Boar Semen Contamination: Identification of Gram-Negative Bacteria and Antimicrobial Resistance Profile
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Origin of Samples
2.2. Semen Evaluation
2.3. Bacterial Isolation and Identification
2.4. Antimicrobial Susceptibility Test
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Úbeda, J.L.; Ausejo, R.; Dahmani, Y.; Falceto, M.V.; Usan, A.; Malo, C.; Perez-Martinez, F.C. Adverse effects of members of the Enterobacteriaceae family on boar sperm quality. Theriogenology 2013, 80, 565–570. [Google Scholar] [CrossRef]
- Althouse, G.C.; Kuster, C.E.; Clark, S.G.; Weisiger, R.M. Field investigations of bacterial contaminants and their effects on extended porcine semen. Theriogenology 2000, 53, 1167–1176. [Google Scholar] [CrossRef]
- Althouse, G.C.; Lu, K.G. Bacteriospermia in extended porcine semen. Theriogenology 2005, 63, 573–584. [Google Scholar] [CrossRef]
- Kuster, C.E.; Althouse, G.E. The impact of bacteriospermia on boar sperm storage and reproductive performance. Theriogenology 2016, 85, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Althouse, G.C. Sanitary procedures for the production of extended semen. Reprod. Domest. Anim. 2008, 43 (Suppl. 2), 374–378. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.S.; Silva, A.R. Current and alternative trends in antibacterial agents used in mammalian semen technology. Anim. Reprod. 2020, 17, e2019011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bennemann, P.E.; Machado, S.A.; Girardini, L.K.; Sonálio, K.; Tonin, A.A. Bacterial contaminants and antimicrobial susceptibility profile of boar semen in southern Brazil Studs. Rev. MVZ Córdoba 2018, 23, 6637–6648. [Google Scholar]
- Bussalleu, E.; Yeste, M.; Sepúlveda, L.; Torner, E.; Pinart, E.; Bonet, S. Effects of different concentrations of enterotoxigenic and verotoxigenic E. coli on boar sperm quality. Anim. Reprod. Sci. 2011, 127, 176–182. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Methods for Antimicrobial Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria Isolated from Animals, 1st ed.; Supplement VET06; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2009; pp. 11–15. [Google Scholar]
- CLSI. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 3rd ed.; Supplement VET01S; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2017; pp. 20–90. [Google Scholar]
- Goldberg, A.M.G.; Argenti, L.E.; Faccin, J.E.; Linck, L.; Santi, M.; Bernardi, M.L.; Bortolozzo, F.P. Risk factors for bacterial contamination during boar semen collection. Res. Vet. Sci. 2013, 95, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Maroto Martín, L.O.; Muñoz, E.C.; De Cupere, F.; Van Driessche, E.; Echemendia Blanco, D.; Rodríguez, J.M.M.; Beeckmans, S. Bacterial contamination of boar semen affects the litter size. Anim. Reprod. Sci. 2010, 120, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Tvrdá, E.; Bučko, O.; Rojková, K.; Duračka, M.; Kunová, S.; Kováč, J.; Benko, F.; Kačániová, M. The Efficiency of Selected Extenders against Bacterial Contamination of Boar Semen in a Swine Breeding Facility in Western Slovakia. Animals 2021, 11, 3320. [Google Scholar] [CrossRef]
- Schulze, M.; Ammon, C.; Rüdiger, K.; Jung, M.; Grobbel, M. Analysis of hygienic critical control points in boar semen production. Theriogenology 2015, 85, 430–437. [Google Scholar] [CrossRef]
- Bussalleu, E.; Althouse, G.C. A PCR detection method for discerning Serratia marcescens in extended boar semen. J. Microbiol. Methods Microbiol. 2020, 166, 34–43. [Google Scholar] [CrossRef]
- Clark, S.; Ness, A.; Payne, B.; Borst, L.; Maddox, C. Description of growth dynamics of biofilm bacteria found in extended porcine semen. Biol. Reprod. 2007, 77, 84–85. [Google Scholar] [CrossRef]
- Clark, S.; Ness, A.; Baldrighi, J.; Borst, L.; Maddox, C.; Payne, B. 10 inoculation of culture-negative porcine semen with novel biofilm-forming bacteria. Reprod. Fertil. Dev. 2007, 20, 85. [Google Scholar] [CrossRef]
- Prieto-Martínez, N.; Bussalleu, E.; Garcia-Bonavila, E.; Bonet, S.; Yeste, M. Effects of Enterobacter cloacae on boar sperm quality during liquid storage at 17 C. Anim. Reprod. Sci. 2014, 148, 72–82. [Google Scholar] [CrossRef]
- Bolarín, A. Bacteriología en semen de porcino. Av. Tecnol. Porc. 2011, 8, 20–30. [Google Scholar]
- Knox, R.V. Artificial insemination in pigs today. Theriogenology 2016, 85, 83–93. [Google Scholar] [CrossRef]
- Tsuchida, S.; Umemura, H.; Nakayama, T. Current Status of Matrix-Assisted Laser Desorption/Ionization–Time-of-Flight Mass Spectrometry (MALDI-TOF MS) in Clinical Diagnostic Microbiology. Molecules 2020, 25, 4775. [Google Scholar] [CrossRef]
- Pascu, C.; Costinar, L.; Mernea, I.; Tătar, D.; Herman, V. Prevalence of Lawsonia intracellularis infections in pig herds from the Western Romania. Agric. Agric. Sci. Procedia 2015, 6, 378–381. [Google Scholar] [CrossRef] [Green Version]
- Sepúlveda, L.; Bussalleu, E.; Yeste, M.; Bonet, S. Effects of different concentrations of Pseudomonas aeruginosa on boar sperm quality. Anim. Reprod. Sci. 2014, 150, 96–106. [Google Scholar] [CrossRef]
- Sone, M.; Ohmura, K.; Bamba, K. Effects of various antibiotics on the control of bacterial in boar semen. Vet. Rec. 1982, 111, 11–14. [Google Scholar] [CrossRef]
- Bresciani, C.; Cabassi, C.; Morini, G.; Taddei, S.; Bettini, R.; Bigliardi, E. Boar Semen Bacterial Contamination in Italy and Antibiotic Efficacy in a Modified Extender. Ital. J. Anim. Sci. 2014, 13, 3082. [Google Scholar] [CrossRef] [Green Version]
- Ciornei, Ș.G.; Roșca, P.; Drugoiu, D. Bacterial and fungal burden in boar semen. Res. J. Biotechnol. 2012, 7, 23–27. [Google Scholar]
- Pereira, A.C.M.; Silva Júnior, A.; da Costa, E.P.; Real Pereira, C.E. The potential for infectious disease contamination during the artificial insemination procedure in swine, success in artificial insemination-quality of semen and diagnostics employed. In Success in Artificial Insemination-Quality of Semen and Diagnostics Employed, 1st ed.; Lemma, A., Ed.; Intech Open: London, UK, 2013; pp. 1–12. [Google Scholar]
- Gączarzewicz, D.; Udala, J.; Piasecka, M.; Blaszczyk, B.T.; Stankiewiczi, T. Bacterial contamination of boar semen and its relationship to sperm quality preserved in commercial extender containing gentamicin sulfate. Pol. J. Vet. Sci. 2016, 19, 451–459. [Google Scholar] [CrossRef] [Green Version]
- Pinart, E.; Domènech, E.; Bussalleu, E.; Yeste, M.; Bonet, S.J. A comparative study of the effects of Escherichia coli and Clostridium perfringens upon boar semen preserved in liquid storage. Anim. Reprod. Sci. 2017, 177, 65–78. [Google Scholar] [CrossRef]
- Waberski, D.; Weyand, A.; Seedorf, J.; Weitze, K.F. Hygiene measures in boar semen production. Acta Sci. Vet. 2010, 38, s1–s7.29. [Google Scholar]
- Dalmutt, C.A.; Moreno, L.Z.; Gomez Vasco, T.M.; Cunha, M.P.V.; Barbosa, M.R.F.; Sato, M.I.Z.; Knöbl, T.; Pedroso, A.C.; Moreno, A.M. Characterization of bacterial contaminants of boar semen: Identification by MALDI-TOF mass spectrometry and antimicrobial susceptibility profiling. J. Appl. Anim. Res. 2020, 48, 559–565. [Google Scholar] [CrossRef]
- Schwarz, S.; Silley, P.; Simjee, S.; Woodford, N.; Van Duijkeren, E.; Johnson, A.P.; Gaastra, W. Assessing the antimicrobial susceptibility of bacteria obtained from animals. Vet. Microbiol. 2010, 141, 601–604. [Google Scholar] [CrossRef]
- Sone, M.; Kawarasaki, T.; Ogasa, A.; Nakahara, T. Effect of bacteria-contaminated boar semen on the reproductive performance. J. Anim. Reprod. 1989, 35, 159–164. [Google Scholar] [CrossRef] [Green Version]
- Menezes, T.A.; Mellagi, A.P.G.; da Silva Oliveira, G.; Bernardi, M.L.; Wentz, I.; Ulguim, R.D.R.; Bortolozzo, F.P. Antibiotic-free extended boar semen preserved under low temperature maintains acceptable in-vitro sperm quality and reduces bacterial load. Theriogenology 2020, 149, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Wieser, A.; Schneider, L.; Jung, J.; Schubert, S. MALDI-TOF MS in microbiological diagnostics-identification of microorganisms and beyond (mini review). Appl. Microbiol. Biotechnol. 2012, 93, 965–974. [Google Scholar] [CrossRef] [PubMed]
- Pascu, C.; Costinar, L.; Herman, V.; Iancu, I. Antimicrobial susceptibility of pathogenic bacteria isolated from swine lungs. Rom. Biotechnol. Lett. 2019, 24, 506–512. [Google Scholar] [CrossRef]
- Imre, K.; Herman, V.; Morar, A. Scientific Achievements in the Study of the Occurrence and Antimicrobial Susceptibility Profile of Major Foodborne Pathogenic Bacteria in foods and Food Processing Environments in Romania: Review of the Last Decade. Hindawi BioMed. Res. Int. 2020, 2020, 5134764. [Google Scholar] [CrossRef] [PubMed]
- Morell, J.M. Antimicrobials in Boar Semen Extenders—A risk/Benefit Analysis. J. Antimicrob. Agents 2016, 2, 107–109. [Google Scholar]
Positive Semen Samples | ||
---|---|---|
Bacterial Genera and Species | No | % |
Serratia marcescens | 9 | 19.56 |
Ralstonia pickettii | 8 | 17.39 |
Proteus mirabilis | 7 | 15.21 |
Escherichia coli | 5 | 10.86 |
Burkholderia cepacian | 5 | 10.86 |
Klebsiella oxytoca | 4 | 8.69 |
Pseudomonas aeruginosa | 4 | 8.69 |
Enterobacter spp. | 2 | 4.34 |
Pseudomonas fluorescens | 2 | 4.34 |
Total | 46 | 100 |
Antimicrobial Substance | Number of Strains | ||
---|---|---|---|
Sensitive | Intermediate | Resistance | |
Enrofloxacin 5 µg | 29 | 10 | 7 |
Apramycin 30 µg | 21 | 14 | 10 |
Gentamycin 10 µg | 10 | 10 | 26 |
Neomycin 30 µg | 8 | 11 | 27 |
Ceftiofur 30 µg | 17 | 7 | 22 |
Flumequine 30 µg | 22 | 11 | 13 |
Penicillin 10 IU | 11 | 9 | 26 |
Lincomycin 2 µg | 10 | 14 | 22 |
Ampicillin 10 µg | 15 | 8 | 23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costinar, L.; Herman, V.; Pitoiu, E.; Iancu, I.; Degi, J.; Hulea, A.; Pascu, C. Boar Semen Contamination: Identification of Gram-Negative Bacteria and Antimicrobial Resistance Profile. Animals 2022, 12, 43. https://doi.org/10.3390/ani12010043
Costinar L, Herman V, Pitoiu E, Iancu I, Degi J, Hulea A, Pascu C. Boar Semen Contamination: Identification of Gram-Negative Bacteria and Antimicrobial Resistance Profile. Animals. 2022; 12(1):43. https://doi.org/10.3390/ani12010043
Chicago/Turabian StyleCostinar, Luminita, Viorel Herman, Elena Pitoiu, Ionica Iancu, Janos Degi, Anca Hulea, and Corina Pascu. 2022. "Boar Semen Contamination: Identification of Gram-Negative Bacteria and Antimicrobial Resistance Profile" Animals 12, no. 1: 43. https://doi.org/10.3390/ani12010043
APA StyleCostinar, L., Herman, V., Pitoiu, E., Iancu, I., Degi, J., Hulea, A., & Pascu, C. (2022). Boar Semen Contamination: Identification of Gram-Negative Bacteria and Antimicrobial Resistance Profile. Animals, 12(1), 43. https://doi.org/10.3390/ani12010043