The influence of auditory stimulation on the behaviour of dogs housed in a rescue shelter. Anim. Welfare. 2002, 11, 385–393. [Google Scholar]
- Bowman, A.; Scottish SPCA; Dowell, F.J.; Evans, N.P. “Four Seasons” in an animal rescue centre: Classical music reduces environmental stress in kenneled dogs. Physiol. Behav. 2015, 143, 70–82. [Google Scholar] [CrossRef] [PubMed]
- Engler, W.J.; Bain, M. Effects of different types of classical music played at a veterinary hospital on dog behavior and owner satisfaction. J. Am. Vet. Med. Assoc. 2017, 251, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Bray, C.; Montrose, V.T. Effects of audiobooks on the behaviour of dogs at rehoming kennels. Appl. Anim. Behav. Sci. 2016, 174, 111–115. [Google Scholar] [CrossRef]
- Arehart, L.A.; Ames, D.R. Performance of early-weaned lambs as affected by sound type and intensity. J. Anim. Sci. 1972, 35, 481–485. [Google Scholar] [CrossRef] [Green Version]
- Uetake, K.; Hurnik, J.F.; Johnson, L. Effects of music on voluntary approach of dairy cows to an automatic milking system. Appl. Anim. Behav. Sci. 1997, 53, 175–182. [Google Scholar] [CrossRef]
- Houpt, K.; Marrow, M.; Seeliger, M. A preliminary study of the effect of music on equine behavior. J. Equine Vet Sci. 2000, 20, 691–693. [Google Scholar] [CrossRef]
- Cloutier, S.; Weary, D.M.; Fraser, D. Can ambient sound reduce distress in piglets during weaning and restraint? J. Appl. Anim. Welfare Sci. 2000, 3, 107–116. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, H.; Zhang, R.; Li, J.; Zhao, P.; Zhang, M.; Wang, C.; Bi, Y.; Zhang, Z.; Yi, R.; et al. Effects of long-term exposure to music on behaviour, immunity and performance of piglets. Anim. Prod. Sci. 2021, 61, 532–535. [Google Scholar] [CrossRef]
- Li, X.; Zhao, J.N.; Zhao, P.; Zhang, X.; Bi, Y.J.; Li, J.H.; Liu, H.G.; Wang, C.; Bao, J. Behavioural response of piglets to different types of music. Animal 2019, 13, 2319–2326. [Google Scholar] [CrossRef]
- Chikahisa, S.; Sei, H.; Morishima, M.; Sano, A.; Kitaoka, K.; Nakaya, Y.; Morita, Y. Exposure to music in the perinatal period enhances learning performance and alters BDNF/TrkB signaling in mice as adults. Behav. Brain. Res. 2006, 169, 312–319. [Google Scholar] [CrossRef]
- Rauscher, F.H.; Robinson, K.F.; Jens, J.J. Improved maze learning through early music exposure in rats. Neurosci. Res. 1998, 20, 427–432. [Google Scholar] [CrossRef]
- Lemmer, B. Music composed by Mozart and Ligeti on blood pressure and heart rate circadian rhythms in nomotensive and hypertensive rats. Informa 2008, 25, 971–986. [Google Scholar]
- Otsuka, Y.; Yanagi, J.; Watanabe, S. Discriminative and reinforcing properties of music for rats. Behav. Proc. 2009, 80, 121–127. [Google Scholar] [CrossRef]
- Cruz, J.N.; Lima, D.D.; DalMagro, D.D.; Cruz, J.G.P. Anxiolytic effect of Mozart music over short and long photoperiods as part of environmental enrichment in captive Rattus norvegicus (Rodentia: Muridae). Scan. J. Lab. Anim. Sci. 2015, 41, 1–7. [Google Scholar]
- Russo, C.; Patané, M.; Pellitteri, R.; Stanzini, R.; Russo, A. Prenatal music exposure influences weight, ghrelin expression and morphology of rat hippocampal neuron cultures. Int. J. Dev. Neurosci. 2021, 81, 151–158. [Google Scholar] [CrossRef]
- Hao, J.; Jiang, K.; Wu, M.; Yu, J.; Zhang, X. The effects of music therapy on amino acid neurotransmitters: Insights from an animal study. Physiol. Behav. 2020, 224, e113024. [Google Scholar] [CrossRef]
- Papadakakis, A.; Sidiropoulu, K.; Panagis, G. Music exposure attenuates anxiety- and depression-like behaviours and increases hippocampal spinal density in male rats. Behav. Brain. Res. 2019, 372, e112023. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Liang, T.; Zhou, F.H.; Cao, Y.; Wang, C.; Wang, F.-Y.; Li, F.; Zhou, X.-F.; Zhang, J.Y.; Li, C.Q. Regular music exposure in juvenile rats facilitates conditioned fear extinction and reduces anxiety after foot shock in adulthood. Bio-Med. Res. Int. 2019. [Google Scholar] [CrossRef] [Green Version]
- Xing, Y.; Chen, W.; Wang, Y.; Jing, W.; Gao, S.; Guo, D.; Xia, Y.; Yao, D. Music exposure improves spatial cognition by enhancing the BDNF level of dorsal hippocampal subregions in the developing rats. Brain Res. Bull. 2016, 121, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Escribano, B.; Quero, I.; Feijoo, M.; Tasset, I.; Montilla, P.; Túnez, I. Role of noise and music as anxiety modulators: Relationship with ovarian hormones in the rat. Appl. Anim, Behav. Sci. 2014, 152, 73–82. [Google Scholar] [CrossRef]
- Akiyama, K.; Sutoo, D. Effects of different frequencies of music on blood pressure regulation in spontaneously hypertensive rats. Neurosci. Lett. 2011, 487, 58–60. [Google Scholar] [CrossRef]
- Campo, J.L.; Garcia-Gil, M.; Davila, S. Effects of specific noise and music stimuli on stress and fear levels of laying hens of several breeds. Appl. Anim. Behav. Sci. 2005, 91, 75–84. [Google Scholar] [CrossRef]
- McArdie, T.M.; Foster, T.M.; Temple, W.; Matthews, L.R. A method for measuring the aversiveness of sounds to domestic hens. Appl. Anim. Behav. Sci. 1993, 37, 223–238. [Google Scholar] [CrossRef]
- Sanyal, T.; Kumar, V.; Nag, T.C.; Jainm, S.; Sreenivas, V.; Wadhwa, S. Prenatal loud music and noise: Differential impact on physiological arousal, hippocampal synaptogenesis and spatial behavior in one day-old chicks. PLoS ONE 2013, 8, e67347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panicker, H.; Wadhwa, S.; Roy, T.S. Effect of prenatal sound stimulation on medio-rostral neostriatum/hyperstriatum region of chick forebrain: A morphometric and immnohistochemical study. J. Chem. Neuroanat. 2002, 24, 127–135. [Google Scholar] [CrossRef]
- Sanyal, T.; Palanisamy, P.; Nag, T.C.; Roy, T.S.; Wadhwa, S. Effect of prenatal loud music in total number of neurons and glia, neuronal nuclear area and volume of chick brainstem, auditory nuclei, field L, and hippocampus: A stereological investigation. Int. J. Devel. Neurosci. 2013, 31, 234–244. [Google Scholar] [CrossRef]
- Kumar, V.; Nag, T.C.; Sharma, U.; Jagannathan, N.R.; Wadhwa, S. Differential effects of prenatal chronic high- level noise and music exposure on the excitatory and inhibitory synaptic components of the auditory cortex analog in developing chicks (Gallus gallus domesticus). Neuroscience 2014, 269, 302–317. [Google Scholar] [CrossRef]
- Dávila, S.G.; Campo, J.L.; Gil, M.G.; Prieto, M.T.; Torres, O. Effects of auditory and physical enrichment on 3 measurements of fear and stress (tonic immobility duration, heterophil to lymphocyte ration and fluctuating asymmetry) in several breeds of layer chicks. Poultry Sci. 2011, 90, 2459–2466. [Google Scholar] [CrossRef]
- Chiandetti, C.; Vallortigara, G. Chicks like consonant music. Psych. Sci. 2011, 22, 1270–1273. [Google Scholar] [CrossRef] [PubMed]
- Panksepp, J.; Bernatzky, G. Emotional sounds and the brain: The neuro-affective foundations of music appreciation. Behav. Proc. 2002, 60, 133–155. [Google Scholar] [CrossRef] [Green Version]
- Porter, D.; Neuringer, A. Music discrimination by pigeons. J. Exp. Psych. Anim. Behav. Proc. 1984, 10, 138–148. [Google Scholar] [CrossRef]
- Watanabe, S.; Sato, K. Discriminative stimulus properties of music in Java sparrows. Behav. Proc. 1999, 47, 53–57. [Google Scholar] [CrossRef]
- Watanabe, S.; Nemoto, M. Reinforcing property of music in Java sparrows. Behav. Proc. 1998, 43, 211–218. [Google Scholar] [CrossRef]
- Papoutsoglou, S.E.; Karakatsouli, N.; Louizos, E.; Chadio, S.; Kalogiannis, D.; Dalla, C.; Polissidis, A.; Papadopoulou-Daifoti, Z. Effect of Mozart’s music (Romanze-adante of “Eine Kleine Nachtmusik”, sol major, K. 525) stimulus on common carp (Cyprinus carpio L.) physiology under different light conditions. Aquacult. Eng. 2007, 36, 61–72. [Google Scholar] [CrossRef]
- Papoutsoglou, S.E.; Karakatsouli, N.; Papoutsoglou, E.S.; Vasilikos, G. Common carp (Cyprinus carpio) response to two pieces of music (“Eine Kleine Nachtmusik” and “Romanza”) combined with light intensity, using recirculating water system. Fish Physiol. Biochem. 2010, 36, 539–554. [Google Scholar] [CrossRef] [PubMed]
- Papoutsoglou, S.E.; Karakatsouliu, N.; Batzina, A.; Papoutsoglou, E.S.; Tsopelakos, A. Effect of music stimulus on gilthead seabream Sparus aurata physiology under different light intensity in a re-circulating water system. J. Fish. Biol. 2008, 73, 980–1004. [Google Scholar] [CrossRef]
- Imanpoor, M.R.; Enayat Gholampour, T.; Zolfaghari, M. Effect of light and music on growth performance and survival rate of goldfish (Carassius auratus). Iran. J. Fish. Sci. 2011, 10, 641–653. [Google Scholar]
- Shinozuko, K.; Ono, H.; Watanabe, S. Reinforcing and discriminative properties of music in goldfish. Behav. Proc. 2013, 99, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Catli, T.; Yildirim, O.; Turker, A. The effect of different tempos of music during feeding on growth performance, chemical body composition and feed utilization of turbot (Psetta maeotica, Pallas, 1814). Isr. J. Aquacult. 2015, 67, 1221. [Google Scholar]
- Stevens, M. Sensory Ecology, Behavior and Evolution; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Seguna, S.; Deepika, A. The effect of music on pulse rate and blood pressure in healthy young adults. Int. J. Res. Med. Sci. 2017, 5, 5268–5272. [Google Scholar]
- Kent, J.P. The chick’s preference for certain features of the maternal cluck vocalization in the domestic fowl (Gallus gallus). Behaviour 1993, 125, 177–187. [Google Scholar] [CrossRef]
- De Tommaso, M.; Kaplan, G.; Chiandeti, C.; Vallortigara, G. Naïve 3-day-old chicks (Gallus gallus) are attracted to discrete acoustic patterns characterizing natural vocalizations. J. Comp. Psych. 2019, 133, 118–131. [Google Scholar] [CrossRef]
- Patel, A.D.; Iverson, J.R.; Bergman, M.R.; Schultz, I. Experimental evidence for synchronization to a musical beat in a nonhuman animal. Curr. Biol. 2009, 19, 827–830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soma, M.; Mori, C. The songbird as a percussionist: Syntactic rules for non-vocal sound and song production in Java sparrows. PLoS ONE 2015, 10, e0124876. [Google Scholar]
- Cook, P.; Rouse, A.; Wilson, M.; Reichmuth, C. A California sea lion (Zalophus californianus) can keep the beat: Motor entrainment to rhythmic auditory stimuli in a non-vocal mimic. J. Comp. Psych. 2013, 127, 412–427. [Google Scholar] [CrossRef] [Green Version]
- Ravignani, A.; Kello, C.T.; de Reus, K.; Kotz, S.A.; Dalla Bella, S.; Mendez-Arostogue, M.; Rapado-Tamarit, B.; Rubio-Garcoa, A.; de Boer, B. Ontogeny of vocal rhythms in harbor seal pups: An exploratory study. Curr. Zool. 2019, 65, 107–120. [Google Scholar] [CrossRef] [Green Version]
- Large, E.W.; Gray, P.M. Spontaneous tempo and rhythmic entrainment in a bonobo (Pan paniscus). J. Comp. Psych. 2015, 129, 317–328. [Google Scholar] [CrossRef] [PubMed]
- Scherer, K.R. Expression of emotion in voice and music. J. Voice 1995, 9, 235–248. [Google Scholar] [CrossRef] [Green Version]
- Bresin, R.; Friberg, A. Emotion rendering in music: Range and characteristic values of seven musical variables. Cortex 2011, 47, 1068–1081. [Google Scholar] [CrossRef]
- Juslin, P.N.; Laukka, P. Communication of emotions in vocal expression and music performance: Different channels same code? Psych. Bull. 2003, 129, 770–814. [Google Scholar] [CrossRef] [Green Version]
- Balkwell, L.L.; Thompson, W.F. A cross-cultural investigation into the perception of emotion in music: Psychophysical and cultural cues. Music Percept. 1999, 17, 43–64. [Google Scholar] [CrossRef]
- Snowdon, C.T. Social and emotional communication in nonhuman animals. In The Oxford Handbook of Voice Perception; Frühholz, S., Belin, P., Eds.; Oxford University Press: Oxford, UK, 2018; pp. 393–411. [Google Scholar]
- Watanabe, S.; Uozumi, M.; Tanaki, N. Discrimination of consonance and dissonance in Java sparrows. Behav. Proc. 2005, 70, 203–208. [Google Scholar] [CrossRef]
- Crespo-Bojorque, P.; Toro, J.M. The use of interval ratios in consonance perception by rats (Rattus norvegicus) and humans (Homo sapiens). J. Comp. Psych. 2015, 129, 42–51. [Google Scholar] [CrossRef]
- Crespo-Bojorque, P.; Toro, J.M. Processing advantage for consonance: A comparison between rats (Rattus norvegicus) and humans (Homo sapiens). J. Comp. Psych. 2016, 130, 97–108. [Google Scholar] [CrossRef]
- Snowdon, C.T.; Teie, D. Emotional communication in monkeys: Music to their ears? In Evolution of Emotional Communication; Altenmüller, E., Schmidt, S., Zimmermann, E., Eds.; Oxford University Press: Oxford, UK, 2013; pp. 133–151. [Google Scholar]
- Snowdon, C.T.; Teie, D. Affective responses in tamarins elicited by species-specific music. Biol. Lett. 2010, 6, 30–32. [Google Scholar] [CrossRef] [Green Version]
- Snowdon, C.T.; Teie, D.; Savage, M.E. Cats prefer species appropriate music. Appl. Anim. Behav. Sci. 2015, 166, 106–111. [Google Scholar] [CrossRef]
- Hampton, A.; Ford, A.; Cox III, R.A.; Liu, C.-C.; Koh, R. Effects of music on behavior and physiological stress response of cats in a veterinary clinic. J. Feline Med. Surg. 2020, 22, 122–128. [Google Scholar] [CrossRef]
- Patel, A. Music, Language and the Brain; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Menon, V.; Levitin, D.J. The rewards of music listening: Response and physiological connectivity of the mesolimbic system. NeuroImage 2008, 28, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Salimpoor, V.N.; van den Bosch, I.; Kovacevic, N.; McIntosh, A.R.; Dagher, A.; Zatore, R.J. Interactions between the nucleus accumbens and auditory cortices predict music reward value. Science 2013, 340, 216–219. [Google Scholar] [CrossRef] [PubMed]
- Kirschner, S.; Tomasello, M. Joint music making promotes prosocial behavior in 4-year-old children. Evol. Hum. Behav. 2010, 31, 354–364. [Google Scholar] [CrossRef]
- Nilsson, U. Soothing music can increase oxytocin levels during bed rest after open-heart surgery: A randomized control trial. J. Clin. Nurs. 2009, 18, 2153–2161. [Google Scholar] [CrossRef] [PubMed]
- Vaajoki, A.; Pietilä, A.-M.; Kankkunen, P.; Vehviläinen-Julkunen, K. Effects of listening to music on pain intensity and pain distress after surgery: An intervention. J. Clin Nurs. 2011, 21, 708–717. [Google Scholar] [CrossRef] [PubMed]
- Lai, H.-L.; Li, Y.-M.; Lee, L.-H. Effects of music intervention with nursing presence and recorded music on psychophysiological indices of cancer patient caregivers. J. Clin. Nurs. 2011, 21, 745–756. [Google Scholar] [CrossRef] [PubMed]
- Thorpe, W.H. Ritualization in the individual development of bird song. Phil. Tans. Roy. Soc. B 1966, 251, 351–358. [Google Scholar]
Species | Music or Sounds | Outcome | Citation |
---|---|---|---|
Orangutan (Pref) | 7 musical genres, silence | Silence preferred | [10] |
Gorilla (Wel) | Noises, rainforest sounds | Rainforest sounds calmed infants aroused adults | [11] |
Gorilla (Wel) | Classical, natural sounds, silence | No effect | [12] |
Gorilla (Wel) | Classical, rock, natural sounds | Reduced stereotypy to natural sounds | [13] |
Gorilla (Wel) | Classical, rock, natural sounds | No effect natural sounds, slow tempo classical, reduced anxiety | [14] |
Chimpanzees (Pref) | Classical, pop rock, silence | Individual preference for pop/rock over silence | [15] |
Chimpanzee (Wel) | Classical, easy listening, instrumental, vocal music | Instrumental increased affiliation, slow tempo, vocal reduced agonistic | [16] |
Chimpanzee (Wel) | Unspecified music | Reduced aggression, exploration, increased social grooming, resting | [17] |
Chimpanzee (Pref) | Slow tempo African, Indian, Japanese music | Apes preferred African and Indian music | [18] |
Chimpanzee (Pref) | Consonant vs. dissonant | One young chimp preferred consonant music | [19] |
Moloch gibbons (Pref) | Mixed classical music | No behavioral change | [20] |
Lar gibbons (Pref) | Species typical songs | Increased activity, brachiation | [21] |
Baboons (Phys) | Radio (Oldies) | No change in blood pressure, behavior, HR lower | [22] |
Rhesus macaques Wel) | Mozart, Bach, noise, silence | Noise increased response time, not music, silence | [23] |
Common marmoset (Pref) | Mozart, heavy metal, silence | Prefer Mozart to heavy metal, silence to Mozart | [24] |
Cotton-top tamarin (Pref) | Mozart, heavy metal silence | Prefer Mozart to heavy metal, silence to Mozart | [24] |
Elephants (Wel) | Mixed classical, silence | Classical reduced stereotypic behavior | [25] |
Dogs (Wel) | Calming classical, rock, simplified classical | Classical increased sleeping, decreased vocalization, rock increased nervousness | [26] |
Dogs (Wel) | Mixed classical, rock, pop, silence | Classical—more rest, decreased vocalizations | [27] |
Dogs Wel, Phys) | Slow tempo classical, silence | Music increased HR variability, calmed in shelter | [28] |
Dogs (Wel) | Classical music, silence | No effect on dogs but music impressed owners | [29] |
Dogs (Wel) | Beethoven, pop, audiobook | Audiobook calmed shelter dogs, music did not | [30] |
Lambs (Wel, Phys) | Easy music, noise, loud sounds | Noise increased weight, classical induced calm | [31] |
Dairy cows (Wel) | Country music | Increased approach to milking stalls | [32] |
Ponies (Wel) | Rock, classical, country, jazz | No significance, trend for country to increase eating | [33] |
Piglets (Wel) | Music, pink noise, natural vocals | No effects | [34] |
Piglets (Wel) | Slow tempo, fast tempo, silence | Music increased play, tail wagging | [35] |
Piglets((Wel) | Slow, fast tempos, wind, strings | Fast tempos increased walking, tail wagging, slow tempos increased lying, exploration | [36] |
Mice (Wel, Phys) | Perinatal Mozart, noise, silence | Mozart improved learning, increased protein levels | [37] |
Rats (Wel) | Perinatal Mozart | Increased learning, frequency range not in rat range | [38] |
Rats (Phys) | Ligeti versus Mozart, Different tempo, harmony | Mozart reduced HR in hypertensive rats, Ligeti increased blood pressure. | [39] |
Rats (Pref, Disc) | Bach vs. Stravinsky | No preference, generalized to other similar music | [40] |
Rats (Wel) | Mozart at different photoperiods | Reduced anxiety at equal photoperiod, not at others | [41] |
Rats (Phys) | 432 Hz tone, silence | Increased ghrelin levels, weight, dose effect | [42] |
Rats (Phys) | 5 types traditional Chinese music | Different neurotransmitter changes based on type of music presented | [43] |
Rats (Wel) | Mozart (K448), silence | Music reduced stress and anxiety in maternal separation. | [44] |
Rats (Wel, Phys) | Mozart (K488), silence | Mozart decreased fear, higher BDNF levels | [45] |
Rats (Wel, Phys) | Mozart (K448), silence | Mozart enhances spatial learning high BDNF | [46] |
Rats (Wel) | Mozart (K448), white noise, silence | Mozart reduced anxiety | [47] |
Rats (Phys) | Mozart (K205) | Reduced BP in hypertensive rats, only frequencies over 4 kHz effective. | [48] |
Hens (Wel, Phys) | Mozart vs. background noise | Music increased stress, no effect on blood measures | [49] |
Hens (Pref) | Noise versus music | Noise aversive, music no effect | [50] |
Chickens (Phys) | Loud noise, fast tempo raga, silence | Music increased synaptic hippocampal proteins | [51] |
Chickens (Phys) | Species specific sounds, sitar music | Music increased calcium binding proteins | [52] |
Chickens (Phys) | Loud noise, sitar music | Increased neuronal density, volume with music decreased density, volume with loud noise | [53] |
Chickens (Phys) | Loud noise, loud music | Music enhanced auditory functions, noise did not | [54] |
Chickens (Wel, Phys) | Mozart | Music reduced stress physiology, reduced growth | [55] |
Chickens (Pre) | Consonant versus dissonant | Prefer consonant | [56] |
Chickens (Wel, Phys) | “Happy” “sad” music | Happy music increases “happiness”, sad music increases sadness, both decrease anxiety, anger; Head flicks, feather ruffles induced by oxytocin; Increased brain norepinephrine and dopamine | [57] |
Pigeons (Disc) | Bach vs. Stravinsky | Discriminated and generalized to similar composers | [58] |
Java Sparrows (Disc) | Bach vs. Schoenberg | 5 of 7 birds discriminated, generalized to similar | [59] |
Java Sparrows (Pref) | Bach vs. Schoenberg | Two of 4 birds preferred Bach, generalized to similar composers | [60] |
Carp (Phys, Wel) | Mozart, silence | Mozart increased growth rate, decreased stress | [61] |
Carp (Phys) | Mozart (K529), Romanza, silence | Both music pieces increased growth, Mozart less | [62] |
Seabream (Phys) | Mozart (K 529), silence | Mozart increased growth rate, energy utilization | [63] |
Goldfish (Phys) | Lute violin music | No effects on growth or weight | [64] |
Goldfish (Disc, Pref) | Bach vs. Stravinsky | Discriminate between but prefer neither | [65] |
Turbot (Phys) | Music at different tempos | Growth improved with slow, impaired with fast | [66] |
Variable | Calming | Arousing | Fear | Threat |
---|---|---|---|---|
Tempo | Slow | Fast | Fast | Moderate |
Pitch | Descending | Ascending | High | Low |
Rate | Legato | Staccato | Staccato | Staccato |
Amplitude | Soft | Loud | Loud | Moderate |
Harmony | Consonant | Consonant | Dissonant | Dissonant |
Attack Speed | Slow | Fast | Slow | Fast |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Snowdon, C.T. Animal Signals, Music and Emotional Well-Being. Animals 2021, 11, 2670. https://doi.org/10.3390/ani11092670
Snowdon CT. Animal Signals, Music and Emotional Well-Being. Animals. 2021; 11(9):2670. https://doi.org/10.3390/ani11092670
Chicago/Turabian StyleSnowdon, Charles T. 2021. "Animal Signals, Music and Emotional Well-Being" Animals 11, no. 9: 2670. https://doi.org/10.3390/ani11092670
APA StyleSnowdon, C. T. (2021). Animal Signals, Music and Emotional Well-Being. Animals, 11(9), 2670. https://doi.org/10.3390/ani11092670