Non-Invasive Assessment of the Seasonal Stress Response to Veterinary Procedures and Transportation of Zoo-Housed Lesser Anteater (Tamandua tetradactyla)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Studied Animals and Housing Conditions
2.2. Climatic Housing Conditions
2.3. Studies of the Seasonal Stress Response to Veterinary Procedures and Transportation
2.3.1. Study 1—Effects of Seasons
2.3.2. Study 2—Effects of Veterinary Check over the Seasons
2.3.3. Study 3—Effects of Transportation over the Seasons
2.4. Experimental Design and Sample Collection for Evaluation of the Effects of Management Procedures
2.4.1. Veterinary Check: Experimental Design and Sample Collection
2.4.2. Transport: Experimental Design and Sample Collection
2.5. Behavioural Analyses
2.6. Faecal Glucocorticoid Metabolite (FGM) Measurements
2.7. Statistical Analyses
3. Results
3.1. Study 1—Effects of Seasons
3.2. Study 2—Effect of Veterinary Check
3.2.1. Behavioural Response to Veterinary Check
3.2.2. Adrenocortical Response to Veterinary Check
3.3. Study 3—Effect of Transportation
3.3.1. Behavioural Response to Transportation
3.3.2. Adrenocortical Response to Transport
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hosey, G.; Melfi, V.; Pankhurst, S. Zoo Animals: Behavior, Management, and Welfare, 2nd ed.; Oxford University Press: New York, NY, USA, 2010; pp. 522–524. [Google Scholar]
- Narayan, E. Introduction to the Special Issue: Assessing the environmental adaptation of wildlife and production animals: Applications of physiological indices and welfare assessment tools. Animals 2020, 10, 2280. [Google Scholar] [CrossRef]
- Whitham, J.; Miller, L. Using technology to monitor and improve zoo animal welfare. Anim. Welf. 2016, 25, 395–409. [Google Scholar] [CrossRef]
- Wolfensohn, S.; Shotton, J.; Bowley, H.; Davies, S.; Thompson, S.; Justice, W. Assessment of welfare in zoo animals: Towards optimum quality of life. Animals 2018, 8, 110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dawkins, M.S. Using behaviour to assess animal welfare. Anim. Welf. 2004, 13, 3–7. [Google Scholar]
- Brando, S.; Buchanan-Smith, H.M. The 24/7 approach to promoting optimal welfare for captive wild animals. Behav. Processes 2018, 156, 83–95. [Google Scholar] [CrossRef] [PubMed]
- Whitham, J.C.; Wielebnowski, N. New directions for zoo animal welfare science. Appl. Anim. Behav. Sci. 2013, 147, 247–260. [Google Scholar] [CrossRef]
- Miller, L.J.; Vicino, G.A.; Sheftel, J.; Lauderdale, L.K. Behavioral diversity as a potential indicator of positive animal welfare. Animals 2020, 10, 1211. [Google Scholar] [CrossRef]
- Ferrie, G.M.; Sky, C.; Schutz, P.J.; Quinones, G.; Breeding, S.; Plasse, C.; Leighty, K.A.; Bettinger, T.L. Application of video recording technology to improve husbandry and reproduction in the carmine bee-eater (Merops n. nubicus). Zoo Biol. 2016, 35, 76–82. [Google Scholar] [CrossRef]
- Cless, I.T.; Lukas, K.E. Variables affecting the manifestation of and intensity of pacing behavior: A preliminary case study in zoo-housed polar bears. Zoo Biol. 2017, 36, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, J.; Fuller, G.; Allard, S. Evaluation of the impact of behavioral opportunities on four zoo-housed Aardvarks (Orycteropus afer). Animals 2020, 10, 1433. [Google Scholar] [CrossRef] [PubMed]
- Palme, R. Non-invasive measurement of glucocorticoids: Advances and problems. Physiol. Behav. 2019, 199, 229–243. [Google Scholar] [CrossRef]
- Möstl, E.; Palme, R. Hormones as indicators of stress. Domest. Anim. Endocrinol. 2002, 23, 67–74. [Google Scholar] [CrossRef]
- Palme, R.; Rettenbacher, S.; Touma, C.; El-Bahr, S.M.; Möstl, E. Stress hormones in mammals and birds: Comparative aspects regarding metabolism, excretion, and noninvasive measurement in fecal samples. Ann. N. Y. Acad. Sci. 2005, 1040, 162–171. [Google Scholar] [CrossRef]
- Capiro, J.M.; Stoops, M.A.; Freeman, E.W.; Clawson, D.; Schook, M.W. Effects of management strategies on glucocorticoids and behavior in Indian rhinoceros (Rhinoceros unicornis): Translocation and operant conditioning. Zoo Biol. 2014, 33, 131–143. [Google Scholar] [CrossRef] [PubMed]
- Ruskell, A.D.; Meiers, S.T.; Jenkins, S.E.; Santymire, R.M. Effect of bungee-carcass enrichment on behavior and fecal glucocorticoid metabolites in two species of zoo-housed felids. Zoo Biol. 2015, 34, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Sarmah, J.; Hazarika, C.R.; Berkeley, E.v.; Ganswindt, S.B.; Ganswindt, A. Non-invasive assessment of adrenocortical function as a measure of stress in the endangered golden langur. Zoo Biol. 2017, 36, 278–283. [Google Scholar] [CrossRef] [Green Version]
- de Almeida, A.C.; Palme, R.; Moreira, N. How environmental enrichment affects behavioral and glucocorticoid responses in captive blue-and-yellow macaws (Ara ararauna). Appl. Anim. Behav. Sci. 2018, 201, 125–135. [Google Scholar] [CrossRef]
- Chiew, S.J.; Butler, K.L.; Sherwen, S.L.; Coleman, G.J.; Fanson, K.v.; Hemsworth, P.H. Effects of regulating visitor viewing proximity and the intensity of visitor behaviour on little penguin (Eudyptula minor) behaviour and welfare. Animals 2019, 9, 285. [Google Scholar] [CrossRef] [Green Version]
- Volfova, M.; Machovcova, Z.; Voslarova, E.; Bedanova, I.; Vecerek, V. Comparison of the glucocorticoid concentrations between three species of lemuridae kept in a temporary housing facility. Animals 2020, 10, 1013. [Google Scholar] [CrossRef] [PubMed]
- Santamaria, F.; Palme, R.; Schlagloth, R.; Klobetz-Rassam, E.; Henning, J. Seasonal variations of faecal cortisol metabolites in koalas in South East Queensland. Animals 2021, 11, 1622. [Google Scholar] [CrossRef]
- Dickens, M.J.; Delehanty, D.J.; Michael Romero, L. Stress: An inevitable component of animal translocation. Biol. Conserv. 2010, 143, 1329–1341. [Google Scholar] [CrossRef]
- Parker, K.A.; Dickens, M.J.; Clarke, R.H.; Lovegrove, T.G.; Ewen, J.G.; Armstrong, D.P. The theory and practice of catching, holding, moving and releasing animals. In Reintroduction Biology: Integrating Science and Management; Ewen, J.G., Armstrong, D.P., Parker, K.A., Seddon, P.J., Eds.; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2012; pp. 105–137. [Google Scholar] [CrossRef]
- AAZV American Association of Zoo Veterinarians. Guidelines for Zoo and Aquarium Veterinary Medical Programs and Veterinary Hospitals. 6° Edición. 2016. Available online: https://www.aazv.org/resource/resmgr/files/aazvveterinaryguidelines2016.pdf (accessed on 20 October 2020).
- EAZA—European Association of Zoos and Aquaria. Standards for the Accomodation and Care of Animals in Zoos and Aquaria. 2019. Available online: https://www.eaza.net/assets/Uploads/Standards-and-policies/2019-04-EAZA-Standards-for-Accomodation-and-Care.pdf (accessed on 20 October 2020).
- Mellor, D.J.; Beausoleil, N.J. Extending the ‘Five Domains’ model for animal welfare assessment to incorporate positive welfare states. Anim. Welf. 2015, 24, 241–253. [Google Scholar] [CrossRef]
- Eguizábal, G.V.; Palme, R.; Villarreal, D.; Dal Borgo, C.; Di Rienzo, J.A.; Busso, J.M. Assessment of adrenocortical activity and behaviour of the collared anteater (Tamandua tetradactyla) in response to food-based environmental enrichment. Zoo Biol. 2013, 32, 632–640. [Google Scholar] [CrossRef] [PubMed]
- Eguizábal, G.V.; Palme, R.; Superina, M.; Asencio, C.J.; García Capocasa, M.C.; Busso, J.M. Characterization and correlations of behavioral and adrenocortical activities of zoo-housed lesser anteaters (Tamandua tetradactyla). Zoo Biol. 2019, 38, 334–342. [Google Scholar] [CrossRef] [PubMed]
- Chiapero, F.; Ferrari, R.H.; Guglielmetti, A.; García Capocasa, M.C.; Busso, J.M. Visitors’ perceptions of zoo-housed lesser anteater (Tamandua tetradactyla) welfare: Observation plays a larger role than a brief informative talk. Zoo Biol. 2021, 40, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Superina, M.; Miranda, F.; Plese, T. Maintenance of Xenarthra in captivity. In The Biology of the Xenarthra; Vizcaíno, S.F., Loughry, W.J., Eds.; University Press of Florida: Gainesville, FL, USA, 2008; pp. 232–243. [Google Scholar]
- Aguilar, R.F.; Superina, M. Xenarthra: Edentata (Anteaters, Armadillos, Sloths). In Fowler’s Zoo and Wild Animal Medicine; Miller, R.E., Fowler, M.E., Eds.; Elsevier: St. Louis, MO, USA, 2015; Volume 8, pp. 355–369. [Google Scholar] [CrossRef]
- Montgomery, G.G. Movements, foraging and food habits of the four extant species of Neotropical vermilinguas (Mammalia: Myrmecophagidae). In The Evolution and Ecology of Armadillos, Sloths, and Vermilinguas; Montgomery, G.G., Ed.; Smithsonian Institution Press: Washington, DC, USA, 1985; pp. 365–377. [Google Scholar]
- Hayssen, V. Tamandua tetradactyla (Pilosa: Myrmecophagidae). Mamm. Species 2011, 43, 64–74. [Google Scholar] [CrossRef]
- Fernandes, T.N.; Young, R.J. Fluctuations in the tympanic membrane temperatures of non-restrained captive giant anteaters and southern tamanduas. J. Zool. 2008, 274, 94–98. [Google Scholar] [CrossRef]
- Romero, L.M. Seasonal changes in plasma glucocorticoid concentrations in free-living vertebrates. Gen. Comp. Endocrinol. 2002, 128, 1–24. [Google Scholar] [CrossRef]
- Breed, M.D.; Moore, J. Chapter 4–Homeostasis and Time Budgets. In Animal Behavior, 2nd ed.; Breed, M.D., Moore., J., Eds.; Academic Press: San Diego, CA, USA, 2016; pp. 109–144. [Google Scholar] [CrossRef]
- Hazlerigg, D.G.; Tyler, N.J.C. Activity patterns in mammals: Circadian dominance challenged. PLoS Biol. 2019, 17, e3000360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romero, L.M.; Dickens, M.J.; Cyr, N.E. The reactive scope model—A new model integrating homeostasis, allostasis, and stress. Horm. Behav. 2009, 55, 375–389. [Google Scholar] [CrossRef] [PubMed]
- Romero, L.M. Using the reactive scope model to understand why stress physiology predicts survival during starvation in Galápagos marine iguanas. Gen. Comp. Endocrinol. 2012, 176, 296–299. [Google Scholar] [CrossRef]
- DuRant, S.E.; Arciniega, M.L.; Bauer, C.M.; Romero, L.M. A test of reactive scope: Reducing reactive scope causes delayed wound healing. Gen. Comp. Endocrinol. 2016, 236, 115–120. [Google Scholar] [CrossRef] [Green Version]
- Tamburini, D. Orden Cingulata. In Mamíferos de Córdoba y su Estado de Conservación; Torres, R., Tamburini, D., Eds.; Editorial de la Universidad Nacional de Córdoba: Cordoba, Spain, 2018; pp. 87–111. [Google Scholar]
- Miranda, F.; Fallabrino, A.; Arteaga, M.; Tirira, D.G.; Meritt, D.A.; Superina, M. Tamandua tetradactyla. The IUCN Red List of Threatened Species 2014: e.T21350A47442916. Available online: https://www.iucnredlist.org/species/21350/47442916 (accessed on 20 October 2020).
- Varela, D.; Cirignoli, S.; Torres, R.M.; Superina, M. Tamandua tetradactyla. In Categorización 2019 de los Mamíferos de Argentina Según su Riesgo de Extinción; Lista Roja de los mamíferos de Argentina; SAyDS–SAREM, Ed.; Buenos Aires, Argentina. 2019. Available online: https://cma.sarem.org.ar/ (accessed on 20 October 2020).
- Dierenfeld, E.S.; Graffam, W.S. Manual de Nutrición y Dietas para Animales Silvestres en Cautiverio (Ejemplos para Animales de América Latina); Zoo Conservation Outreach Group: New Orleans, LA, USA, 1996. [Google Scholar]
- Time and Date AS. Available online: www.timeanddate.com (accessed on 30 August 2019).
- Saudargas, R.A.; Drummer, L.C. Single subject (small N) research designs and zoo research. Zoo Biol. 1996, 15, 173–181. [Google Scholar] [CrossRef]
- Altmann, J. Observational study of behaviour: Sampling methods. Behaviour 1974, 49, 227–267. [Google Scholar] [CrossRef] [Green Version]
- Martin, P.; Bateson, P. Measuring Behaviour. An Introductory Guide, 3rd ed.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Schmid, B.; Helfrich-Förster, C.; Yoshii, T. A new ImageJ plug-in “ActogramJ” for chronobiological analyses. J. Biol. Rhythm. 2011, 26, 464–467. [Google Scholar] [CrossRef] [PubMed]
- Palme, R.; Touma, C.; Arias, N.; Dominchin, M.F.; Lepschy, M. Steroid extraction: Get the best out of faecal samples. Wien. Tierärztliche Mon. 2013, 100, 238–246. [Google Scholar]
- Möstl, E.; Maggs, J.L.; Schrötter, G.; Besenfelder, U.; Palme, R. Measurement of cortisol metabolites in faeces of ruminants. Vet. Res. Commun. 2002, 26, 127–139. [Google Scholar] [CrossRef] [PubMed]
- Quinn, G.P.; Keough, M.J. Experimental Design and Data Analysis for Biologist; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Di Rienzo, J.A.; Casanoves, F.; Balzarini, M.G.; Gonzalez, L.; Tablada, M.; Robledo, C.W. Infostat Versión 2019; Grupo InfoStat, FCA, Universidad Nacional de Córdoba: Cordoba, Argentina, 2021. [Google Scholar]
- McNab, B.K. Physiological convergence amongst ant-eating and termite-eating mammals. J. Zool. 1984, 203, 485–510. [Google Scholar] [CrossRef]
- de Sampaio, C.; Camilo-Alves, P.; de Miranda Mourão, G. Responses of a specialized insectivorous mammals (Myrmecophaga tridactyla) to variation in ambient temperature. Biotropica 2005, 38, 52–56. [Google Scholar] [CrossRef]
- Di Blanco, Y.E.; Spørring, K.L.; di Bitetti, M.S. Daily activity pattern of reintroduced giant anteaters (Myrmecophaga tridactyla): Effects of seasonality and experience. Mammalia 2017, 81, 11–21. [Google Scholar] [CrossRef]
- Mason, G.J.; Rushen, J. Stereotypic Animal Behaviour: Fundamentals and Applications to Welfare, 2nd ed.; CABI: London, UK, 2006. [Google Scholar]
- Sapolsky, R.M.; Romero, L.M.; Munck, A.U. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev. 2000, 21, 55–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stetz, J.; Hunt, K.; Kendall, K.C.; Wasser, S.K. Effects of exposure, diet, and thermoregulation on fecal glucocorticoid measures in wild bears. PLoS ONE 2013, 8, e55967. [Google Scholar] [CrossRef] [Green Version]
- De Bruijn, R.; Romero, M. The role of glucocorticoids in the vertebrate response to weather. Gen. Comp. Endocrinol. 2018, 1, 11–32. [Google Scholar] [CrossRef] [PubMed]
- Dalmau, A.; Ferret, A.; Chacon, G.; Manteca, X. Seasonal changes in fecal cortisol metabolites in Pyrenean Chamois. J. Wildl. Manag. 2007, 1, 190–194. [Google Scholar] [CrossRef]
- Jimeno, B.; Hau, M.; Verhulst, S. Corticosterone levels reflect variation in metabolic rate, independent of “stress”. Sci. Rep. 2018, 8, 13020. [Google Scholar] [CrossRef] [PubMed]
- Koolhaas, J.M.; Bartolomucci, A.; Buwalda, B.; de Boer, S.F.; Flügge, G.; Korte, S.M.; Meerlo, P.; Murison, R.; Olivier, B.; Palanza, P.; et al. Stress revisited: A critical evaluation of the stress concept. Neurosci. Biobehav. Rev. 2011, 35, 1291–1301. [Google Scholar] [CrossRef] [PubMed]
- Palme, R. Measuring fecal steroids. Guidelines for practical application. Annu. N. Y. Acad. Sci. 2005, 1046, 75–80. [Google Scholar] [CrossRef]
- Palme, R.; Robia, C.; Baumgartner, W.; Möstl, E. Transport stress in cattle as reflected by an increase in faecal cortisol metabolite concentrations. Vet. Rec. 2000, 146, 108–109. [Google Scholar] [CrossRef]
- Sherwen, S.L.; Fanson, K.V. Validation of an assay to measure glucocorticoid metabolites in the droppings of little penguins (Eudyptula minor). J. Zoo Aquar. Res. 2015, 3, 1–3. [Google Scholar] [CrossRef]
- Pohlin, F.; Hooijberg, E.H.; Meyer, L.C.R. Challenges to animal welfare during transportation of wild mammals: A review (1990–2020). J. Zoo Wildl. Med. 2021, 52, 1–13. [Google Scholar] [CrossRef]
- Laws, N.; Ganswindt, A.; Heistermann, M.; Harris, M.; Harris, S.; Sherwin, C. A case study: Fecal corticosteroid and behavior as indicators of welfare during relocation of an Asian elephant. J. Appl. Anim. Welf. Sci. 2007, 10, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wang, W.; Huang, S.; Wang, Y.; Wronski, T.; Deng, H.; Lu, J. Individual stress responses of white rhinoceros (Ceratotherium simum) to transport: Implication for a differential management. Glob. Ecol. Conserv. 2019, 17, e00588. [Google Scholar] [CrossRef]
- Dembiec, D.P.; Snider, R.J.; Zanella, A.J. The effects of transport stress on tiger physiology and behavior. Zoo Biol. 2004, 23, 335–346. [Google Scholar] [CrossRef]
- Lambooij, E. Transport of pigs. In Livestock Handling and Transport, 2nd ed.; Grandin, T., Ed.; CABI Publ.: Wallingford, UK, 2000; pp. 280–297. [Google Scholar]
- Lewis, N.J.; Berry, R.J. Effects of season on the behaviour of early-weaned piglets during and immediately following transport. Appl. Anim. Behav. Sci. 2006, 100, 182–192. [Google Scholar] [CrossRef]
- Moberg, J.A.; Mench, J.P. (Eds.) The Biology of Animal Stress: Basic Principles and Implications for Animal Welfare; CAB International: Wallingford, UK, 2000; 377p. [Google Scholar]
- Raulo, A.; Dantzer, B. Associations between glucocorticoids and sociality across a continuum of vertebrate social behavior. Ecol. Evol. 2018, 8, 7697–7716. [Google Scholar] [CrossRef] [PubMed]
- Sambrook, T.D.; Buchanan-Smith, H.M. Control and complexity in novel object enrichment. Anim. Welf. 1997, 6, 207–216. [Google Scholar]
- Young, R.J.; de Azevedo, C.S.; Cipreste, C.F. Environmental Enrichment: The creation of opportunities for informal learning. In Zoo Animal Learning and Training; Melfi, V.A., Dorey, N.R., Ward, S.J., Eds.; John Wiley & Sons Ltd.: New York, NY, USA, 2020; pp. 101–118. [Google Scholar]
- Dai, F.; Mazzola, S.; Cannas, S.; Heinzl, E.U.L.; Padalino, B.; Minero, M.; Dalla Costa, E. Habituation to transport helps reducing stress-related behavior in donkeys during loading. Front. Vet. Sci. 2020, 7, 593138. [Google Scholar] [CrossRef]
- Sherwin, C.M.; Christiansen, S.B.; Duncan, I.J.H.; Erhard, H.W.; Lay, D.C.; Mench, J.A.; O’Connor, C.E.; Petherick, C.J. Guidelines for the ethical use of animals in applied animal behaviour research. Appl. Anim. Behav. Sci. 2003, 81, 291–305. [Google Scholar] [CrossRef]
Activity | Variable | Season | Statistics | |||
---|---|---|---|---|---|---|
Winter | Min-Max | Summer | Min-Max | |||
Behavioural | TA (records/day) | 80.5 ± 6.3 | 63.6–98.6 | 85.9 ± 5.7 | 71.4–105.1 | p = 0.3353; F1,10 = 1.0 |
NAT (records/day) | 44.5 ± 2.7 | 38.4–55.4 | 49.7 ± 2.9 | 39.2–56.3 | p = 0.2208; F1,10 = 1.7 | |
ABN (records/day) | 33.2 ± 7.5 | 8.4–57.3 | 36.2 ± 8.1 | 15.5–57.3 | p = 0.3972; F1,10 = 0.8 | |
DA (%) | 37.2 ± 11.5 | 5.0–72.1 | 27.5 ± 8.1 | 6.7–50.5 | p = 0.0812; F1,5 = 4.8 | |
NA (%) | 20.5 ± 5.8 | 2.9–39.7 | 32.7 ± 6.0 | 16.0–52.7 | p = 0.0008; F1,5 = 51.6 | |
Adrenocortical | FGMs (μg/g) | 2.8 ± 0.2 | 1.95–3.46 | 5.1 ± 0.9 | 2.38–8.78 | p = 0.0337; F1,5 = 8.4 |
Variable | Season | Veterinary Check | Contrasts | ||||
---|---|---|---|---|---|---|---|
Beginning of activity | A | B | A′ | A ≠ B | A ≠ A′ | ||
589 ± 93 | 491 ± 71 | 493 ± 85 | p < 0.0001; χ2 = 100.6 | p < 0.0001; χ2 = 97.7 | |||
Acrophase | A | B | A′ | Bw ≠ Bs | A ≠ B | A ≠ A′ | |
Winter | 566 ± 71 | 559 ± 78 | 535 ± 83 | p < 0.0001; χ2 = 182.2 | No differences | p = 0.0228; χ2 = 5.2 | |
Summer | 682 ± 133 | 759 ± 83 | 819 ± 92 | p < 0.0001; χ2 = 25.1 | p < 0.0001; χ2 = 75.4 | ||
End of activity | A | B | A′ | Bw ≠ Bs | A ≠ B | A ≠ A′ | |
Winter | 738 ± 58 | 743 ± 89 | 708 ± 81 | p < 0.0001; χ2 = 139.3 | No differences | No differences | |
Summer | 826 ± 167 | 941 ± 90 | 981 ± 122 | p < 0.0001; χ2 = 45.1 | p < 0.0001; χ2 = 79.6 |
Variable | Season | Transport | Contrasts | ||||
---|---|---|---|---|---|---|---|
A | B | A′ | Bw ≠ Bs | A ≠ B | A ≠ A′ | ||
Beginning of activity | Winter | 542 ± 77 | 553 ± 56 | 550 ± 59 | No differences | No differences | No differences |
Summer | 700 ± 83 | 665 ± 76 | 754 ± 14 | p = 0.0203; χ2 = 5.4 | p = 0.0005; χ2 = 121.0 | ||
Acrophase | Winter | 642 ± 79 | 679 ± 43 | 657 ± 58 | p = 0.0444; χ2 = 4.0 | p = 0.0135; χ2 = 6.1 | No differences |
Summer | 907 ± 66 | 854 ± 87 | 937 ± 45 | p = 0.0019; χ2 = 9.7 | No differences | ||
End of activity | Winter | 788 ± 91 | 793 ± 81 | 785 ± 78 | p = 0.0207; χ2 = 5.4 | No differences | No differences |
Summer | 1033 ± 116 | 1063 ± 107 | 1175 ± 62 | No differences | p < 0.0001; χ2 = 551.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eguizábal, G.V.; Superina, M.; Palme, R.; Asencio, C.J.; Villarreal, D.P.; Borrelli, L.; Busso, J.M. Non-Invasive Assessment of the Seasonal Stress Response to Veterinary Procedures and Transportation of Zoo-Housed Lesser Anteater (Tamandua tetradactyla). Animals 2022, 12, 75. https://doi.org/10.3390/ani12010075
Eguizábal GV, Superina M, Palme R, Asencio CJ, Villarreal DP, Borrelli L, Busso JM. Non-Invasive Assessment of the Seasonal Stress Response to Veterinary Procedures and Transportation of Zoo-Housed Lesser Anteater (Tamandua tetradactyla). Animals. 2022; 12(1):75. https://doi.org/10.3390/ani12010075
Chicago/Turabian StyleEguizábal, Gabina V., Mariella Superina, Rupert Palme, Camila J. Asencio, Daniel P. Villarreal, Luciana Borrelli, and Juan M. Busso. 2022. "Non-Invasive Assessment of the Seasonal Stress Response to Veterinary Procedures and Transportation of Zoo-Housed Lesser Anteater (Tamandua tetradactyla)" Animals 12, no. 1: 75. https://doi.org/10.3390/ani12010075
APA StyleEguizábal, G. V., Superina, M., Palme, R., Asencio, C. J., Villarreal, D. P., Borrelli, L., & Busso, J. M. (2022). Non-Invasive Assessment of the Seasonal Stress Response to Veterinary Procedures and Transportation of Zoo-Housed Lesser Anteater (Tamandua tetradactyla). Animals, 12(1), 75. https://doi.org/10.3390/ani12010075