Arginine Enhances Ovarian Antioxidant Capability via Nrf2/Keap1 Pathway during the Luteal Phase in Ewes
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Standards
2.2. Animals and Treatments
2.3. Collection of Samples
2.4. Numbers of Follicles and Corpora Lutea
2.5. Serum Profiles Analysis
2.6. Sex Hormone Assay
2.7. Determination of Antioxidant Capacity Biomarkers
2.8. Quantitative Real-Time PCR Analysis
2.9. Western Blot Analyses
2.10. Statistical Analyses
3. Results
3.1. Effects of Diet and Arginine on Body Weight, Ovarian Weight, and the Number of Follicles and Corpus Luteum in Ewes
3.2. Effects of Diet and Arginine on the Amino Acid Metabolism in the Serum of Ewes
3.3. Effects of Diet and Arginine on the Sex Hormone Levels in the Follicular Fluid of Ewes
3.4. Effects of Diet and Arginine on the Antioxidant Capability in the Ovaries of Ewes
3.5. Effects of Diet and Arginine on the Antioxidant Enzyme Gene Expressions in the Ovaries of Ewes
3.6. Effects of Diet and Arginine on the Nrf2/Keap1 Pathway in the Ovaries of Ewes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Norambuena, M.C.; Silva, M.; Urra, F.; Ulloa-Leal, C.E.; Fernández, A.; Adams, G.P.; Huanca, W.; Ratto, M. Effects of nutritional restriction on metabolic, endocrine, and ovarian function in llamas (Lama glama). Anim. Reprod. Sci. 2013, 138, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.X.; Nie, H.T.; Zhang, G.M.; Sun, L.M.; Zhang, T.T.; Wang, Z.; Feng, X.; You, P.H.; Wang, F. Effects of nutrient restriction and arginine treatment on oxidative stress in the ovarian tissue of ewes during the luteal phase. Theriogenology 2018, 113, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Ying, S.J.; Wang, Z.Y.; Wang, C.L.; Nie, H.T.; He, D.Y.; Jia, R.X.; Wu, Y.C.; Wan, Y.J.; Zhou, Z.R.; Yan, Y.B.; et al. Effect of different levels of short-term feed intake on folliculogenesis and follicular fluid and plasma concentrations of lactate dehydrogenase, glucose, and hormones in Hu sheep during the luteal phase. Reproduction 2011, 142, 699–710. [Google Scholar] [CrossRef] [Green Version]
- Zabuli, J.; Tanaka, T.; Lu, W.G.; Kamomae, H. Intermittent nutritional stimulus by short-term treatment of high-energy diet promotes ovarian performance together with increases in blood levels of glucose and insulin in cycling goats. Anim. Reprod. Sci. 2010, 122, 288–293. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Aponte-Mellado, A.; Premkumar, B.J.; Shaman, A.; Gupta, S. The effects of oxidative stress on female reproduction: A review. Reprod. Biol. Endocrinol. 2012, 10, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Storey, K.B. Oxidative stress: Animal adaptations in nature. Braz. J. Med. Biol. Res. 1996, 29, 1715–1733. [Google Scholar] [PubMed]
- Luo, H.; Chiang, H.H.; Louw, M.; Susanto, A.; Chen, D. Nutrient Sensing and the Oxidative Stress Response. Trends Endocrinol. Metab. 2017, 28, 449–460. [Google Scholar] [CrossRef]
- Kwak, M.K.; Itoh, K.; Yamamoto, M.; Sutter, T.R.; Kensler, T.W. Role of transcription factor Nrf2 in the induction of hepatic phase 2 and antioxidative enzymes in vivo by the cancer chemoprotective agent, 3H-1, 2-dithiole-3-thione. Mol. Med. 2001, 7, 135–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, D.D. Mechanistic studies of the Nrf2-Keap1 signaling pathway. Drug Metab. Rev. 2006, 38, 769–789. [Google Scholar] [CrossRef]
- Liang, M.; Wang, Z.; Li, H.; Cai, L.; Pan, J.; He, H.; Wu, Q.; Tang, Y.; Ma, J.; Yang, L. l-Arginine induces antioxidant response to prevent oxidative stress via stimulation of glutathione synthesis and activation of Nrf2 pathway. Food Chem. Toxicol. 2018, 115, 315–328. [Google Scholar] [CrossRef]
- Kiyma, Z.; Alexander, B.M.; Kirk, E.A.V.; Murdoch, W.J.; Hallford, D.M.; Moss, G.E. Effects of feed restriction on reproductive and metabolic hormones in ewes. J. Anim. Sci. 2004, 82, 2548–2557. [Google Scholar] [CrossRef] [PubMed]
- Koyuncu, M.; Canbolat, O. Effect of different dietary energy levels on the reproductive performance of Kivircik sheep under a semi-intensive system in the South-Marmara region of Turkey. J. Anim. Feed Sci. 2009, 18, 620–627. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, K.R.L.; Pires, P.R.L.; Mesquita, L.G.; Chiaratti, M.R.; Leal, C.L.V. Effect of nitric oxide on the cyclic guanosine monophosphate (cGMP) pathway during meiosis resumption in bovine oocytes. Theriogenology 2014, 81, 556–564. [Google Scholar] [CrossRef]
- Bonavera, J.J.; Kalra, P.S.; Kalra, S.P. L-arginine/nitric oxide amplifies the magnitude and duration of the luteinizing hormone surge induced by estrogen: Involvement of neuropeptide Y. Endocrinology 1996, 137, 1956–1962. [Google Scholar] [CrossRef] [Green Version]
- Korszun, A.; Young, E.A.; Engleberg, N.C.; Masterson, L.; Dawson, E.C.; Spindler, K.; McClure, L.A.; Brown, M.B.; Crofford, L.J. Follicular phase hypothalamic-pituitary-gonadal axis function in women with fibromyalgia and chronic fatigue syndrome. J. Rheumatol. 2000, 27, 1526–1530. [Google Scholar] [PubMed]
- Alexander, B.M.; Kiyma, Z.; McFarland, M.; Kirk, E.A.V.; Hallford, D.M.; Hawkins, D.E.; Kane, K.K.; Moss, G.E. Influence of short-term fasting during the luteal phase of the estrous cycle on ovarian follicular development during the ensuing proestrus of ewes. Anim. Reprod. Sci. 2007, 97, 356–363. [Google Scholar] [CrossRef] [PubMed]
- Cheung, N.; Chan, L.C.; Thompson, A.; Cleary, M.L.; Eric So, C.W. Protein arginine-methyltransferase-dependent oncogenesis. Nat. Cell Biol. 2007, 9, 1208–1215. [Google Scholar] [CrossRef]
- Rezapour, A.; Taghinejad, M. Effects of Food Restriction on Oxidative Stress Indices in Ghezel Ewes. J. Anim. Vet. Adv. 2012, 10, 980–986. [Google Scholar] [CrossRef] [Green Version]
- Bruynsteen, L.; Janssens, G.P.; Harris, P.A.; Duchateau, L.; Valle, E.; Odetti, P.; Vandevelde, K.; Buyse, J.; Hesta, M. Changes in oxidative stress in response to different levels of energy restriction in obese ponies. Br. J. Nutr. 2014, 112, 1402–1411. [Google Scholar] [CrossRef] [Green Version]
- Guo, S.; Wharton, W.; Moseley, P.; Shi, H. Heat shock protein 70 regulates cellular redox status by modulating glutathione-related enzyme activities. Cell Stress Chaperones 2007, 12, 245–254. [Google Scholar] [CrossRef]
- Ma, Y.; Zheng, Y.X.; Dong, X.Y.; Zou, X.T. Effect of mercury chloride on oxidative stress and nuclear factor erythroid 2-related factor 2 signalling molecule in liver and kidney of laying hens. J. Anim. Physiol. Anim. Nutr. 2018, 102, 1199–1209. [Google Scholar] [CrossRef] [PubMed]
- Motohashi, H.; Yamamoto, M. Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol. Med. 2004, 10, 549–557. [Google Scholar] [CrossRef] [PubMed]
- Tkachev, V.O.; Menshchikov, E.B.; Zenkov, N.K. Mechanism of the Nrf2/Keap1/ARE signaling system. Biochemistry 2001, 76, 407–422. [Google Scholar] [CrossRef] [PubMed]
- Kerasioti, E.; Stagos, D.; Tzimi, A.; Kouretas, D. Increase in antioxidant activity by sheep/goat whey protein through nuclear factor-like 2 (Nrf2) is cell type dependent. Food Chem. Toxicol. 2016, 97, 47–56. [Google Scholar] [CrossRef]
Ingredient | g/kg | Nutrient Content | g/kg |
---|---|---|---|
Corn | 422.50 | Dry matter | 898.50 |
Soybean meal | 165.00 | Crude protein | 138.50 |
Soy straw | 400.50 | Neutral detergent fiber | 487.10 |
Limestone | 3.00 | Acid detergent fiber | 203.60 |
Anhydrous calcium phosphate | 4.00 | Organic matter | 908.00 |
Sodium chloride | 4.00 | Ash | 82.00 |
Premix 1 | 1.00 |
Gene 1 | Primer | PCR Product (bp) | Accession Number |
---|---|---|---|
CuZnSOD | Forward 5′-CACTGCATCATTGGCCGTACCA-3′ | 223 | NM_205064.1 |
Reverse 5′-GCTTGCACACGGAAGAGCAAGT-3′ | |||
MnSOD | Forward 5′-CACTCTTCCTGACCTGCCTTAC-3′ Reverse 5′-TAGACGTCCCTGCTCCTTATTA-3′ | 399 | NM_204211.1 |
GSH-Px | Forward 5′-GCTGTTCGCCTTCCTGAGAG-3′ Reverse 5′-GTTCCAGGAGACGTCGTTGC-3′ | 118 | NM_001277853.1 |
CAT | Forward 5′-TGGCGGTAGGAGTCTGGTCT-3′ Reverse 5′-GTCCCGTCCGTCAGCCATTT-3′ | 112 | NM_001031215.1 |
Nrf2 | Forward 5′-ATCACCTCTTCTGCACCGAA-3′ Reverse 5′-GCTTTCTCCCGCTCTTTCTG-3′ | 258 | NM_205117.1 |
Keap1 | Forward 5′-TGCCCCTGTGGTCAAAGTG-3′ Reverse 5′-GGTTCGGTTACCGTCCTGC-3′ | 104 | XM_015274015.1 |
β-actin | Forward 5′-AGCGAACGCCCCCAAAGTTCT-3′ Reverse 5′-AGCTGGGCTGTTGCCTTCACA-3′ | 139 | NM_205518.1 |
Items | CG | RG | AG | SEM | p-Value |
---|---|---|---|---|---|
SBW, kg | 44.35 | 44.56 | 44.19 | 0.435 | 0.6754 |
EBW, kg | 43.67 a | 40.67 b | 42.98 a | 0.587 | 0.0432 |
Ovary, g | 1.67 | 1.58 | 1.54 | 0.067 | 0.1234 |
Carcass, kg | 18.54 | 19.76 | 20.43 | 0.545 | 0.3234 |
Ovary/EBW, g/kg | 0.038 | 0.038 | 0.036 | 0.003 | 0.4869 |
Estrous cycle days | 17.54 b | 20.21 a | 17.43 b | 0.434 | 0.0324 |
Follicles | |||||
SF | 11.23 c | 19.43 a | 14.32 b | 1.456 | 0.0234 |
MF | 1.21 | 1.11 | 1.00 | 0.543 | 0.3245 |
LF | 1.54 | 0.74 | 1.23 | 0.342 | 0.1923 |
TF | 13.98 c | 21.28 a | 16.55 b | 0.432 | 0.0032 |
SF/TF | 0.80 b | 0.91 a | 0.87 a | 0.323 | 0.0087 |
MF/TF | 0.08 | 0.05 | 0.06 | 0.435 | 0.2944 |
LF/TF | 0.11 a | 0.03 c | 0.07 b | 0.576 | 0.0045 |
Corpus luteum | |||||
SCL | 2.97 | 3.43 | 3.23 | 0.723 | 0.4832 |
LCL | 0.83 b | 0.43 b | 1.94 a | 0.432 | 0.0032 |
TCL | 3.80 | 3.86 | 5.17 | 0.868 | 0.4322 |
SCL/TCL | 0.78 | 0.89 | 0.62 | 0.754 | 0.2132 |
LCL/TCL | 0.22 | 0.11 | 0.38 | 0.543 | 0.1765 |
Items | Treatment | Days | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CG | RG | AG | Day 9 | Day 10 | Day 11 | Day 12 | Day 13 | T | D | T × D | |
Arg, pg/mL | 219.43 | 220.32 | 223.21 | 230.21 | 220.34 | 221.32 | 219.45 | 215.43 | 0.81 | 0.82 | 0.56 |
Glu, ng/mL | 14.12 c | 15.15 b | 15.98 a | 15.43 | 15.78 | 15.65 | 15.43 | 16.01 | 0.02 | 0.89 | 0.74 |
Cit, nmol/mL | 63.22 b | 79.04 a | 78.54 a | 75.64 | 72.12 | 72.44 | 75.32 | 69.43 | 0.01 | 0.96 | 0.78 |
Pro, ng/mL | 123.42 c | 150.64 a | 140.21 b | 133.21 | 134.31 | 136.54 | 139.54 | 140.32 | 0.01 | 0.49 | 0.93 |
Orn, pg/mL | 120.34 b | 140.32 a | 102.21 c | 125.43 | 120.43 | 121.45 | 117.54 | 119.54 | 0.01 | 0.49 | 0.02 |
mRNA Expression Level | Enzymatic Activity | Nrf2 mRNA Expression Level |
---|---|---|
CuZnSOD | 0.843 ** | 0.794 ** |
MnSOD | 0.209 ** | 0.183 ** |
CAT | 0.798 ** | 0.743 ** |
GSH-Px | 0.803 ** | 0.813 ** |
Keap1 | −0.698 ** | −0.783 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Guo, Z.; Wu, Q.; Cheng, B.; Zhai, Z.; Wang, Y. Arginine Enhances Ovarian Antioxidant Capability via Nrf2/Keap1 Pathway during the Luteal Phase in Ewes. Animals 2022, 12, 2017. https://doi.org/10.3390/ani12162017
Ma Y, Guo Z, Wu Q, Cheng B, Zhai Z, Wang Y. Arginine Enhances Ovarian Antioxidant Capability via Nrf2/Keap1 Pathway during the Luteal Phase in Ewes. Animals. 2022; 12(16):2017. https://doi.org/10.3390/ani12162017
Chicago/Turabian StyleMa, Yan, Zhiyi Guo, Qiujue Wu, Binyao Cheng, Zhenhan Zhai, and Yuqin Wang. 2022. "Arginine Enhances Ovarian Antioxidant Capability via Nrf2/Keap1 Pathway during the Luteal Phase in Ewes" Animals 12, no. 16: 2017. https://doi.org/10.3390/ani12162017
APA StyleMa, Y., Guo, Z., Wu, Q., Cheng, B., Zhai, Z., & Wang, Y. (2022). Arginine Enhances Ovarian Antioxidant Capability via Nrf2/Keap1 Pathway during the Luteal Phase in Ewes. Animals, 12(16), 2017. https://doi.org/10.3390/ani12162017