The Application of 3D Landmark-Based Geometric Morphometrics towards Refinement of the Piglet Grimace Scale
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Facilities
2.2. Experimental Treatment and Design
Treatment Procedures
2.3. Image Collection for Photogrammetry
2.4. Image Processing and 3D Landmark-Based Geometric Morphometrics
Model Generation and Landmarking
2.5. The Piglet Grimace Scale (PGS)
2.5.1. PGS 2D Image Analysis
2.5.2. PGS Scoring
2.6. Statistical Analysis
3. Results
3.1. Inter-Rater Reliability for Facial Action Units
3.2. Castration Treatment Effect on Facial Action Unit
3.3. Variation in Facial Action Units over Time
3.4. Application of 3D Landmark-Based Geometric Morphometrics
4. Discussion
4.1. Inter-Rater Reliability
4.2. Castration Treatment Impacts
4.3. Applying Photogrammetry and 3D Landmark-Based Geometric Morphometrics to the PGS
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Langford, D.J.; Bailey, A.L.; Chanda, M.L.; E Clarke, S.; E Drummond, T.; Echols, S.; Glick, S.; Ingrao, J.; Klassen-Ross, T.; LaCroix-Fralish, M.L.; et al. Coding of facial expressions of pain in the laboratory mouse. Nat. Methods 2010, 7, 447–449. [Google Scholar] [CrossRef] [PubMed]
- Descovich, K.; Wathan, J.; Leach, M.C.; Buchanan-Smith, H.M.; Flecknell, P.; Farningham, D.; Vick, S.J. Facial expression: An under-utilised tool for the assessment of welfare in mammals. Altex 2017, 34, 409–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wathan, J.; Burrows, A.M.; Waller, B.M.; McComb, K. EquiFACS: The equine facial action coding system. PLoS ONE 2015, 10, e0131738. [Google Scholar]
- Sotocinal, S.G.; Sorge, R.E.; Zaloum, A.; Tuttle, A.H.; Martin, L.J.; Wieskopf, J.S.; Mapplebeck, J.C.S.; Wei, P.; Zhan, S.; Zhang, S.; et al. The Rat Grimace Scale: A partially automated method for quantifying pain in the laboratory rat via facial expressions. Mol. Pain 2011, 7, 1744–8069. [Google Scholar]
- Keating, S.C.J.; Thomas, A.A.; Flecknell, P.A.; Leach, M.C. Evaluation of EMLA cream for preventing pain during tattooing of rabbits: Changes in physiological, behavioural and facial expression responses. PLoS ONE 2012, 7, e44437. [Google Scholar]
- Gleerup, K.B.; Andersen, P.H.; Munksgaard, L.; Forkman, B. Pain evaluation in dairy cattle. Appl. Anim. Behav. Sci. 2015, 171, 25–32. [Google Scholar] [CrossRef] [Green Version]
- Häger, C.; Biernot, S.; Buettner, M.; Glage, S.; Keubler, L.M.; Held, N.; Bleich, E.M.; Otto, K.; Müller, C.W.; Decker, S.; et al. The Sheep Grimace Scale as an indicator of post-operative distress and pain in laboratory sheep. PLoS ONE 2017, 12, e0175839. [Google Scholar] [CrossRef] [Green Version]
- McLennan, K. Why pain is still a welfare issue for farm animals, and how facial expression could be the answer. Agriculture 2018, 8, 127. [Google Scholar] [CrossRef] [Green Version]
- McLennan, K.M.; Miller, A.L.; Costa, E.D.; Stucke, D.; Corke, M.J.; Broom, D.M.; Leach, M.C. Conceptual and methodological issues relating to pain assessment in mammals: The development and utilisation of pain facial expression scales. Appl. Anim. Behav. Sci. 2019, 217, 1–15. [Google Scholar] [CrossRef]
- Gottardo, F.; Scollo, A.; Contiero, B.; Ravagnani, A.; Tavella, G.; Bernardini, D.; De Benedictis, G.M.; Edwards, S. Pain alleviation during castration of piglets: A comparative study of different farm options. J. Anim. Sci. 2016, 94, 5077–5088. [Google Scholar] [CrossRef] [PubMed]
- Di Giminiani, P.; Brierley, V.L.M.H.; Scollo, A.; Gottardo, F.; Malcolm, E.M.; Edwards, S.A.; Leach, M.C. The assessment of facial expressions in piglets undergoing tail docking and castration: Toward the development of the Piglet Grimace Scale. Front. Vet. Sci. 2016, 3, 100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viscardi, A.V.; Hunniford, M.; Lawlis, P.; Leach, M.; Turner, P.V. Development of a Piglet Grimace Scale to evaluate piglet pain using facial expressions following castration and tail docking: A pilot study. Front. Vet. Sci. 2017, 4, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rault, J.-L.; Lay, D.C.; Marchant-Forde, J.N. Castration induced pain in pigs and other livestock. Appl. Anim. Behav. Sci. 2011, 135, 214–225. [Google Scholar] [CrossRef]
- Ison, S.H.; Clutton, R.E.; Giminiani, P.D.; Rutherford, K.M.D. A review of pain assessment in pigs. Front. Vet. Sci. 2016, 3, 108. [Google Scholar] [CrossRef]
- Cobianchi, L.; de Gregori, M.; Malafoglia, V.; Raffaeli, W.; Compagnone, C.; Visai, L.; Petrini, P.; Avanzini, M.A.; Muscoli, C.; Viganò, J.; et al. Pain assessment in animal models: Do we need further studies? J. Pain Res. 2014, 7, 227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herskin, M.S.; Giminiani, P.D. Pain in Pigs: Characterisation, mechanisms and indicators. In Advances in Pig Welfare; Spinka, M., Ed.; Woodhead Publishing (Elsevier), Cambridge: Duxfor, UK, 2018; pp. 325–355. [Google Scholar]
- Cordeiro, A.F.D.S.; Nääs, I.D.A.; Baracho, M.D.S.; Jacob, F.G.; Moura, D.J.D. The use of vocalizations signals to estimate the level of pain in piglets. Eng. Agrícola 2018, 38, 486–490. [Google Scholar] [CrossRef] [Green Version]
- National Pork Producers Council. Pork Facts. 2020. Available online: https://nppc.org/pork-facts/ (accessed on 7 May 2020).
- Camerlink, I.; Coulange, E.; Farish, M.; Baxter, E.M.; Turner, S.P. Facial expression as a potential measure of both intent and emotion. Sci. Rep. 2018, 8, 17602. [Google Scholar] [CrossRef] [PubMed]
- Guesgen, M.J.; Bench, C.J. What can kinematics tell us about the affective states of animals? Anim. Welf. 2017, 26, 383–397. [Google Scholar] [CrossRef]
- Smeets, D.; Claes, P.; Vandermeulen, D.; Clement, J.G. Objective 3D face recognition: Evolution, approaches and challenges. Forensic Sci. Int. 2010, 201, 125–132. [Google Scholar] [CrossRef]
- Pezzuolo, A.; Milani, V.; Zhu, D.; Guo, H.; Guercini, S.; Marinello, F. On-barn pig weight estimation based on body measurements by structure-from-motion (SfM). Sensors 2018, 18, 3603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, H.; Wang, K.; Su, W.; Zhu, D.H.; Liu, W.L.; Xing, C.; Chen, Z.R. 3D scanning of live pigs systems and its application in body measurements. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLII-2/W7, 211–217. [Google Scholar]
- Wu, J.; Tillett, R.; McFarlane, N.; Ju, X.; Siebert, J.P.; Schofield, P. Extracting the three-dimensional shape of live pigs using stereo photogrammetry. Comput. Electron. Agric. 2004, 44, 203–222. [Google Scholar] [CrossRef]
- Cappai, M.G.; Gambella, F.; Piccirilli, D.; Rubiu, N.G.; Dimauro, C.; Pazzona, A.L.; Pinna, W. Integrating the RFID idenification system for Charolaise breeding bulls with 3D imaging for virtual archive creation. Peer J. Comput. Sci. 2019, 5, e179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minagawa, H. Stereo photogrammetric errors in determining the surface area of a small pig model with non-metric cameras. J. Agric. Meteorol. 1995, 51, 335–343. [Google Scholar] [CrossRef]
- Wongsriworaphon, A.; Arnonkijpanich, B.; Pathumnakul, S. An approach based on digital image analysis to estimate the live weights of pigs in farm environments. Comput. Electron. Agric. 2015, 115, 26–33. [Google Scholar] [CrossRef]
- Marchant, J.A.; Schofield, C.P. Extending the snake image processing algorithm for outlining pigs in scenes. Comput. Electron. Agric. 1993, 8, 261–275. [Google Scholar] [CrossRef]
- Slice, D.E. Geometric Morphometrics. Annu. Rev. Anthropol. 2007, 36, 261–281. [Google Scholar] [CrossRef]
- Finka, L.R.; Luna, S.; Brondani, J.T.; Tzimiropoulos, Y.; McDonagh, J.; Farnworth, M.J.; Ruta, M.; Mills, D.S. Geometric morphometrics for the study of facial expressions in non-human animals, using the domestic cat as an exemplar. Sci. Rep. 2019, 9, 9883. [Google Scholar] [CrossRef]
- Lou, M.; Ventura, B.; Deen, J.; Li, Y. Surgical Castration Changes Struggle Behavior and Vocalizations in Male Piglets. J. Appl. Anim. Welf. Sci. 2021, 1–8. [Google Scholar] [CrossRef]
- Rohlf, F.J.; Slice, D. Extensions of the Procrustes Method for the Optimal Superimposition of Landmarks. Syst. Zool. 1990, 39, 40. [Google Scholar] [CrossRef] [Green Version]
- Koo, T.K.; Li, M.Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Dalla Costa, E.; Minero, M.; Lebelt, D.; Stucke, D.; Canali, E.; Leach, M.C. Development of the Horse Grimace Scale (HGS) as a pain assessment tool in horses undergoing routine castration. PLoS ONE 2014, 9, e92281. [Google Scholar]
- Evangelista, M.C.; Watanabe, R.; Leung, V.S.Y.; Monteiro, B.P.; O’Toole, E.; Pang, D.S.J.; Steagall, P.V. Facial expressions of pain in cats: The development and validation of a Feline Grimace Scale. Sci. Rep. 2019, 9, 19128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sutherland, M. Welfare implications of invasive piglet husbandry procedures, methods of alleviation and alternatives: A review. N.Z. Vet. J. 2015, 63, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Grandin, T.; Shivley, C. How farm animals react and perceive stressful situations such as handling, restraint, and transport. Animals 2015, 5, 1233–1251. [Google Scholar] [CrossRef]
- Grandin, T. Livestock Handling and Transport, 4th ed.; CABI: Wallingford, UK, 2014. [Google Scholar]
FAU 2 | Odds Ratio 3 | 95% CIL 4 | p-Value for Odds Ratio |
---|---|---|---|
Orbital Tightening | 0.95 | 0.50 | 0.87 |
Ear Position | 0.97 | 0.50 | 0.93 |
Temporal Tension | 1.03 | 0.38 | 0.95 |
Lip Contraction | 0.66 | 0.17 | 0.54 |
Nose Bulge/Cheek Tension | 0.98 | 0.52 | 0.95 |
Treatment | |
Castration | 60.0% |
Sham-Castration | 53.3% |
Time Point 2 | |
T1 | 25.0% |
T2 | 18.2% |
T3 | 33.0% |
T4 | 27.3% |
Treatment | |
Castration | 59.3% |
Sham-Castration | 61.1% |
Time point 2 | |
T1 | 25.0% |
T2 | 20.5% |
T3 | 27.3% |
T4 | 31.8% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lou, M.E.; Porter, S.T.; Massey, J.S.; Ventura, B.; Deen, J.; Li, Y. The Application of 3D Landmark-Based Geometric Morphometrics towards Refinement of the Piglet Grimace Scale. Animals 2022, 12, 1944. https://doi.org/10.3390/ani12151944
Lou ME, Porter ST, Massey JS, Ventura B, Deen J, Li Y. The Application of 3D Landmark-Based Geometric Morphometrics towards Refinement of the Piglet Grimace Scale. Animals. 2022; 12(15):1944. https://doi.org/10.3390/ani12151944
Chicago/Turabian StyleLou, Maria E., Samantha T. Porter, Jason S. Massey, Beth Ventura, John Deen, and Yuzhi Li. 2022. "The Application of 3D Landmark-Based Geometric Morphometrics towards Refinement of the Piglet Grimace Scale" Animals 12, no. 15: 1944. https://doi.org/10.3390/ani12151944
APA StyleLou, M. E., Porter, S. T., Massey, J. S., Ventura, B., Deen, J., & Li, Y. (2022). The Application of 3D Landmark-Based Geometric Morphometrics towards Refinement of the Piglet Grimace Scale. Animals, 12(15), 1944. https://doi.org/10.3390/ani12151944