Importance of Breed, Parity and Sow Colostrum Components on Litter Performance and Health
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experiment 1
2.2. Experiment 2
2.3. Colostrum Analysis
2.4. Statistical Analysis
2.4.1. Experiment 1
2.4.2. Experiment 2
3. Results
3.1. Experiement 1
3.2. Experiement 2
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Decaluwé, R.; Maes, D.; Wuyts, B.; Cools, A.; Piepers, S.; Janssens, G.P.J. Piglets’ Colostrum Intake Associates with Daily Weight Gain and Survival until Weaning. Livest. Sci. 2014, 162, 185–192. [Google Scholar] [CrossRef]
- Declerck, I.; Dewulf, J.; Sarrazin, S.; Maes, D. Long-Term Effects of Colostrum Intake in Piglet Mortality and Performance 1. J. Anim. Sci. 2016, 94, 1633–1643. [Google Scholar] [CrossRef] [PubMed]
- Luise, D.; Cardenia, V.; Zappaterra, M.; Motta, V.; Bosi, P.; Rodriguez-Estrada, M.T.; Trevisi, P. Evaluation of Breed and Parity Order Effects on the Lipid Composition of Porcine Colostrum. J. Agric. Food Chem. 2018, 66, 12911–12920. [Google Scholar] [CrossRef] [PubMed]
- Craig, J.R.; Dunshea, F.R.; Cottrell, J.J.; Wijesiriwardana, U.A.; Pluske, J.R. Primiparous and Multiparous Sows Have Largely Similar Colostrum and Milk Composition Profiles throughout Lactation. Animals 2019, 9, 35. [Google Scholar] [CrossRef] [Green Version]
- Salmon, H.; Berri, M.; Gerdts, V.; Meurens, F. Humoral and Cellular Factors of Maternal Immunity in Swine. Dev. Comp. Immunol. 2009, 33, 384–393. [Google Scholar] [CrossRef]
- Bandrick, M.; Ariza-Nieto, C.; Baidoo, S.K.; Molitor, T.W. Colostral Antibody-Mediated and Cell-Mediated Immunity Contributes to Innate and Antigen-Specific Immunity in Piglets. Dev. Comp. Immunol. 2014, 43, 114–120. [Google Scholar] [CrossRef] [Green Version]
- Rooke, J.A.; Bland, I.M. The Acquisition of Passive Immunity in the New-Born Piglet. Livest. Prod. Sci. 2002, 78, 13–23. [Google Scholar] [CrossRef]
- Devillers, N.; Le Dividich, J.; Prunier, A. Influence of Colostrum Intake on Piglet Survival and Immunity. Animal 2011, 5, 1605–1612. [Google Scholar] [CrossRef] [Green Version]
- Puppel, K.; Gołębiewski, M.; Slósarz, J.; Grodkowski, G.; Solarczyk, P.; Kostusiak, P.; Grodkowska, K.; Balcerak, M.; Sakowski, T. Interaction between the Level of Immunoglobulins and Number of Somatic Cells as a Factor Shaping the Immunomodulating Properties of Colostrum. Sci. Rep. 2021, 11, 15686. [Google Scholar] [CrossRef]
- Bai, Y.S.; Wang, C.Q.; Zhao, X.; Shi, B.M.; Shan, A.S. Effects of Fat Sources in Sow on the Fatty Acid Profiles and Fat Globule Size of Milk and Immunoglobulins of Sows and Piglets. Anim. Feed Sci. Technol. 2017, 234, 217–227. [Google Scholar] [CrossRef]
- Luise, D.; Correa, F.; Fusco, L.; Bosi, P.; Trevisi, P. Productive Effects of a Colostrum-Oriented Amino Acid Dietary Supply for Sows in Transition from Gestation to Lactation. Ital. J. Anim. Sci. 2021, 20, 1837–1850. [Google Scholar] [CrossRef]
- Farmer, C.; Charagu, P.; Palin, M.F. Influence of Genotype on Metabolic Variables, Colostrum and Milk Composition of Primiparous Sows. Can. J. Anim. Sci. 2007, 87, 511–515. [Google Scholar] [CrossRef]
- Picone, G.; Zappaterra, M.; Luise, D.; Trimigno, A.; Capozzi, F.; Motta, V.; Davoli, R.; Costa, L.N.; Bosi, P.; Trevisi, P. Metabolomics Characterization of Colostrum in Three Sow Breeds and Its Influences on Piglets ’ Survival and Litter Growth Rates. J. Anim. Sci. Biotechnol. 2018, 9, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trevisi, P.; Luise, D.; Won, S.; Salcedo, J.; Bertocchi, M.; Barile, D.; Bosi, P. Variations in Porcine Colostrum Oligosaccharide Composition between Breeds and in Association with Sow Maternal Performance. J. Anim. Sci. Biotechnol. 2020, 11, 70. [Google Scholar] [CrossRef]
- Charneca, R.; Vila-Viçosa, M.J.; Infante, P.; Nunes, J.; Le Dividich, J. Colostrum Production of Alentejano and Large-White × Landrace Sows: Consumption, Passive Immunity and Mortality of Piglets. Span. J. Agric. Res. 2015, 13, e0611. [Google Scholar] [CrossRef] [Green Version]
- Inoue, T. Possible Factors Influencing Immunoglobulin A Concentration in Swine Colostrum. Am. J. Vet. Res. 1981, 42, 533–536. [Google Scholar]
- Inoue, T.; Kitano, K.; Inoue, K. Possible Factors Influencing the Immunoglobulin G Concentration in Swine Colostrum. Am. J. Vet. Res. 1980, 41, 1134–1136. [Google Scholar]
- Quesnel, H. Colostrum Production by Sows: Variability of Colostrum Yield and Immunoglobulin G Concentrations. Animal 2011, 5, 1546–1553. [Google Scholar] [CrossRef] [Green Version]
- Luise, D.; Picone, G.; Balzani, A.; Capozzi, F.; Bertocchi, M.; Salvarani, C.; Bosi, P.; Edwards, S.; Trevisi, P. Investigation of the Defatted Colostrum1H-NMR Metabolomics Profile of Gilts and Multiparous Sows and Its Relationship with Litter Performance. Animals 2020, 10, 154. [Google Scholar] [CrossRef] [Green Version]
- Bourne, F.J.; Curtis, J. The Transfer of Immunoglobins IgG, IgA and IgM from Serum to Colostrum and Milk in the Sow. Immunology 1973, 24, 157–162. [Google Scholar]
- Usami, K.; Niimi, K.; Matsuo, A.; Suyama, Y.; Sakai, Y.; Sato, S.; Fujihashi, K.; Kiyono, H.; Uchino, S.; Furukawa, M.; et al. The Gut Microbiota Induces Peyer’s-Patch-Dependent Secretion of Maternal IgA into Milk. Cell Rep. 2021, 36, 109655. [Google Scholar] [CrossRef] [PubMed]
- Quesnel, H.; Brossard, L.; Valancogne, A.; Quiniou, N. Influence of Some Sow Characteristics on Within-Litter Variation of Piglet Birth Weight. Animal 2008, 2, 1842–1849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irgang, R.; Fávero, J.A.; Kennedy, B.W. Genetic Parameters for Litter Size of Different Parities in Duroc, Landrace, and Large White Sows. J. Anim. Sci. 1994, 72, 2237–2246. [Google Scholar] [CrossRef]
- Knecht, D.; Srodon, S.; Duzinski, K. The Impact of Season, Parity and Breed on Selected Reproductive Performance Parameters of Sows. Arch. Anim. Breed. 2015, 58, 49–56. [Google Scholar] [CrossRef]
- Zou, S.; McLaren, D.G.; Hurley, W.L. Pig Colostrum and Milk Composition:Comparisons between Chinese Meishan and US Breeds. Livest. Prod. Sci. 1992, 30, 115–127. [Google Scholar] [CrossRef]
- Declerck, I.; Dewulf, J.; Piepers, S.; Decaluwè, R.; Maes, D. Sow and Litter Factors Influencing Colostrum Yield and Nutritional Composition. J. Anim. Sci. 2015, 93, 1309–1317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beyer, M.; Jentsch, W.; Kuhla, S.; Wittenburg, H.; Kreienbring, F.; Scholze, H.; Rudolph, P.E.; Metges, C.C. Effects of Dietary Energy Intake during Gestation and Lactation on Milk Yield and Composition of First, Second and Fourth Parity Sows. Arch. Anim. Nutr. 2007, 61, 452–468. [Google Scholar] [CrossRef] [PubMed]
- Nuntapaitoon, M.; Juthamanee, P.; Theil, P.K.; Tummaruk, P. Impact of Sow Parity on Yield and Composition of Colostrum and Milk in Danish Landrace × Yorkshire Crossbred Sows. Prev. Vet. Med. 2020, 181, 105085. [Google Scholar] [CrossRef]
- Segura, M.; Martínez-Miró, S.; López, M.J.; Madrid, J.; Hernández, F. Effect of Parity on Reproductive Performance and Composition of Sow Colostrum during First 24 h Postpartum. Animals 2020, 10, 1853. [Google Scholar] [CrossRef]
- Leblois, J.; Massart, S.; Soyeurt, H.; Grelet, C.; Dehareng, F.; Schroyen, M.; Li, B.; Wavreille, J.; Bindelle, J.; Everaert, N. Feeding Sows Resistant Starch during Gestation and Lactation Impacts Their Faecal Microbiota and Milk Composition but Shows Limited Effects on Their Progeny. PLoS ONE 2018, 13, e0199568. [Google Scholar] [CrossRef]
- Hurley, W.L. Composition of Sow Colostrum and Milk. In The Gestating and Lactating Sow; Wageningen Academic Publishers: Wageningen, The Netherlands, 2015; pp. 193–230. ISBN 978-90-8686-253-5. [Google Scholar]
- Foisnet, A.; Farmer, C.; David, C.; Quesnel, H. Relationships between Colostrum Production by Primiparous Sows and Sow Physiology around Parturition. J. Anim. Sci. 2010, 88, 1672–1683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angulo, J.; Gómez, L.M.; Mahecha, L.; Mejía, E.; Henao, J.; Mesa, C. Calf’s Sex, Parity and the Hour of Harvest after Calving Affect Colostrum Quality of Dairy Cows Grazing under High Tropical Conditions. Trop. Anim. Health Prod. 2015, 47, 699–705. [Google Scholar] [CrossRef] [PubMed]
- Ferdowsi Nia, E.; Nikkhah, A.; Rahmani, H.R.; Alikhani, M.; Mohammad Alipour, M.; Ghorbani, G.R. Increased Colostral Somatic Cell Counts Reduce Pre-Weaning Calf Immunity, Health and Growth. J. Anim. Physiol. Anim. Nutr. 2010, 94, 628–634. [Google Scholar] [CrossRef] [PubMed]
- Carney-Hinkle, E.E.; Tran, H.; Bundy, J.W.; Moreno, R.; Miller, P.S.; Burkey, T.E. Effect of Dam Parity on Litter Performance, Transfer of Passive Immunity, and Progeny Microbial Ecology. J. Anim. Sci. 2013, 91, 2885–2893. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, C.V.; Sbardella, P.E.; Bernardi, M.L.; Coutinho, M.L.; Vaz, I.S.; Wentz, I.; Bortolozzo, F.P. Effect of Birth Weight and Colostrum Intake on Mortality and Performance of Piglets after Cross-Fostering in Sows of Different Parities. Prev. Vet. Med. 2014, 114, 259–266. [Google Scholar] [CrossRef]
- Matsumoto, M.L. Molecular Mechanisms of Multimeric Assembly of IgM and IgA. Annu. Rev. Immunol. 2022, 40, 221–247. [Google Scholar] [CrossRef]
- Wu, W.Z.; Wang, X.Q.; Wu, G.Y.; Kim, S.W.; Chen, F.; Wang, J.J. Differential Composition of Proteomes in Sow Colostrum and Milk from Anterior and Posterior Mammary Glands. J. Anim. Sci. 2010, 88, 2657–2664. [Google Scholar] [CrossRef] [Green Version]
- Butler, J.E.; Rainard, P.; Lippolis, J.; Salmon, H.; Kacskovics, I. The Mammary Gland in Mucosal and Regional Immunity. In Mucosal Immunology, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2015; Volume 2, pp. 2269–2306. ISBN 9780124159754. [Google Scholar]
- Maurer, R.T.; Gourley, K.M.; Rathbun, T.J.; Woodworth, J.C.; DeRouchey, J.M.; Tokach, M.D.; Dritz, S.S.; Goodband, R.D. Evaluating Sow Colostrum Somatic Cell Count as an Indicator for Colostrum Composition or Litter Characteristics. J. Anim. Sci. 2020, 98, 237–238. [Google Scholar] [CrossRef]
- Ogawa, S.; Tsukahara, T.; Imaoka, T.; Nakanishi, N.; Ushida, K.; Inoue, R. The Effect of Colostrum Ingestion during the First 24 Hours of Life on Early Postnatal Development of Piglet Immune Systems. Anim. Sci. J. 2016, 87, 1511–1515. [Google Scholar] [CrossRef]
- Lund, M.S.; Puonti, M.; Rydhmer, L.; Jensen, J. Relationship between Litter Size and Perinatal and Pre-Weaning Survival in Pigs. Anim. Sci. 2002, 74, 217–222. [Google Scholar] [CrossRef] [Green Version]
- Beaulieu, A.D.; Aalhus, J.L.; Williams, N.H.; Patience, J.F. Impact of Piglet Birth Weight, Birth Order, and Litter Size on Subsequent Growth Performance, Carcass Quality, Muscle Composition, and Eating Quality of Pork. J. Anim. Sci. 2010, 88, 2767–2778. [Google Scholar] [CrossRef] [PubMed]
- Babicz, M.; Cichocki, R.; Kasprzak, K.; Kropiwiec, K.; Szuba, K. Analysis of Relationship between Sows Colostrum and Milk Somatic Cell Count and Reproductive Performance Traits. Ann. UMCS Zootech. 2011, 29, 1–13. [Google Scholar] [CrossRef]
- Hasan, S.; Orro, T.; Valros, A.; Junnikkala, S.; Peltoniemi, O.; Oliviero, C. Factors Affecting Sow Colostrum Yield and Composition, and Their Impact on Piglet Growth and Health. Livest. Sci. 2019, 227, 60–67. [Google Scholar] [CrossRef]
- Gerber, P.F.; Gong, Q.; Huang, Y.W.; Wang, C.; Holtkamp, D.; Opriessnig, T. Detection of Antibodies against Porcine Epidemic Diarrhea Virus in Serum and Colostrum by Indirect ELISA. Vet. J. 2014, 202, 33–36. [Google Scholar] [CrossRef] [PubMed]
- Langel, S.N.; Paim, F.C.; Lager, K.M.; Vlasova, A.N.; Saif, L.J. Lactogenic Immunity and Vaccines for Porcine Epidemic Diarrhea Virus (PEDV): Historical and Current Concepts. Virus Res. 2016, 226, 93–107. [Google Scholar] [CrossRef] [Green Version]
- Quiniou, N.; Dagorn, J.; Gaudré, D. Variation of Piglets’ Birth Weight and Consequences on Subsequent Performance. Livest. Prod. Sci. 2002, 78, 63–70. [Google Scholar] [CrossRef]
- Mallmann, A.L.; Camilotti, E.; Fagundes, D.P.; Vier, C.E.; Mellagi, A.P.G.; Ulguim, R.R.; Bernardi, M.L.; Orlando, U.A.D.; Gonçalves, M.A.D.; Kummer, R.; et al. Impact of Feed Intake during Late Gestation on Piglet Birth Weight and Reproductive Performance: A Dose-Response Study Performed in Gilts. J. Anim. Sci. 2019, 97, 1262–1272. [Google Scholar] [CrossRef]
Performance | Mean | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|
D | L | LW | SEM | Breed | Parity | D vs. L | D vs. LW | L vs. LW | |
N of piglets born live | 9.00 | 12.77 | 11.59 | 0.538 | 0.002 | 0.412 | 0.001 | 0.020 | 0.229 |
LBW at birth, kg | 14.03 | 17.40 | 16.43 | 0.737 | 0.022 | 0.055 | 0.012 | 0.060 | 0.509 |
Piglet BW at birth, kg | 1.59 | 1.38 | 1.40 | 0.052 | 0.121 | 0.965 | 0.101 | 0.125 | 0.917 |
N of stillborn piglets | 1.08 | 0.71 | 0.59 | 0.235 | 0.602 | 0.069 | 0.837 | 0.520 | 0.795 |
Variable | Coefficient | SE Coefficient | Mean | SE Mean | T-Value | p-Value |
---|---|---|---|---|---|---|
Model for LBW at d3 | ||||||
N of piglets born live | 1.280 | 0.158 | 8.17 | <0.0001 | ||
BW of piglets at birth | 8.310 | 2.24 | 3.7 | 0.001 | ||
Model for LBW at weaning | ||||||
N of piglets born live | 1.895 | 0.844 | 2.25 | 0.031 | ||
Colostrum IgA (mg/mL) | 0.272 | 0.175 | 1.55 | 0.129 | ||
Breed | 0.001 | |||||
D | 46.97 | 5.19 | ||||
L | 71.12 | 4.19 | ||||
LW | 71.95 | 3.08 | ||||
Model for N of piglets weaned | ||||||
N of piglets born alive | 0.366 | 0.104 | 3.52 | 0.001 | ||
Colostrum IgA (mg/mL) | 0.043 | 0.022 | 1.94 | 0.058 | ||
Breed 1 | 0.014 | |||||
D | 7.67 | 0.66 | ||||
L | 10.33 | 0.518 | ||||
LW | 9.67 | 0.349 | ||||
Model for diarrhoea in the litter | ||||||
Colostrum IgA (mg/mL) | −0.009 | 0.004 | −2.39 | 0.021 | ||
Breed 1 | 0.025 | |||||
D | 0.36 | 0.102 | ||||
L | −0.02 | 0.085 | ||||
LW | 0.11 | 0.059 |
Item | Parity, Mean | SEM | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | ≥5 | Parity | Linear | Quadratic | N of Live Piglets | Piglet Birth BW | ||
N. of sows | 10 | 16 | 13 | 12 | 20 | ||||||
Piglet birth BW, g | 1162 a | 1449 b | 1310 ab | 1351 ab | 1370 ab | 56 | 0.020 | 0.091 | 0.096 | 0.028; coef = −21.53 | - |
N. of live piglets at birth | 15.1 a | 15.2 ab | 14.8 ab | 15.1 ab | 13 b | 0.7 | 0.057 | 0.059 | 0.15 | - | 0.028; coef = −0.003 |
N. of dead piglets at birth | 0.57 | 0.88 | 0.51 | 0.89 | 1.14 | 0.3 | 0.591 | 0.245 | 0.632 | 0.902 | 0.002; coef = −0.002 |
N. of piglets post cross-fostering | 13.6 | 13 | 13.8 | 12.8 | 13.2 | 0.42 | 0.423 | 0.46 | 0.78 | - | - |
Item | Parity, Mean | SEM | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | >5 | Parity | Partition of Parity Effect | N of Live Piglets | |||
Linear | Quadratic | |||||||||
Fat, m/m | 8.91 a | 6.24 b | 6.27 b | 5.25 b | 6.19 b | 0.42 | <0.0001 | <0.0001 | 0.001 | 0.601 |
Protein, m/m | 22.8 | 23.9 | 23.2 | 22.9 | 22.9 | 0.5 | 0.444 | 0.616 | 0.331 | 0.259 |
Casein, m/m | 5.96 | 6.61 | 6.19 | 6.02 | 6.01 | 0.25 | 0.444 | 0.616 | 0.331 | 0.444 |
N. of somatic cells, n/1000 mL | 8524 a | 3039 b | 2826 b | 1246 b | 1256 b | 731.8 | <0.0001 | <0.0001 | 0.001 | 0.942 |
Lactose, m/m | 3 ab | 2.7 a | 3.11 ab | 3.21 b | 3.05 ab | 0.11 | 0.016 | 0.108 | 0.979 | 0.735 |
Urea, mg/100 mL | 50.7 | 52 | 51.1 | 51.9 | 52.7 | 1.76 | 0.928 | 0.471 | 0.929 | 0.955 |
IgM, mg/mL | 2.81 | 2.21 | 2.09 | 2.49 | 1.99 | 0.25 | 0.132 | 0.137 | 0.461 | 0.903 |
IgG, mg/mL | 91.7 | 58 | 38.9 | 26.3 | 72.1 | 21 | 0.242 | 0.3 | 0.037 | 0.099 |
IgA, mg/mL | 10.9 b | 16.6 a | 14.4 ab | 13.3 ab | 16.2 ab | 1.8 | 0.09 | 0.2 | 0.53 | 0.07 |
Variable. | Coefficient | SE Coefficient | p-Value |
---|---|---|---|
Model for % of dead piglets at 24 h | |||
Fat % colostrum | 0.76 | 0.49 | 0.13 |
IgA, mg/mL colostrum | −0.26 | 0.17 | 0.13 |
Post cross-fostering BW of the piglets | −2.98 | 0.66 | <0.0001 |
N. piglets post cross-fostering | −0.01 | 0.01 | 0.08 |
Model for % of dead piglets from 24 h to weaning | |||
SCC, n/1000 mL colostrum | −0.0004 | 0.0001 | 0.13 |
Post cross-fostering BW of piglets | −0.019 | 0.005 | <0.0001 |
Model for % of total dead piglets | |||
IgA, mg/mL colostrum | −0.34 | 0.25 | 0.18 |
N of post cross-fostering piglets | −1.51 | 1.01 | 0.14 |
Post cross-fostering BW of piglets | −0.02 | 0.01 | 0.01 |
Model for % of weaned piglets | |||
SCC, n/1000 mL colostrum | 0.007 | 0.0003 | 0.03 |
N of post cross-fostering piglets | −1.76 | 0.75 | 0.02 |
Post cross-fostering BW of piglets | 0.02 | 0.01 | 0.001 |
Model for LBW | |||
Post cross-fostering BW of piglets | 1.93 | 79.6 | <0.0001 |
IgM, mg/mL colostrum | −146 | 0.36 | 0.07 |
Model for Litter ADG | |||
IgM, mg/mL colostrum | −8.51 | 3.8 | 0.03 |
N of post cross-fostering piglets | −5.07 | 2.15 | 0.02 |
Parity | A | * | 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amatucci, L.; Luise, D.; Correa, F.; Bosi, P.; Trevisi, P. Importance of Breed, Parity and Sow Colostrum Components on Litter Performance and Health. Animals 2022, 12, 1230. https://doi.org/10.3390/ani12101230
Amatucci L, Luise D, Correa F, Bosi P, Trevisi P. Importance of Breed, Parity and Sow Colostrum Components on Litter Performance and Health. Animals. 2022; 12(10):1230. https://doi.org/10.3390/ani12101230
Chicago/Turabian StyleAmatucci, Laura, Diana Luise, Federico Correa, Paolo Bosi, and Paolo Trevisi. 2022. "Importance of Breed, Parity and Sow Colostrum Components on Litter Performance and Health" Animals 12, no. 10: 1230. https://doi.org/10.3390/ani12101230
APA StyleAmatucci, L., Luise, D., Correa, F., Bosi, P., & Trevisi, P. (2022). Importance of Breed, Parity and Sow Colostrum Components on Litter Performance and Health. Animals, 12(10), 1230. https://doi.org/10.3390/ani12101230