Is the Use of Bisphosphonates Putting Horses at Risk? An Osteoclast Perspective
Abstract
:Simple Summary
Abstract
1. Introduction
2. Origin of Osteoclasts
3. Osteoclasts Are Critical for Bone Modeling and Remodeling
4. Osteoclast-Modifying Drugs: Bisphosphonates
5. Therapeutic Effects of Bisphosphonates
6. Bisphosphonates’ Side Effects: Humans and Animals
7. Bisphosphonate in Adult Horses
8. The Use of Bisphosphonates in Young/Exercising Animals
9. Bisphosphonates and Future Studies
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martin, J.T. Historically Significant Events in the Discovery of RANK/RANKL/OPG. World J. Orthop. 2013, 4, 186–197. [Google Scholar] [CrossRef] [PubMed]
- Allen, M.R.; Burr, D.B. Bone Growth, Modeling, and Remodeling. In Basic and Applied Bone Biology, 2nd ed.; Burr, D.B., Allen, M.R., Eds.; Academic Press: San Diego, CA, USA, 2019; pp. 85–100. [Google Scholar]
- Burr, D.B. Fifty Years of Bisphosphonates: What Are Their Mechanical Effects on Bone? Bone 2020, 138, 115518. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, A.; Watts, A.E.; Ebetino, F.H.; Suva, L.J. Bisphosphonate Use in the Horse: What Is Good and What Is Not? BMC Vet. Res. 2019, 15, 211. [Google Scholar] [CrossRef] [PubMed]
- Suva, L.J.; Cooper, A.; Watts, A.E.; Ebetino, F.H.; Price, J.; Gaddy, D. Bisphosphonates in Veterinary Medicine: The New Horizon for Use. Bone 2021, 142, 115711. [Google Scholar] [CrossRef] [PubMed]
- Boyle, W.J.; Simonet, W.S.; Lacey, D.L. Osteoclast Differentiation and Activation. Nature 2003, 423, 337–342. [Google Scholar] [CrossRef]
- Yasuda, H.; Shima, N.; Nakagawa, N.; Yamaguchi, K.; Kinosaki, M.; Mochizuki, S.; Tomoyasu, A.; Yano, K.; Goto, M.; Murakami, A.; et al. Osteoclast Differentiation Factor is a Ligand for Osteoprotegerin/Osteoclastogenesis-Inhibitory Factor and is Identical to TRANCE/RANKL. Proc. Natl. Acad. Sci. USA 1998, 95, 3597–3602. [Google Scholar] [CrossRef] [Green Version]
- Park-Min, K.H. Mechanisms Involved in Normal and Pathological Osteoclastogenesis. Cell. Mol. Life Sci. 2018, 75, 2519–2528. [Google Scholar] [CrossRef]
- Whyte, M.P.; Wenkert, D.; Clements, K.L.; Mcalister, W.H.; Mumm, S. Bisphosphonate-Induced Osteopetrosis: Novel Bone Modeling Defects, Metaphyseal Osteopenia, and Osteosclerosis Fractures after Drug Exposure Ceases. J. Bone Miner. Res. 2008, 23, 1698–1707. [Google Scholar] [CrossRef]
- Teitelbaum, S.L. Osteoclasts; Culprits Inflammatory Osteolysis. Arthritis Res. Ther. 2006, 8, 201. [Google Scholar] [CrossRef] [Green Version]
- Bellido, T.; Plotkin, L.I.; Bruzzaniti, A. Bone Cells. In Basic and Applied Bone Biology, 2nd ed.; Burr, D.B., Allen, M.R., Eds.; Academic Press: San Diego, CA, USA, 2019; pp. 37–55. [Google Scholar]
- Xu, F.; Teitelbaum, S.L. Osteoclasts: New Insights. Bone Res. 2013, 1, 11–26. [Google Scholar] [CrossRef] [Green Version]
- Holtrop, M.E.; King, G.J. The Ultrastructure of the Osteoclast and its Functional Implications. Clin. Orthop. Relat. Res. 1977, 123, 177–196. [Google Scholar] [CrossRef]
- Robling, A.G.; Daly, R.; Fuchs, R.K.; Burr, D.B. Mechanical Adaptation. In Basic and Applied Bone Biology, 2nd ed.; Burr, D.B., Allen, M.R., Eds.; Academic Press: San Diego, CA, USA, 2019; pp. 203–233. [Google Scholar]
- Sobacchi, C.; Frattini, A.; Guerrini, M.M.; Abinun, M.; Pangrazio, A.; Susani, L.; Bredius, R.; Mancini, G.; Cant, A.; Bishop, N.; et al. Osteoclast-Poor Human Osteopetrosis Due to Mutations in the Gene Encoding RANKL. Nat. Genet. 2007, 39, 960–962. [Google Scholar] [CrossRef] [PubMed]
- Fukumoto, S.; Martin, T.J. Bone as an Endocrine Organ. Trends Endocrinol. Metab. 2009, 20, 230–236. [Google Scholar] [CrossRef]
- Burr, D.B. Bone Morphology and Organization. In Basic and Applied Bone Biology, 2nd ed.; Burr, D.B., Allen, M.R., Eds.; Academic Press: San Diego, CA, USA, 2019; pp. 3–26. [Google Scholar]
- Wolff, J. Ueber Die Innere Architectur der Knochen und Ihre Bedeutung Für Die Frage Vom Knochenwachsthum. Arch. Für Pathol. Anat. Und Physiol. Und Für Klin. Med. 1870, 50, 389–450. [Google Scholar] [CrossRef]
- Langdahl, B.; Ferrari, S.; Dempster, D.W. Bone Modeling and Remodeling: Potential as Therapeutic Targets for the Treatment of Osteoporosis. TAMD 2016, 8, 225–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nancollas, G.H.; Tang, R.; Phipps, R.J.; Henneman, Z.; Gulde, S.; Wu, W.; Mangood, A.; Russell, R.G.G.; Ebetino, F.H. Novel Insights into Actions of Bisphosphonates on Bone: Differences in Interactions with Hydroxyapatite. Bone 2006, 38, 617–627. [Google Scholar] [CrossRef] [PubMed]
- Khosla, S.; Bilezikian, J.P.; Dempster, D.W.; Lewiecki, E.M.; Miller, P.D.; Neer, R.M.; Recker, R.R.; Shane, E.; Shoback, D.; Potts, J.T. Benefits and Risks of Bisphosphonate Therapy for Osteoporosis. J. Clin. Endocrinol. Metab. 2012, 97, 2272–2282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soto, S.A.; Chiappe Barbará, A. Bisphosphonates: Pharmacology and Clinical Approach to Their Use in Equine Osteoarticular Diseases. J. Equine Vet. Sci. 2014, 34, 727–737. [Google Scholar] [CrossRef]
- Rogers, M.J.; Crockett, J.C.; Coxon, F.P.; Mönkkönen, J. Biochemical and Molecular Mechanisms of Action of Bisphosphonates. Bone 2011, 49, 34–41. [Google Scholar] [CrossRef]
- Russell, R.G.G. Bisphosphonates: Mode of Action and Pharmacology. Pediatrics 2007, 119, S150–S162. [Google Scholar] [CrossRef] [Green Version]
- Russell, R.G.G. Bisphosphonates: The First 40 Years. Bone 2011, 49, 2–19. [Google Scholar] [CrossRef] [PubMed]
- Sims, N.A.; Martin, T.J. Annual Review of Physiology Osteoclasts Provide Coupling Signals to Osteoblast Lineage Cells Through Multiple Mechanisms. Annu. Rev. Physiol. 2020, 82, 507–529. [Google Scholar] [CrossRef] [PubMed]
- Jensen, P.R.; Andersen, T.L.; Chavassieux, P.; Roux, J.P.; Delaisse, J.M. Bisphosphonates Impair the Onset of Bone Formation at Remodeling Sites. Bone 2021, 145, 115850. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.H. Bisphosphonates: A Review of Their Pharmacokinetic Properties. Bone 1996, 18, 75–85. [Google Scholar] [CrossRef]
- Daley-Yates, P.T.; Dodwell, D.J.; Pongchaidecha, M.; Coleman, R.E.; Howell, A. The Clearance and Bioavailability of Pamidronate in Patients with Breast Cancer and Bone Metastases. Calcif. Tissue Int. 1991, 49, 433–435. [Google Scholar] [CrossRef]
- Gertz, B.J.; Holland, S.D.; Kline, W.F.; Matuszewski, B.K.; Porras, A.G. Clinical Pharmacology of Alendronate Sodium. Osteoporos. Int. 1993, 3, 13–16. [Google Scholar] [CrossRef]
- Yakatan, G.J.; Poynor, W.J.; Talbert, R.L.; Floyd, B.F.; Slough, C.L.; Ampulski, R.S.; Benedict, J.J. Clodronate Kinetics and Bioavailability. Clin. Pharmacol. Ther. 1982, 31, 402–410. [Google Scholar] [CrossRef]
- Mönkkönen, J.; Ylitalo, P. The Tissue Distribution of Clodronate (Dichloromethylene Bisphosphonate) in Mice. The Effects of Vehicle and the Route of Administration. Eur. J. Drug Metab. Pharmacokinet. 1990, 15, 239–243. [Google Scholar] [CrossRef]
- Lin, J.H.; Chen, I.W.; Duggan, D.E. Effects of Dose, Sex, and Age on the Disposition of Alendronate, a Potent Antiosteolytic Bisphosphonate, in Rats. Drug Metab. Dispos. 1992, 20, 473–478. [Google Scholar]
- Sato, M.; Grasser, W.; Endo, N.; Akins, R.; Simmons, H.; Thompson, D.D.; Golub, E.; Rodan, G.A. Bisphosphonate Action. Alendronate Localization in Rat Bone and Effects on Osteoclast Ultrastructure. J. Clin. Investig. 1991, 88, 2095–2105. [Google Scholar] [CrossRef] [Green Version]
- Kasting, G.B.; Francis, M.D. Retention of Etidronate in Human, Dog, and Rat. J. Bone Miner. Res. 1992, 7, 513–522. [Google Scholar] [CrossRef] [PubMed]
- Cremers, S.; Papapoulos, S. Pharmacology of Bisphosphonates. Bone 2011, 49, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Frith, J.C.; Mönkkönen, J.; Blackburn, G.M.; Russell, R.G.G.; Rogers, M.J. Clodronate and Liposome-Encapsulated Clodronate Are Metabolized to a Toxic ATP Analog, Adenosine 5’-(β,γ-Dichloromethylene) Triphosphate, by Mammalian Cells in Vitro. J. Bone Miner. Res. 1997, 12, 1358–1367. [Google Scholar] [CrossRef] [PubMed]
- Freedom of Information Summary Original, New Animal Drug Application, NADA 141-427, Osphos, Clodronate Injection, Horse, for the Control of Clinical Signs Associated with Navicular Syndrome in Horses|FDA Center for Veterinary Medicine|FDA Approved Animal Drug Products. Available online: https://animaldrugsatfda.fda.gov/adafda/app/search/public/document/downloadFoi/923 (accessed on 30 May 2022).
- Krueger, C.R.; Mitchell, C.F.; Leise, B.S.; Knych, H.K. Pharmacokinetics and Pharmacodynamics of Clodronate Disodium Evaluated in Plasma, Synovial Fluid and Urine. Equine Vet. J. 2020, 52, 725–732. [Google Scholar] [CrossRef] [PubMed]
- Delguste, C.; Amory, H.; Guyonnet, J.; Thibaud, D.; Garnero, P.; Detilleux, J.; Lepage, O.M.; Doucet, M. Comparative Pharmacokinetics of Two Intravenous Administration Regimens of Tiludronate in Healthy Adult Horses and Effects on the Bone Resorption Marker CTX-1. J. Vet. Pharmacol. Ther. 2008, 31, 108–116. [Google Scholar] [CrossRef] [Green Version]
- Russell, R.G.G.; Watts, N.B.; Ebetino, F.H.; Rogers, M.J. Mechanisms of Action of Bisphosphonates: Similarities and Differences and Their Potential Influence on Clinical Efficacy. Osteoporos. Int. 2008, 19, 733–759. [Google Scholar] [CrossRef]
- Maruotti, N.; Corrado, A.; Neve, A.; Cantatore, F.P. Bisphosphonates: Effects on Osteoblast. Eur. J. Clin. Pharmacol. 2012, 68, 1013–1018. [Google Scholar] [CrossRef]
- Wong, A.S.Y.; Ho, E.N.M.; Wan, T.S.M.; Lam, K.K.H.; Stewart, B.D. Liquid Chromatography-Mass Spectrometry Analysis of Five Bisphosphonates in Equine Urine and Plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2015, 15, 1–7. [Google Scholar] [CrossRef]
- D’Eufemia, P.; Finocchiaro, R.; Celli, M.; Zambrano, A.; Tetti, M.; Villani, C.; Persiani, P.; Mari, E.; Zicari, A. High Levels of Serum Prostaglandin E2 in Children with Osteogenesis Imperfecta are Reduced by Neridronate Treatment. Pediatr. Res. 2008, 63, 203–206. [Google Scholar] [CrossRef] [Green Version]
- Felix, R.; Bettex, J.D.; Fleisch, H. Effect of Diphosphonates on the Synthesis of Prostaglandins in Cultured Calvaria Cells. Calcif. Tissue Int. 1981, 33, 549–552. [Google Scholar] [CrossRef]
- Garganta, M.D.; Jaser, S.S.; Lazow, M.A.; Schoenecker, J.G.; Cobry, E.; Hays, S.R.; Simmons, J.H. Cyclic Bisphosphonate Therapy Reduces Pain and Improves Physical Functioning in Children with Osteogenesis Imperfecta 11 Medical and Health Sciences 1103 Clinical Sciences. BMC Musculoskelet. Disord. 2018, 19, 344. [Google Scholar] [CrossRef]
- Markell, R.; Saviola, G.; Barker, E.A.; Conway, J.D.; Dujardin, C. What Do We Know About Clodronate Now? A Medical and Veterinary Perspective. J. Equine Vet. Sci. 2020, 88, 102874. [Google Scholar] [CrossRef] [PubMed]
- Xing, R.L.; Zhao, L.R.; Wang, P.M. Bisphosphonates Therapy for Osteoarthritis: A Meta-Analysis of Randomized Controlled Trials. SpringerPlus 2016, 5, 1704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roman-Blas, J.A.; Castañeda, S.; Largo, R.; Lems, W.F.; Herrero-Beaumont, G. An OA Phenotype May Obtain Major Benefit from Bone-Acting Agents. Semin. Arthritis Rheum. 2014, 43, 421–428. [Google Scholar] [CrossRef]
- Fernández-Martín, S.; López-Peña, M.; Muñoz, F.; Permuy, M.; González-Cantalapiedra, A. Bisphosphonates as Disease-Modifying Drugs in Osteoarthritis Preclinical Studies: A Systematic Review from 2000 to 2020. Arthritis Res. Ther. 2021, 23, 60. [Google Scholar] [CrossRef]
- Park, J.Y.; Pillinger, M.H.; Abramson, S.B. Prostaglandin E2 Synthesis and Secretion: The Role of PGE2 Synthases. Clin. Immunol. 2006, 119, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Frisbie, D.D.; Al-Sobayil, F.; Billinghurst, R.C.; Kawcak, C.E.; McIlwraith, C.W. Changes in Synovial Fluid and Serum Biomarkers with Exercise and Early Osteoarthritis in Horses. Osteoarthr. Cartil. 2008, 16, 1196–1204. [Google Scholar] [CrossRef] [Green Version]
- McIlwraith, C.W.; Kawcak, C.; Baxter, G.M.; Goodrich, L.R.; Valberg, S.J. Principles of Musculoskeletal Disease. In Adams and Stashak’s Lameness in Horses, 7th ed.; Baxter, G., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2020; pp. 801–874. [Google Scholar]
- Coudry, V.; Thibaud, D.; Riccio, B.; Audigié, F.; Didierlaurent, D.; Denoix, J.M. Efficacy of Tiludronate in the Treatment of Horses with Signs of Pain Associated with Osteoarthritic Lesions of the Thoracolumbar Vertebral Column. Am. J. Vet. Res. 2007, 68, 329–337. [Google Scholar] [CrossRef]
- Gough, M.R.; Thibaud, D.; Smith, R.K.W. Tiludronate Infusion in the Treatment of Bone Spavin: A Double Blind Placebo-Controlled Trial. Equine Vet. J. 2010, 42, 381–387. [Google Scholar] [CrossRef]
- Mitchell, A.; Wright, G.; Sampson, S.N.; Martin, M.; Cummings, K.; Gaddy, D.; Watts, A.E. Clodronate Improves Lameness in Horses without Changing Bone Turnover Markers. Equine Vet. J. 2019, 51, 356–363. [Google Scholar] [CrossRef]
- Moriyama, Y.; Nomura, M. Clodronate: A Vesicular ATP Release Blocker. Trends. Pharmacol. Sci. 2018, 39, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Lewiecki, E.M.; Miller, P.D. Renal Safety of Intravenous Bisphosphonates in the Treatment of Osteoporosis. Expert Opin. Drug Saf. 2006, 6, 663–672. [Google Scholar] [CrossRef] [PubMed]
- Castillo, H.; Samson-Fang, L. Effects of Bisphosphonates in Children with Osteogenesis Imperfecta: An AACPDM Systematic Review. Dev. Med. Child Neurol. 2009, 51, 17–29. [Google Scholar] [CrossRef]
- Khosla, S.; Burr, D.; Cauley, J.; Dempster, D.W.; Ebeling, P.R.; Felsenberg, D.; Gagel, R.F.; Gilsanz, V.; Guise, T.; Koka, S.; et al. Bisphosphonate-Associated Osteonecrosis of the Jaw: Report of a Task Force of the American Society for Bone and Mineral Research. J. Bone Miner. Res. 2007, 22, 1479–1491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Black, D.M.; Geiger, E.J.; Eastell, R.; Vittinghoff, E.; Li, B.H.; Ryan, D.S.; Dell, R.M.; Adams, A.L. Atypical Femur Fracture Risk versus Fragility Fracture Prevention with Bisphosphonates. N. Engl. J. Med. 2020, 383, 743–753. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.A.; Sándor, G.K.B.; Dore, E.; Morrison, A.D.; Alsahli, M.; Amin, F.; Peters, E.; Hanley, D.A.; Chaudry, S.R.; Lentle, B.; et al. Bisphosphonate Associated Osteonecrosis of the Jaw. J. Rheumatol. 2009, 36, 478–490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voss, P.J.; Stoddart, M.J.; Bernstein, A.; Schmelzeisen, R.; Nelson, K.; Stadelmann, V.; Ziebart, T.; Poxleitner, P.J. Zoledronate Induces Bisphosphonate-Related Osteonecrosis of the Jaw in Osteopenic Sheep. Clin. Oral Investig. 2016, 20, 31–38. [Google Scholar] [CrossRef]
- Davison, M.R.; Lyardet, L.; Preliasco, M.; Yaful, G.; Torres, P.; Bonanno, M.S.; Pellegrini, G.G.; Zeni, S.N. Aminobisphosphonate-Treated Ewes as a Model of Osteonecrosis of the Jaw and of Dental Implant Failure. J. Periodontol. 2020, 91, 628–637. [Google Scholar] [CrossRef]
- Pautke, C.; Kreutzer, K.; Weitz, J.; Knödler, M.; Münzel, D.; Wexel, G.; Otto, S.; Hapfelmeier, A.; Stürzenbaum, S.; Tischer, T. Bisphosphonate Related Osteonecrosis of the Jaw: A Minipig Large Animal Model. Bone 2012, 51, 592–599. [Google Scholar] [CrossRef]
- Allen, M.R.; Burr, D.B. Mandible Matrix Necrosis in Beagle Dogs after 3 Years of Daily Oral Bisphosphonate Treatment. J. Oral Maxillofac. Surg. 2008, 66, 987–994. [Google Scholar] [CrossRef] [Green Version]
- Larson, M.J.; Oakes, A.B.; Epperson, E.; Chew, D.J. Medication-Related Osteonecrosis of the Jaw after Long-Term Bisphosphonate Treatment in a Cat. J. Vet. Intern. Med. 2019, 33, 862–867. [Google Scholar] [CrossRef] [PubMed]
- Rogers-Smith, E.; Whitley, N.; Elwood, C.; Reese, D.; Wong, P. Suspected Bisphosphate-Related Osteonecrosis of the Jaw in a Cat Being Treated with Alendronate for Idiopathic Hypercalcaemia. Vet. Rec. Case Rep. 2019, 7, e000798. [Google Scholar] [CrossRef]
- Khan, A.A.; Kaiser, S. Atypical Femoral Fracture. CMAJ 2017, 189, E542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Council, N.; Dyce, J.; Drost, W.T.; de Brito Galvao, J.F.; Rosol, T.J.; Chew, D.J. Bilateral Patellar Fractures and Increased Cortical Bone Thickness Associated with Long-Term Oral Alendronate Treatment in a Cat. J. Feline Med. Surg. Open Rep. 2017, 3, 205511691772713. [Google Scholar] [CrossRef]
- Monzem, S.; Ballester, R.Y.; Javaheri, B.; Poulet, B.; Sônego, D.A.; Pitsillides, A.A.; Souza, R.L. Long-Term Bisphosphonate Treatment Coupled with Ovariectomy in Mice Provokes Deleterious Effects on Femoral Neck Fracture Pattern and Modifies Tibial Shape. Bone Jt. Open 2020, 1, 512–519. [Google Scholar] [CrossRef]
- Knych, H.K.; Janes, J.; Kennedy, L.; McKemie, D.S.; Arthur, R.M.; Samol, M.A.; Uzal, F.A.; Scollay, M. Detection and Residence Time of Bisphosphonates in Bone of Horses. Vet. Diagn. 2022, 34, 23–27. [Google Scholar] [CrossRef]
- Riggs, C.M.; Thompson, S.L.; So, Y.M.; Wong, J.K.Y.; Wan, T.S.M.; Robinson, P.; Stewart, B.D.; Ho, E.N.M. Tiludronic Acid Can Be Detected in Blood and Urine Samples from Thoroughbred Racehorses Over 3 Years After Last Administration. Equine Vet. J. 2021, 53, 1287–1295. [Google Scholar] [CrossRef]
- Freedom of Information Summary Original, New Animal Drug Application, NADA 141-420, Tildren, Tiludronate Disodium, Powder for Injection, Horse, for the Control of Clinical Signs Associated with Navicular Syndrome in Horses|FDA Center for Veterinary Medicine|FDA Approved Animal Drug Products. Available online: https://animaldrugsatfda.fda.gov/adafda/app/search/public/document/downloadFoi/918 (accessed on 30 May 2022).
- Denoix, J.M.; Thibaud, D.; Riccio, B. Tiludronate as a New Therapeutic Agent in the Treatment of Navicular Disease: A Double-Blind Placebo-Controlled Clinical Trial. Equine Vet. J. 2003, 35, 407–413. [Google Scholar] [CrossRef]
- Bertuglia, A.; Basano, I.; Pagliara, E.; Bottegaro, N.B.; Spinella, G.; Bullone, M. Effect of Intravenous Tiludronate Disodium Administration on the Radiographic Progression of Osteoarthritis of the Fetlock Joint in Standardbred Racehorses. J. Am. Vet. Med. Assoc. 2021, 259, 651–661. [Google Scholar] [CrossRef]
- Katzman, S.A.; Nieto, J.E.; Arens, A.M.; MacDonald, M.H.; Puchalski, S.M.; Galuppo, L.D.; Snyder, J.R.; Maher, O.; Bell, R.J.W. Use of Zoledronate for Treatment of a Bone Fragility Disorder in Horses. J. Am. Vet. Med. Assoc. 2012, 240, 1323–1328. [Google Scholar] [CrossRef]
- Arens, A.M.; Barr, B.; Puchalski, S.M.; Poppenga, R.; Kulin, R.M.; Anderson, J.; Stover, S.M. Osteoporosis Associated with Pulmonary Silicosis in an Equine Bone Fragility Syndrome. Vet. Pathol. 2011, 48, 593–615. [Google Scholar] [CrossRef] [PubMed]
- Beckstett, A. Take-Homes from Veterinarian Roundtable on Bisphosphonate Use in Horses|The Horse. Available online: https://thehorse.com/184900/take-homes-from-veterinarian-roundtable-on-bisphosphonate-use-in-horses/ (accessed on 4 May 2022).
- Gilday, R.; Richard, H.; Beauchamp, G.; Fogarty, U.; Laverty, S. Abundant Osteoclasts in the Subchondral Bone of the Juvenile Thoroughbred Metacarpus Suggest an Important Role in Joint Maturation. Equine Vet. J. 2020, 52, 733–742. [Google Scholar] [CrossRef] [PubMed]
- Logan, A.A.; Nielsen, B.D. Training Young Horses: The Science behind the Benefits. Animals 2021, 11, 463. [Google Scholar] [CrossRef] [PubMed]
- Pepper, M.; Akuthota, V.; McCarty, E.C. The Pathophysiology of Stress Fractures. Clin. Sports Med. 2006, 25, 1–16. [Google Scholar] [CrossRef]
- Romani, W.A.; Gieck, J.H.; Perrin, D.H.; Saliba, E.N.; Kahler, D.M. Mechanisms and Management of Stress Fractures in Physically Active Persons. J. Athl. Train. 2002, 37, 306–314. [Google Scholar]
- Burr, D.B. Pharmaceutical Treatments That May Prevent or Delay the Onset of Stress Fractures. In Basic and Applied Bone Biology, 2nd ed.; Burr, D.B., Allen, M.R., Eds.; Academic Press: San Diego, CA, USA, 2019; pp. 269–280. [Google Scholar]
- Shima, Y.; Lars, A.E.; Ae, E.; Iwasa, J.; Katsuhiko, A.E.; Ae, K.; Tomita, K. Use of Bisphosphonates for the Treatment of Stress Fractures in Athletes. Knee Surg. Sports Traumatol. Arthrosc. 2009, 17, 542–550. [Google Scholar] [CrossRef]
- Ekenman, I. Do Not Use Bisphosphonates without Scientific Evidence, Neither in Treatment nor Prophylactic, in the Treatment of Stress Fractures. Knee Surg. Sports Traumatol. Arthrosc. 2009, 17, 433–434. [Google Scholar] [CrossRef] [Green Version]
- Breathnach, O.; Ng, K.; Spindler, K.P.; Wasserstein, D.N. Pathophysiology and Epidemiology of Stress Fractures. In Stress Fractures in Athletes, 2nd ed.; Miller, T.L., Kaeding, C.C., Eds.; Springer: Columbus, OH, USA, 2020; pp. 29–39. [Google Scholar]
- Dolan, E.; Varley, I.; Ackerman, K.E.; Pereira, R.M.R.; Elliott-Sale, K.J.; Sale, C. The Bone Metabolic Response to Exercise and Nutrition. Exerc. Sport Sci. Rev. 2020, 48, 49–58. [Google Scholar] [CrossRef]
- Logan, A.A.; Nielsen, B.D.; Robison, C.I.; Manfredi, J.M.; Buskirk, D.D.; Schott, H.C.; Hiney, K.M. Calves, as a Model for Juvenile Horses, Need Only One Sprint per Week to Experience Increased Bone Strength. J. Anim. Sci. 2019, 97, 3300–3312. [Google Scholar] [CrossRef] [Green Version]
- Billinghurst, R.C.; Brama, P.A.J.; van Weeren, P.R.; Knowlton, M.S.; McIlwraith, C.W. Significant Exercise-Related Changes in the Serum Levels of Two Biomarkers of Collagen Metabolism in Young Horses. Osteoarth. Cartil. 2003, 11, 760–769. [Google Scholar] [CrossRef] [Green Version]
- Reid, I.R.; Davidson, J.S.; Wattie, D.; Wu, F.; Lucas, J.; Gamble, G.D.; Rutland, M.D.; Cundy, T. Comparative Responses of Bone Turnover Markers to Bisphosphonate Therapy in Paget’s Disease of Bone. Bone 2004, 35, 224–230. [Google Scholar] [CrossRef]
- de Lorimier, L.-P.; Fan, T.M. Bone Metabolic Effects of Single-Dose Zoledronate in Healthy Dogs. J. Vet. Int. Med. 2005, 19, 924–927. [Google Scholar] [CrossRef]
- Statham, L.; Abdy, S.; Aspray, T.J. Can Bone Turnover Markers Help to Define the Suitability and Duration of Bisphosphonate Drug Holidays? Drugs Context 2020, 9, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Delguste, C.; Amory, H.; Doucet, M.; Piccot-Crézollet, C.; Thibaud, D.; Garnero, P.; Detilleux, J.; Lepage, O.M. Pharmacological Effects of Tiludronate in Horses after Long-Term Immobilization. Bone 2007, 41, 414–421. [Google Scholar] [CrossRef] [PubMed]
- McLellan, J. Science-in-Brief: Bisphosphonate Use in the Racehorse: Safe or Unsafe? Equine Vet. J. 2017, 49, 404–407. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.J.; Little, D.G.; Briody, J.N.; McEvoy, A.; Smith, N.C.; Eisman, J.A.; Gardiner, E.M. Transient Disturbance in Physeal Morphology Is Associated With Long-Term Effects of Nitrogen-Containing Bisphosphonates in Growing Rabbits. J. Bone Miner. Res. 2005, 20, 1731–1741. [Google Scholar] [CrossRef]
- Martini, L.; Fini, M.; Giavaresi, G.; Giardino, R. Comparative Medicine Sheep Model in Orthopedic Research: A Literature Review. Comp. Med. 2001, 51, 292–299. [Google Scholar]
- Kennedy, O.D.; Brennan, O.; Mahony, N.J.; Rackard, S.M.; O’Brien, F.J.; Taylor, D.; Lee, C.T. Effects of High Bone Turnover on the Biomechanical Properties of the L3 Vertebra in an Ovine Model of Early Stage Osteoporosis. Spine 2008, 33, 2518–2523. [Google Scholar] [CrossRef]
- Wu, Z.; Lei, W.; Hu, Y.; Wang, H.; Wan, S.; Ma, Z.; Sang, H.; Fu, S.; Han, Y. Effect of Ovariectomy on BMD, Micro-Architecture and Biomechanics of Cortical and Cancellous Bones in a Sheep Model. Med. Eng. Phys. 2008, 30, 1112–1118. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Gao, Q.; Shao, B.; Xiao, J.; Zhou, H.; Niu, Q.; Shen, M.; Liu, B.; Hu, K.; et al. The Variation of Cancellous Bones at Lumbar Vertebra, Femoral Neck, Mandibular Angle and Rib in Ovariectomized Sheep. Arch. Oral Biol. 2014, 59, 663–669. [Google Scholar] [CrossRef]
- Vernon, K.L.; Riggs, L.; Coverdale, J.; Bodine, A.B.; Gibbons, J. The Effects of Forced Exercise on Collagen Type II Fragments, Lysyl Oxidase Concentrations, and Total Protein Concentrations in Sera and Synovial Fluid of Lambs. J. Equine Vet. Sci. 2010, 30, 266–274. [Google Scholar] [CrossRef]
- Tischmacher, A.; Wilford, S.; Allen, K.; Mitchell, R.D.; Parkin, T.; Denoix, J.-M. Retrospective Analysis of the Use of Tiludronate in Equine Practice: Safety on 1804 Horses, Efficacy on 343 Horses. J. Equine Vet. Sci. 2022, 13, 104007. [Google Scholar] [CrossRef] [PubMed]
- Delguste, C.; Doucet, M.; Gabriel, A.; Guyonnet, J.; Lepage, O.M.; Amory, H. Assessment of a Bone Biopsy Technique for Measuring Tiludronate in Horses: A Preliminary Study. Can. J. Vet. Res. 2011, 75, 128–133. [Google Scholar]
- Abboud, C.; Duveau, A.; Bouali-Benazzouz, R.; Massé, K.; Mattar, J.; Brochoire, L.; Fossat, P.; Boué-Grabot, E.; Hleihel, W.; Landry, M. Animal Models of Pain: Diversity and Benefits. J. Neurosc. Methods 2021, 348, 108997. [Google Scholar] [CrossRef] [PubMed]
Molecules | Origin | Function |
---|---|---|
RANKL | Bone-marrow-derived stem cells, osteoblasts, osteocytes | Primary differentiation factor controlling gene expression binding to RANK [11,12] |
OPG | Osteoblast and osteocytes | Decoy receptor for RANKL competing with RANK. Blocks RANKL–RANK interaction [11] |
M-CSF | Bone-marrow-derived stem cells, osteoblasts, osteocytes | Activates pathways stimulating proliferation and survival by binding to macrophage colony-stimulating factor 1 receptor (CSF-1 R/c-Fms) [11,12] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vergara-Hernandez, F.B.; Nielsen, B.D.; Colbath, A.C. Is the Use of Bisphosphonates Putting Horses at Risk? An Osteoclast Perspective. Animals 2022, 12, 1722. https://doi.org/10.3390/ani12131722
Vergara-Hernandez FB, Nielsen BD, Colbath AC. Is the Use of Bisphosphonates Putting Horses at Risk? An Osteoclast Perspective. Animals. 2022; 12(13):1722. https://doi.org/10.3390/ani12131722
Chicago/Turabian StyleVergara-Hernandez, Fernando B., Brian D. Nielsen, and Aimee C. Colbath. 2022. "Is the Use of Bisphosphonates Putting Horses at Risk? An Osteoclast Perspective" Animals 12, no. 13: 1722. https://doi.org/10.3390/ani12131722
APA StyleVergara-Hernandez, F. B., Nielsen, B. D., & Colbath, A. C. (2022). Is the Use of Bisphosphonates Putting Horses at Risk? An Osteoclast Perspective. Animals, 12(13), 1722. https://doi.org/10.3390/ani12131722