Fructooligosaccharide Supplementation Boosts Growth Performance, Antioxidant Status, and Cecal Microbiota Differently in Two Rabbit Breeds
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Declaration
2.2. Animal Rearing and Study Design
2.3. Experimental Feed Diet Preparation
2.4. Productive Performance and Carcass Characteristics
2.5. Hematology and Biochemical and Serum Oxidative Stress Evaluations
2.6. Bacterial Count
2.7. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abd El-Aziz, A.H.; Mahrose, K.M.; El-Kasrawy, N.I.; Alsenosy, A.E.A. Yeast as growth promoter in two breeds of growing rabbits with special reference to its economic implications. Acad. Bras. Cienc. 2021, 93, e20190274. [Google Scholar] [CrossRef] [PubMed]
- Abo Ghanima, M.M.; Abd El-Aziz, A.H.; Noreldin, A.E.; Atta, M.S.; Mousa, S.A.; El-Far, A.H. β-glucan administration improves growth performance and gut health in New Zealand White and APRI rabbits with different breed responses. PLoS ONE 2020, 15, e0234076. [Google Scholar] [CrossRef] [PubMed]
- Alagawany, M.; Mahrose, K.M. Influence of different levels of certain essential amino acids on the performance, egg quality criteria and economics of Lohmann brown laying hens. Asian J. Poult. Sci. 2014, 8, 82–96. [Google Scholar] [CrossRef] [Green Version]
- Awad, A.; Fahim, H.; El-Shhat, A.E.; Mahrose, K.; Shazly, S. Dietary Echinacea purpurea administration enhanced egg laying performance, serum lipid profile, antioxidant status and semen quality in duck breeders during summer season. J. Anim. Physiol. Anim. Nutr. 2021, 105, 757–765. [Google Scholar] [CrossRef] [PubMed]
- Hassan, F.A.; Mahrose, K.M.; Basyony, M.M. Effects of grape seed extract as a natural antioxidant on growth performance, carcass characteristics and antioxidant status of rabbits during heat stress. Arch. Anim. Nutr. 2016, 70, 141–154. [Google Scholar] [CrossRef] [PubMed]
- Mahrose, K.M.; Elhack, M.E.A.; Mahgoub, S.A.; Attia, F.A.M. Influences of stocking density and dietary probiotic supplementation on growing Japanese quail performance. Acad. Bras. Cienc. 2019, 91, e20180616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abd El-Aziz, A.H.; El-Kasrawy, N.I.; Abd El-Hack, M.E.; Kamel, S.Z.; Mahrous, U.E.; El-Deeb, E.M.; Atta, M.S.; Amer, M.S.; Naiel, M.A.E.; Khafaga, A.F.; et al. Growth, immunity, relative gene expression, carcass traits and economic efficiency of two rabbit breeds fed prebiotic supplemented diets. Anim. Biotechnol. 2022, 33, 417–428. [Google Scholar] [CrossRef] [PubMed]
- Jha, R.; Das, R.; Oak, S.; Mishra, P. Probiotics (Direct-Fed Microbials) in Poultry Nutrition and Their Effects on Nutrient Utilization, Growth and Laying Performance, and Gut Health: A Systematic Review. Animals 2020, 10, 1863. [Google Scholar] [CrossRef]
- Shang, Y.; Kumar, S.; Thippareddi, H.; Kim, W.K. Effect of Dietary Fructooligosaccharide (FOS) Supplementation on Ileal Microbiota in Broiler Chickens. Poult. Sci. 2018, 97, 3622–3634. [Google Scholar] [CrossRef]
- Shang, Y.; Kim, W.J.I.J.P.S. Roles of fructooligosaccharides and phytase in broiler chickens: Review. Int. J. Poult. Sci. 2017, 16, 16–22. [Google Scholar] [CrossRef] [Green Version]
- Mousa, Y.I.; Abdel-Monem, U.; Bazid, A. Effect of Spirulina And Prebiotic (Inmunair 17.5®) on New-Zealand White Rabbits Performance. Zagazig J. Agric. Res. 2018, 97, 3622–3634. [Google Scholar] [CrossRef]
- Kim, G.B.; Seo, Y.M.; Kim, C.H.; Paik, I.K. Effect of dietary prebiotic supplementation on the performance, intestinal microflora, and immune response of broilers. Poult. Sci. 2011, 90, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Akrami, R.; Iri, Y.; Rostami, H.K.; Razeghi Mansour, M. Effect of dietary supplementation of fructooligosaccharide (FOS) on growth performance, survival, lactobacillus bacterial population and hemato-immunological parameters of stellate sturgeon (Acipenser stellatus) juvenile. Fish Shellfish Immunol. 2013, 35, 1235–1239. [Google Scholar] [CrossRef] [PubMed]
- Sohail, M.U.; Hume, M.E.; Byrd, J.A.; Nisbet, D.J.; Ijaz, A.; Sohail, A.; Shabbir, M.Z.; Rehman, H. Effect of supplementation of prebiotic mannan-oligosaccharides and probiotic mixture on growth performance of broilers subjected to chronic heat stress. Poult. Sci. 2012, 91, 2235–2240. [Google Scholar] [CrossRef] [PubMed]
- Swiatkiewicz, S.; Arczewska-Wlosek, A. Prebiotic fructans and organic acids as feed additives improving mineral availability. World’s Poult. Sci. J. 2012, 68, 269–279. [Google Scholar] [CrossRef]
- Xu, Z.R.; Hu, C.H.; Xia, M.S.; Zhan, X.A.; Wang, M.Q. Effects of dietary fructooligosaccharide on digestive enzyme activities, intestinal microflora and morphology of male broilers. Poult. Sci. 2003, 82, 1030–1036. [Google Scholar] [CrossRef]
- Abd El-Gawad, E.A.; Abd El-latif, A.M.; Amin, A.A.; Abd-El-Azem, M. Effect of dietary fructooligosaccharide on bacterial Infection, oxidative stress and histopathological alterations in Nile tilapia (Oreochromis niloticus). Glob. Vet. 2015, 15, 339–350. [Google Scholar]
- Bogusławska-Tryk, M.; Piotrowska, A.; Burlikowska, K. Dietary fructans and their potential beneficial influence on health and performance parametrs in broiler chickens. J. Cent. Eur. Agric. 2012, 13, 272–291. [Google Scholar] [CrossRef] [Green Version]
- Saha, M.; Chowdhury, S.; Hossain, M.; Islam, M.; Roy, B. Effect of a Water Soluble Organic Additive on Growth Performances, Hematological Parameters and Cost Effectiveness in Broiler Production. J. Progress. Agric. 2010, 21, 73–82. [Google Scholar] [CrossRef] [Green Version]
- Meksawan, K.; Chaotrakul, C.; Leeaphorn, N.; Gonlchanvit, S.; Eiam-Ong, S.; Kanjanabuch, T. Effects of Fructo-Oligosaccharide Supplementation on Constipation in Elderly Continuous Ambulatory Peritoneal Dialysis Patients. Perit. Dial. Int. 2016, 36, 60–66. [Google Scholar] [CrossRef] [Green Version]
- Al-Rawashdeh, O.; Gumaa, A.; Saeed, M.; Orban, J.; Patterson, J.; Nour, A. Effects of sucrose thermal oligosaccharide caramel and feed restriction on the performance, hematological values and cecal bacteriological counts of broiler chickens. Acta Vet. 2000, 50, 225–239. [Google Scholar]
- Liu, L.; Xu, Y.; Xu, X. Effect of supplementation with two combinations of alternative to antimicrobials by stages on cecal fermentation in rabbits. Czech J. Anim. Sci. 2018, 63, 419–427. [Google Scholar] [CrossRef]
- Teng, P.Y.; Kim, W.K. Review: Roles of Prebiotics in Intestinal Ecosystem of Broilers. Front. Vet. Sci. 2018, 5, 245. [Google Scholar] [CrossRef] [PubMed]
- Council, N.R. Nutrient Requirements of Rabbits: Second Revised Edition, 1977; The National Academies Press: Washington, DC, USA, 1977; p. 30. [Google Scholar]
- Lebas, F. Feeding strategy for small and medium scale rabbit units. In Proceedings of the 3rd Conference of Asian Rabbit Production Association, Bali, Indonesia, 27–29 August 2013; pp. 27–29. [Google Scholar]
- Association of Official Analytical Chemists. Official Methods of Analysis: Changes in Official Methods of Analysis Made at the Annual Meeting. Supplement; Association of Official Analytical Chemists: Washington, DC, USA, 1990; Volume 15. [Google Scholar]
- Blasco Mateu, A.; Ouhayoun, J.; Masoero, G. Harmonization of criteria and terminology in rabbit meat research. World Rabbit Sci. 1993, 1, 3–10. [Google Scholar] [CrossRef]
- Drabkin, D.L.; Austin, J.H. Spectrophotometric studies: I. Spectrophotometric constants for common hemoglobin derivatives in human, dog, and rabbit blood. J. Biol. Chem. 1932, 98, 719–733. [Google Scholar] [CrossRef]
- Dierick, N.; Decuypere, J.; Molly, K.; Van Beek, E.; Vanderbeke, E.J.L.P.S. The combined use of triacylglycerols (TAGs) containing medium chain fatty acids (MCFAs) and exogenous lipolytic enzymes as an alternative to nutritional antibiotics in piglet nutrition: II. In vivo release of MCFAs in gastric cannulated and slaughtered piglets by endogenous and exogenous lipases; effects on the luminal gut flora and growth performance. Livest. Prod. Sci. 2002, 76, 1–16. [Google Scholar]
- Van Nevel, C.J.; Decuypere, J.A.; Dierick, N.; Molly, K. The influence of Lentinus edodes (Shiitake mushroom) preparations on bacteriological and morphological aspects of the small intestine in piglets. Arch. Anim. Nutr. 2003, 57, 399–412. [Google Scholar] [CrossRef]
- Levene, H. Robust tests for equality of variances. In Contributions to Probability and Statistics. Essays in Honor of Harold Hotelling; Olkin, I., Ed.; Stanford University Press: Palo Alto, CA, USA, 1960; pp. 278–292. [Google Scholar]
- Duncan, D.B. Multiple Range and Multiple F Tests. Biometrics 1955, 11, 1–42. [Google Scholar] [CrossRef]
- Ahrens, W.H.; Cox, D.J.; Budhwar, G. Use of the arcsine and square root transformations for subjectively determined percentage data. Weed Sci. 1990, 38, 452–458. [Google Scholar] [CrossRef]
- Shehata, S.; Mahrose, K.M.; Ismail, E. Effect of amino yeast addition on growth performance, digestion, carcass traits and economical efficiency of growing rabbit. Egypt J. Nutr. Feed 2012, 15, 75–80. [Google Scholar]
- El-Badawi, A.Y. Growth performance of male NZW rabbits fed diets supplemented with beneficial bacteria or live yeast. Agric. Eng. Int. CIGR J. 2017, 19, 220–226. [Google Scholar]
- Rotolo, L.; Gai, F.; Peiretti, P.; Ortoffi, M.; Zoccarato, I.; Gasco, L. Live yeast (Saccharomyces cerevisiae var. boulardii) supplementation in fattening rabbit diet: Effect on productive performance and meat quality. Livest. Sci. 2014, 162, 178–184. [Google Scholar] [CrossRef]
- Foad, K.A.E.E. Evaluation of baker’s yeast (Saccharomyces cerevisiae) supplementation on the feeding value of hydroponic barley sprouts for growing rabbits. Egypt. Poult. Sci. J. 2017, 37, 833–854. [Google Scholar] [CrossRef] [Green Version]
- Zarei, M.; Ehsani, M.; Torki, M. Dietary inclusion of probiotics, prebiotics and synbiotic and evaluating performance of laying hens. Am. J. Agric. Biol. Sci. 2011, 6, 249–255. [Google Scholar] [CrossRef] [Green Version]
- Juśkiewicz, J.; Zduńczyk, Z.; Jankowski, J.; Juśkiewicz, M. Occurrence of mild-diarrhoea in turkeys fed a FOS-rich diet and its impact on caecal parameters. Med. Weter. 2007, 63, 290–293. [Google Scholar]
- Beal, R.K.P.C.; Davison, T.F.; Smith, A.L. Immunological development of the avian gut. In Avian Gut Function in Health and Disease; Perry, G.C., Ed.; CABI: Oxfordshire, UK, 2006; pp. 85–103. [Google Scholar]
- Christensen, H.R.; Frøkiær, H.; Pestka, J. Lactobacilli differentially modulate expression of cytokines and maturation surface markers in murine dendritic cells. J. Immunol. 2002, 168, 171–178. [Google Scholar] [CrossRef]
- Janardhana, V.; Broadway, M.M.; Bruce, M.P.; Lowenthal, J.W.; Geier, M.S.; Hughes, R.J.; Bean, A.G. Prebiotics modulate immune responses in the gut-associated lymphoid tissue of chickens. J. Nutr. 2009, 139, 1404–1409. [Google Scholar] [CrossRef]
- Hoseinifar, S.H.; Mirvaghefi, A.; Merrifield, D.L.; Amiri, B.M.; Yelghi, S.; Bastami, K.D. The study of some haematological and serum biochemical parameters of juvenile beluga (Huso huso) fed oligofructose. Fish Physiol. Biochem. 2011, 37, 91–96. [Google Scholar] [CrossRef]
- Jalali, M.A.; Ahmadifar, E.; Sudagar, M.; Takami, G.A. Growth efficiency, body composition, survival and haematological changes in great sturgeon (Huso huso Linnaeus, 1758) juveniles fed diets supplemented with different levels of Ergosan. Aquac. Res. 2009, 40, 804–809. [Google Scholar] [CrossRef]
- Guerreiro, I.; Pérez-Jiménez, A.; Costas, B.; Oliva-Teles, A. Effect of temperature and short chain fructooligosaccharides supplementation on the hepatic oxidative status and immune response of turbot (Scophthalmus maximus). Fish Shellfish Immunol. 2014, 40, 570–576. [Google Scholar] [CrossRef]
- Zhang, C.N.; Li, X.F.; Jiang, G.Z.; Zhang, D.D.; Tian, H.Y.; Li, J.Y.; Liu, W.B. Effects of dietary fructooligosaccharide levels and feeding modes on growth, immune responses, antioxidant capability and disease resistance of blunt snout bream (Megalobrama amblycephala). Fish Shellfish Immunol. 2014, 41, 560–569. [Google Scholar] [CrossRef] [PubMed]
- Saminathan, M.; Sieo, C.C.; Kalavathy, R.; Abdullah, N.; Ho, Y.W. Effect of prebiotic oligosaccharides on growth of Lactobacillus strains used as a probiotic for chickens. Afr. J. Microbiol. Res. 2011, 5, 57–64. [Google Scholar]
Ingredients | % |
---|---|
Yellow corn | 9.5 |
Soybean meal (44%) | 15 |
Wheat bran | 17 |
Barley | 21.7 |
Barley hay | 34.5 |
Dicalcium phosphate 1 | 1.2 |
Ground limestone 2 | 0.25 |
DL-Methionine | 0.05 |
Common salt | 0.5 |
Vitamin + mineral premix 3 | 0.3 |
Total | 100 |
Chemical composition | |
Dry matter | 87.8 |
Moisture | 12.2 |
Crude protein | 17.9 |
Crude fiber | 13.75 |
Ether extract | 3.6 |
Nitrogen-free extract 4 | 42.75 |
Ash | 9.8 |
DE (kcal /kg) 5 | 2677.97 |
Items | Initial Body Weight (g) | Final Body Weight (g) | Body Weight Gain (g) | Total Feed Consumption (g) | Feed Conversion Ratio (g Feed/g Gain) | |
---|---|---|---|---|---|---|
Breed | ||||||
NZW | 756.45 | 2261.45 | 1464.50 | 4740.24 | 3.278 | |
APRI | 706.25 | 2207.91 | 1461.54 | 4736.51 | 3.281 | |
FOS supplementation | ||||||
FOS 0.5 mL/L DW | 721.25 | 2160.62 | 1470.00 | 4647.45 | 3.19 | |
FOS 1 mL/L DW | 737.18 | 2409.06 | 1561.56 | 4609.54 | 2.96 | |
Control | 735.62 | 2134.37 | 1357.50 | 4958.14 | 3.68 | |
Breed × Treatment interaction | ||||||
NZW | Control | 768.12 | 2139.37 c | 1389.37 cd | 4914.37 b | 3.65 a |
FOS 0.5 mL | 738.12 | 2176.25 c | 1519.62 abc | 4699.77 c | 3.11 bc | |
FOS 1 mL | 763.12 | 2500.00 a | 1583.75 a | 4606.58 d | 2.92 c | |
APRI | Control | 703.12 | 2129.37 c | 1325.62 d | 5001.91 a | 3.71 a |
FOS 0.5 mL | 704.37 | 2145.00 c | 1420.37 bcd | 4595.12 d | 3.26 b | |
FOS 1 mL | 711.25 | 2318.12 b | 1539.37 ab | 4612.50 d | 3.007 bc | |
SEM | 18.383 | 19.472 | 18.249 | 8.151 | 0.044 | |
Two-way ANOVA (p-value) | ||||||
Breed | 0.179 | 0.176 | 0.936 | 0.820 | 0.979 | |
Treatment | 0.927 | ˂0.001 | ˂0.001 | ˂0.001 | ˂0.001 | |
Interaction | 0.827 | ˂0.001 | 0.001 | ˂0.001 | ˂0.001 |
Items | Forequarter | Loin | Hindquarter | Giblets | Gastrointestinal Tract | Liver | Dressing | |
---|---|---|---|---|---|---|---|---|
Breed | ||||||||
NZW | 33.48 | 27.10 | 39.21 | 3.67 a | 25.59 | 5.04 | 55.24 | |
APRI | 33.28 | 27.01 | 39.19 | 3.20 b | 27.24 | 4.64 | 54.74 | |
FOS supplementation | ||||||||
FOS 0.5 mL/L DW | 33.22 | 27.26 | 39.26 | 3.64 a | 26.38 ab | 5.02 a | 55.18 a | |
FOS 1 mL/L DW | 33.73 | 27.60 | 39.68 | 3.71 a | 24.13 b | 5.17 a | 56.61 a | |
Control | 33.20 | 26.32 | 38.66 | 2.97 b | 28.73 a | 4.34 b | 53.19 b | |
Breed x Treatment interaction | ||||||||
NZW | Control | 33.16 | 26.93 | 38.43 | 3.11 b | 28.32 a | 4.15 b | 53.13 b |
FOS 0.5 mL | 33.28 | 27.38 | 39.74 | 3.28 b | 25.77 a | 4.92 ab | 56.28 a | |
FOS 1 mL | 34.23 | 27.81 | 40.08 | 4.20 a | 21.86 b | 5.67a | 56.93 a | |
APRI | Control | 32.23 | 25.72 | 37.87 | 2.66 b | 29.14 a | 4.15 b | 53.06b |
FOS 0.5 mL | 33.23 | 27.01 | 39.43 | 3.21 b | 26.99 a | 4.53 ab | 53.98 b | |
FOS 1 mL | 34.06 | 27.51 | 39.62 | 4.16 a | 26.39 a | 5.12 ab | 56.37 a | |
SEM | 0.214 | 0.250 | 0.243 | 0.081 | 0.490 | 0.128 | 0.269 | |
Two-way ANOVA (p-value) | ||||||||
Breed | 0.645 | 0.850 | 0.976 | 0.010 | 0.110 | 0.137 | 0.413 | |
Treatment | 0.350 | 0.127 | 0.255 | 0.003 | 0.005 | 0.038 | 0.001 | |
Interaction | 0.185 | 0.262 | 0.119 | ˂0.001 | 0.008 | 0.047 | 0.003 |
Item | WBC 103/µL | Lymphocytes 103/µL | Monocytes 103/µL | RBC 106/µL | Hgb % | MCV ft | HCT % | MCH pg | RDW % | Platelets 103/µL | |
---|---|---|---|---|---|---|---|---|---|---|---|
Breed | |||||||||||
NZW | 6.11 | 4.36 a | 0.59 | 4.47 | 11.07 | 60.88 | 32.22 | 24.39 | 25.37 a | 152.07 | |
APRI | 5.94 | 3.71 b | 0.58 | 4.41 | 11.06 | 61.60 | 34.83 | 24.80 | 24.95 b | 153.07 | |
FOS supplementation | |||||||||||
FOS 0.5 mL/L DW | 5.95 b | 3.62 b | 0.57 b | 4.46 | 11.12 a | 61.55 b | 34.55 ab | 24.90 a | 25.27 b | 153.60 b | |
FOS 1 mL/L DW | 7.57 a | 5.81 a | 0.65 a | 4.44 | 11.24 a | 64.53 a | 36.46 a | 25.319 a | 26.52 a | 160.40 a | |
Control | 4.56 c | 2.69 c | 0.53 c | 4.43 | 10.83 b | 57.65 c | 29.57 b | 23.70 b | 23.69 c | 143.70 c | |
Breed × Treatment interaction | |||||||||||
NZW | Control | 4.72 e | 3 d | 0.532 c | 4.42 | 10.84 b | 58.18 d | 33.12 ab | 24 ab | 23.80 d | 144.80 c |
FOS 0.5 mL | 6.12 c | 3.71 c | 0.586 b | 4.44 | 11.14 a | 62.24 bc | 34.96 a | 24.98 ab | 25.40 c | 153.80 b | |
FOS 1 mL | 7.83 a | 6.38 a | 0.664 a | 4.49 | 11.24 a | 64.68 a | 36.50 a | 25.40 a | 26.90 a | 160.60 a | |
APRI | Control | 5.78 d | 2.38 e | 0.528 c | 4.44 | 10.82 b | 57.12 d | 26.02 b | 23.40 b | 23.58 d | 142.60 c |
FOS 0.5 mL | 7.32 b | 3.52 c | 0.566 b | 4.42 | 11.10 a | 60.86 c | 34.14 a | 24.80 ab | 25.14 c | 153.40 b | |
FOS 1 mL | 7.32 b | 5.24 b | 0.646 a | 4.49 | 11.24 a | 64.38 ab | 36.42 a | 25 ab | 26.14 b c | 160.20 a | |
SEM | 0.047 | 0.047 | 0.004 | 0.037 | 0.024 | 0.324 | 1.05 | 0.215 | 0.084 | 0.840 | |
Breed | 0.101 | 0.001 | 0.205 | 0.380 | 0.891 | 0.281 | 0.226 | 0.355 | 0.021 | 0.557 | |
Treatment | 0.001 | 0.001 | 0.001 | 0.958 | 0.001 | 0.001 | 0.036 | 0.022 | 0.001 | 0.001 | |
Interaction | 0.001 | 0.001 | 0.001 | 0.951 | 0.001 | 0.001 | 0.077 | 0.115 | 0.001 | 0.001 |
Item | Serum Biochemical Parameters | Oxidative Stress Biomarkers | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Total Protein (g/dL) | Albumin (g/dL) | Globulin (g/dL) | A/G Ratio | Cholesterol (mg/dL) | ALT (U/L) | AST (U/L) | Creatinine (mg/dL) | GPX (U/L) | SOD (U/L) | T-AOC (mmol/L) | ||
Breed | ||||||||||||
NZW | 6.45 | 3.70 | 2.75 | 1.48 | 50.80 | 35 | 31.87 | 1.74 | 27.27 a | 79.40 | 1.32 | |
APRI | 6.42 | 3.69 | 2.72 | 1.43 | 54.80 | 35.66 | 31.93 | 1.74 | 25.80 b | 78.60 | 1.31 | |
FOS supplementation | ||||||||||||
FOS 0.5 mL/L DW | 6.59 b | 3.69 | 2.89 b | 1.28 b | 48 b | 35.10 | 32.60 | 1.79 | 27.70 b | 80.30 b | 1.33 b | |
FOS 1 mL/L DW | 7.14 a | 3.74 | 3.39 a | 1.11 b | 33.30 c | 36.10 | 31.40 | 1.69 | 31.40 a | 88.40 a | 1.36 a | |
Control | 5.57 c | 3.65 | 1.91 c | 1.98 a | 77.10 a | 34.80 | 31.70 | 1.74 | 20.50 c | 68.30 c | 1.27 c | |
Breed × Treatment interaction | ||||||||||||
NZW | Control | 5.60 c | 3.67 | 1.97 c | 1.87 a | 76.6 a | 34.4 | 31.6 | 1.74 | 20.80 d | 68.60 c | 1.28 c |
FOS 0.5 mL | 6.60 b | 3.70 | 2.90 b | 1.27 b | 44 c | 34.8 | 32.6 | 1.73 | 28.20 bc | 81.40 b | 1.33 b | |
FOS 1 mL | 7.20 a | 3.78 | 3.50 a | 1.06 b | 31.80 d | 35.8 | 31.4 | 1.67 | 32.80 a | 88.60 a | 1.36 a | |
APRI | Control | 5.54 c | 3.62 | 1.85 c | 2.09 a | 77.6 a | 35.2 | 31.8 | 1.81 | 20.20 d | 68 c | 1.27c |
FOS 0.5 mL | 6.58 b | 3.68 | 2.89 b | 1.28 b | 52 b | 35.4 | 32.7 | 1.78 | 27.20 c | 79.20 b | 1.33 b | |
FOS 1 mL | 7.08 a | 3.71 | 3.29 ab | 1.15 b | 34.80 d | 36.4 | 31.4 | 1.71 | 30 b | 88.20 a | 1.34 ab | |
SEM | 0.049 | 0.020 | 0.054 | 0.048 | 1.018 | 0.293 | 0.374 | 0.023 | 0.248 | 0.728 | 0.004 | |
Two-way ANOVA (p-value) | ||||||||||||
Breed | 0.789 | 0.960 | 0.774 | 0.638 | 0.061 | 0.257 | 0.930 | 0.989 | 0.016 | 0.588 | 0.518 | |
Treatment | 0.001 | 0.221 | 0.001 | 0.001 | 0.001 | 0.188 | 0.409 | 0.183 | 0.001 | 0.001 | 0.001 | |
Interaction | 0.001 | 0.367 | 0.001 | 0.001 | 0.001 | 0.450 | 0.860 | 0.571 | 0.001 | 0.001 | 0.001 |
Items | Total Bacterial Count (TBC) | Cecal Escherichia coli (E. coli) | Cecal Lactobacilli | |
---|---|---|---|---|
Breed | ||||
NZW | 7.09 | 2.82 b | 7.57 | |
APRI | 7.14 | 2.96 a | 7.60 | |
FOS supplementation | ||||
FOS 0.5 mL/L DW | 7.03 b | 2.89 b | 7.86 a | |
FOS 1 mL/L DW | 6.05 c | 2.24 c | 7.95 a | |
Control | 8.26 a | 3.54 a | 6.94 b | |
Breed x Treatment interaction | ||||
NZW | Control | 8.24 a | 3.50 a | 6.90 b |
FOS 0.5 mL | 7 b | 2.84 b | 7.80 a | |
FOS 1 mL | 5.98 c | 2.12 d | 7.92 a | |
APRI | Control | 8.28 a | 3.58 a | 6.98 b |
FOS 0.5 mL | 7.06 b | 2.94 b | 7.90 a | |
FOS 1 mL | 6.13 c | 2.36 c | 8 a | |
SEM | 0.027 | 0.029 | 0.081 | |
Two-way ANOVA (p-value) | ||||
Breed | 0.697 | 0.024 | 0.839 | |
Treatment | ˂0.001 | ˂0.001 | 0.001 | |
Interaction | ˂0.001 | ˂0.001 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abd El-Aziz, A.H.; Abo Ghanima, M.M.; Alsanie, W.F.; Gaber, A.; Alsenosy, A.E.-W.; Easa, A.A.; Moawed, S.A.; Raza, S.H.A.; Elfadadny, A.; Yossef, H.A.; et al. Fructooligosaccharide Supplementation Boosts Growth Performance, Antioxidant Status, and Cecal Microbiota Differently in Two Rabbit Breeds. Animals 2022, 12, 1528. https://doi.org/10.3390/ani12121528
Abd El-Aziz AH, Abo Ghanima MM, Alsanie WF, Gaber A, Alsenosy AE-W, Easa AA, Moawed SA, Raza SHA, Elfadadny A, Yossef HA, et al. Fructooligosaccharide Supplementation Boosts Growth Performance, Antioxidant Status, and Cecal Microbiota Differently in Two Rabbit Breeds. Animals. 2022; 12(12):1528. https://doi.org/10.3390/ani12121528
Chicago/Turabian StyleAbd El-Aziz, Ayman H., Mahmoud M. Abo Ghanima, Walaa F. Alsanie, Ahmed Gaber, Abd El-Wahab Alsenosy, Ahmed A. Easa, Sherif A. Moawed, Sayed Haidar Abbas Raza, Ahmed Elfadadny, Hany Abo Yossef, and et al. 2022. "Fructooligosaccharide Supplementation Boosts Growth Performance, Antioxidant Status, and Cecal Microbiota Differently in Two Rabbit Breeds" Animals 12, no. 12: 1528. https://doi.org/10.3390/ani12121528
APA StyleAbd El-Aziz, A. H., Abo Ghanima, M. M., Alsanie, W. F., Gaber, A., Alsenosy, A. E. -W., Easa, A. A., Moawed, S. A., Raza, S. H. A., Elfadadny, A., Yossef, H. A., Ghoneem, W. M., Shukry, M., Hendawy, A. O., & Mahrose, K. (2022). Fructooligosaccharide Supplementation Boosts Growth Performance, Antioxidant Status, and Cecal Microbiota Differently in Two Rabbit Breeds. Animals, 12(12), 1528. https://doi.org/10.3390/ani12121528