Vaccination with an Escherichia coli F4/F18 Vaccine Improves Piglet Performance Combined with a Reduction in Antimicrobial Use and Secondary Infections Due to Streptococcus suis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Farm Description
2.2. ETEC Diagnosis and Characterization at the Experimental Farm
2.3. Diagnostic Approach of Mortality in the Second Phase of the Nursery Period Vaccine
2.4. Vaccination with an Oral Live Non-Pathogenic E. coli F4/F18 Vaccine
2.5. Experimental Design and Treatment
2.6. Performance and Health Parameters
2.7. Statistical Analysis
3. Results
3.1. Piglet Weight and Average Daily Weight Gain
3.2. Piglet ADFI and FCR
3.3. Piglet Number: Weaned, Sold, and Mortality
3.4. Antimicrobial Use
3.5. Secondary Infections with S. suis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fairbrother, J.M.; Nadeau, É.; Gyles, C.L. Escherichia coli in postweaning diarrhea in pigs: An update on bacterial types, pathogenesis, and prevention strategies. Anim. Health Res. Rev. 2005, 6, 17–39. [Google Scholar] [CrossRef] [PubMed]
- Hoa, N.X.; Kalhoro, D.H.; Lu, C. Distribution of serogroups and virulence genes of E. coli strains isolated from porcine post weaning diarrhea in Thua Thien Hue province Vietnam. Tạp Chí Công Ngh Sinh Học 2013, 11, 665–672. [Google Scholar]
- Lyutskanov, M. Epidemiological characteristics of post-weaning diarrhea associated with toxin-producing Escherichia coli in large intensive pig farms. Trakia J. Sci. 2011, 9, 68–73. [Google Scholar]
- Svensmark, B.; Jorsal, S.E.; Nielsen, K.; Willeberg, P. Epidemiological studies of piglet diarrhoea in intensively managed Danish sow herds. I. Pre-weaning diarrhoea. Acta Vet. Scand. 1989, 30, 43–53. [Google Scholar] [CrossRef]
- Svensmark, B.; Nielsen, K.; Willeberg, P.; Jorsal, S.E. Epidemiological studies of piglet diarrhea in intensively managed Danish sow herds. II. Post-weaning diarrhea. Acta Vet. Scand. 1989, 30, 55–62. [Google Scholar] [CrossRef]
- Tubbs, R.C.; Hurd, H.S.; Dargatz, D.; Hill, G. Preweaning morbidity and mortality in the United States swine herd. Swine Health Prod. 1993, 1, 21–28. [Google Scholar]
- USDA. Part II. Reference of Swine Health and Health Management in the United States; USDAAPHIS: VS, CEAH, National Animal Health Monitoring System: Fort Collins, CO, USA, 2002; Volume #N355.0202. [Google Scholar]
- Zhang, W.; Zhao, M.; Ruesch, L.; Omot, A.; Francis, D. Prevalence of virulence genes in Escherichia coli strains recently isolated from young pigs with diarrhea in the US. Vet. Microbiol. 2007, 123, 145–152. [Google Scholar] [CrossRef]
- van Beers-Schreurs, H.; Nabuurs, M.J.; Vellenga, L.; Kalsbeek-van der Kalk, H.J.; Wensing, T.; Breukink, H.J. Weaning and the weanling diet influence the villous height and crypt depth in the small intestine of pigs and alter the concentrations of short-chain fatty acids in the large intestine and blood. J. Nutr. 1998, 128, 947–953. [Google Scholar] [CrossRef]
- Heo, J.M.; Opapeju, F.O.; Pluske, J.R.; Kim, J.C.; Hampson, D.J.; Nyachoti, C.M. Gastrointestinal health and function in weaned pigs: A review of feeding strategies to control post-weaning diarrhoea without using in-feed antimicrobial compounds. J. Anim. Physiol. Anim. Nutr. 2013, 97, 207–237. [Google Scholar] [CrossRef]
- Fairbrother, J.M.; Gyles, C.L. Chapter 53: Colibacillosis. In Diseases of Swine, 10th ed.; Zimmerman, J.J., Karriker, L.A., Ramirez, A., Schwartz, K.J., Stevenson, G.W., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2012; pp. 723–749. [Google Scholar]
- Chen, X.; Gao, S.; Jiao, X.; Liu, X.F. Prevalence of serogroups and virulence factors of Escherichia coli strains isolated from pigs with postweaning diarrhoea in eastern China. Vet. Microbiol. 2004, 103, 13–20. [Google Scholar] [CrossRef]
- Frydendahl, K. Prevalence of serogroups and virulence genes in Escherichia coli associated with postweaning diarrhoea and edema disease in pigs and a comparison of diagnostic approaches. Vet. Microbiol. 2002, 85, 169–182. [Google Scholar] [CrossRef]
- Luppi, A.; Gibellini, M.; Gin, T.; Vangroenweghe, F.; Vandenbroucke, V.; Bauerfeind, R.; Bonilauri, P.; Labarque, G.; Hidalgo, Á. Prevalence of virulence factors in enterotoxigenic Escherichia coli isolated from pigs with post-weaning diarrhea in Europe. Porc. Health Manag. 2016, 2, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Vangroenweghe, F.; Luppi, A.; Thas, O. Prevalence of enterotoxigenic Escherichia coli pathotypes and virotypes isolated from piglets suffering from post-weaning diarrhea in Belgium and the Netherlands. Arch. Vet. Anim. Sci. 2020, 2, 1–8. [Google Scholar]
- Vu-Khac, H.; Holoda, E.; Pilipcinec, E.; Blanco, M.; Blanco, J.E.; Mora, A.; Dahbi, G.; Lopéz, C.; González, E.A.; Blanco, J. Serotypes, virulence genes, and PFGE profiles of Escherichia coli isolated from pigs with postweaning diarrhoea in Slovakia. BMC Vet. Res. 2006, 2, 13–20. [Google Scholar] [CrossRef] [Green Version]
- Abraham, S.; Trott, D.J.; Jordan, D.; Gordon, D.M.; Groves, M.D.; Fairbrother, J.M.; Smith, M.G.; Zhang, R.; Chapman, T.A. Phylogenetic and molecular insights into the evolution of multidrug-resistant porcine enterotoxigenic Escherichia coli in Australia. Int. J. Antimicrob. Agents 2014, 44, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Abraham, S.; Jordan, D.; Wong, H.S.; Johnson, J.R.; Toleman, M.A.; Wakeham, D.L.; Gorden, D.M.; Turnidge, J.D.; Mollinger, J.L.; Gibson, J.S.; et al. First detection of extended-spectrum cephalosporin- and fluoroquinoloneresistant Escherichia coli in Australian food-producing animals. J. Glob. Antimicrob. Resist. 2015, 3, 273–277. [Google Scholar] [CrossRef]
- Boyen, F.; Vangroenweghe, F.; Butaye, P.; De Graef, E.; Castryck, F.; Heylen, P.; Vanrobaeys, M.; Haesebrouck, F. Disk prediffusion is a reliable method for testing colistin susceptibility in porcine E. coli strains. Vet. Microbiol. 2010, 144, 359–362. [Google Scholar] [CrossRef]
- Jahanbakhsh, S.; Smith, M.G.; Kohan-Ghadr, H.R.; Letellier, A.; Abraham, S.; Trott, D.J.; Fairbrother, J.M. Dynamics of extended-spectrum cephalosporin resistance in pathogenic Escherichia coli isolated from diseased pigs in Quebec, Canada. Int. J. Antimicrob. Agents 2016, 48, 194–202. [Google Scholar] [CrossRef]
- Luppi, A.; Bonilauri, P.; Dottori, M.; Gherpelli, Y.; Biasi, G.; Merialdi, G.; Maioli, G.; Martelli, P. Antimicrobial resistance of F4+ Escherichia coli isolated from swine in Italy. Transbound. Emerg. Dis. 2013, 62, 67–71. [Google Scholar] [CrossRef]
- Jha, R.; Berrocoso, J.D. Review: Dietary fiber utilization and its effects on physiological functions and gut health of swine. Animal 2015, 9, 1441–1452. [Google Scholar] [CrossRef]
- Jha, R.; Berrocoso, J.F.D. Dietary fiber and protein fermentation in the intestine of swine and their interactive effects on gut health and on the environment: A review. Anim. Feed Sci. Technol. 2016, 212, 18–26. [Google Scholar] [CrossRef]
- Tran, T.H.T.; Everaert, N.; Bindelle, J. Review on the effects of potential prebiotics on controlling intestinal enteropathogens Salmonella and Escherichia coli in pig production. J. Anim. Physiol. Anim. Nutr. 2018, 102, 17–32. [Google Scholar] [CrossRef] [PubMed]
- Heo, J.M.; Kim, J.C.; Hansen, C.F.; Mullan, B.P.; Hampson, D.J.; Pluske, J.R. Feeding a diet with decreased protein content reduces indices of protein fermentation and the incidence of postweaning diarrhea in weand piglets challenged with an enterotoxigenic strain of Escherichia coli. J. Anim. Sci. 2009, 87, 2833–2843. [Google Scholar] [CrossRef] [PubMed]
- Hermes, R.G.; Molist, F.; Ywazaki, M.; Nofrarias, M.; Gomes de Segura, A.; Gasa, J.; Pérez, J.F. Effect of dietary level of protein and fiber on the productive performance and health status of piglets. J. Anim. Sci. 2009, 87, 3569–3577. [Google Scholar] [CrossRef] [Green Version]
- Pieper, R.; Villodre Tudela, C.; Taciak, M.; Bindelle, J.; Pérez, J.F.; Zentek, J. Health relevance of intestinal protein fermentation in young pigs. Anim. Health Res. Rev. 2016, 17, 137–147. [Google Scholar] [CrossRef]
- Bikker, P.; Dirkzwager, A.; Fledderus, J.; Trevisi, P.; le Huërou-Luron, I.; Lallès, J.P.; Awati, A. The effect of dietary protein and fermentable carbohydrates levels on growth performance and intestinal characteristics in newly weaned piglets. J. Anim. Sci. 2006, 84, 3337–3345. [Google Scholar] [CrossRef]
- Mikkelsen, L.L.; Naughton, P.J.; Hedemann, M.S.; Jensen, B.B. Effects of physical properties of feed on microbial ecology and survival of Salmonella enterica Serovar Typhimurium in the pig gastro-intestinal tract. Appl. Environ. Microbiol. 2004, 70, 3485–3492. [Google Scholar] [CrossRef]
- Htoo, J.K.; Araiza, B.A.; Sauer, W.C.; Rademacher, M.; Zhang, Y.; Cervantes, M.; Zijlstra, R.T. Effect of dietary protein content on ileal amino acid digestibility, growth, performance, and formation of microbial metabolites in ileal and cecal digesta of early-weaning pigs. J. Anim. Sci. 2007, 85, 3303–3312. [Google Scholar] [CrossRef]
- Escobar Garcia, K.; Reis de Souza, T.C.; Mariscal Landin, G.; Aguilera Barreyro, A.; Guadalupe Bernal Santos, M.; Guadalupe Gomez Soto, J. Microbial fermentation patterns, diarrhea incidence and performance in weaned piglets fed a low protein diet supplemented with probiotics. Food Nutr. Sci. 2014, 5, 1776–1786. [Google Scholar]
- Zentek, J.; Buchheit-Renko, S.; Männer, K.; Pieper, R.; Vahjen, W. Intestinal concentrations of free and encapsulated dietary medium-chain fatty acids and effects on gastric microbial ecology and bacterial metabolic products in the digestive tract of piglets. Arch. Anim. Nutr. 2012, 66, 14–26. [Google Scholar] [CrossRef]
- Poulsen, H.D. Zinc oxide for weanling pigs. Acta Agric. Scand. 1995, 45, 159–165. [Google Scholar]
- European Medicinal Agency. Questions and Answers on Veterinary Medicinal Products Containing Zinc Oxide to Be Administered Orally to Food Producing Species. Outcome of a Referral Procedure under Article 35 of Directive 2001/82/EC (EMEA/V/A/118). 2017. EMA/394961/2017. Available online: https://www.ema.europa.eu/en/medicines/veterinary/referrals/zinc-oxide (accessed on 30 June 2022).
- Melkebeek, V.; Goddeeris, B.M.; Cox, E. ETEC vaccination in pigs. Vet. Immunol. Immunopathol. 2013, 152, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Fairbrother, J.M.; Nadeau, E.; Bélanger, L.; Tremblay, C.-L.; Tremblay, D.; Brunelle, M.; Wolf, R.; Hellmann, K.; Hidalgo, A. Immunogenicity and protective efficacy of a single-dose live non-pathogenic Escherichia coli oral vaccine against F4-positive enterotoxigenic Escherichia coli challenge in pigs. Vaccine 2017, 35, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Nadeau, E.; Fairbrother, J.M.; Zentek, J.; Bélanger, L.; Tremblay, D.; Tremblay, C.-L.; Röhe, I.; Vahjen, W.; Brunelle, M.; Hellmann, K.; et al. Efficacy of a single oral dose of a live bivalent E. coli vaccine against post-weaning diarrhea due to F4 and F18-positive enterotoxigenic E. coli. Vet. J. 2017, 226, 32–39. [Google Scholar] [CrossRef]
- Vangroenweghe, F. Improved piglet performance and reduced antimicrobial use following oral vaccination with a live avirulent Escherichia coli F4 vaccine against post-weaning diarrhea. J. Clin. Res. Med. 2020, 3, 1–8. [Google Scholar] [CrossRef]
- Vangroenweghe, F.; Thas, O. Application of high energy and protein diets in combination with a live avirulent Escherichia coli F4 vaccine against post-weaning diarrhea. Vaccine Res. 2020, 7, 1–9. [Google Scholar] [CrossRef]
- Vangroenweghe, F. Improved piglet performance and reduced mortality and antimicrobial use following oral vaccination with a live non-pathogenic Escherichia coli F4/F18 vaccine against post-weaning diarrhea. Austin. J. Infect. Dis. 2021, 8, 1048–1053. [Google Scholar]
- Ibradovic, M.R.; Segura, M.; Segalés, J.; Gottschalk, M. Review of the speculative role of co-infection in Streptococcus suis-associated diseases in pigs. Vet. Res. 2021, 52, 49–71. [Google Scholar] [CrossRef]
- Haas, B.; Grenier, D. Understanding the virulence of Streptococcus suis: A veterinary, medical and economic challenge. Méd. Malad. Infect. 2018, 48, 159–166. [Google Scholar] [CrossRef]
- Vangroenweghe, F.; Suls, L.; Van Driessche, E.; Maes, D.; De Graef, E. Health advantages of transition to batch management system in farrow-to-finish pig herds. Vet. Med. 2015, 57, 83–91. [Google Scholar] [CrossRef]
- Casey, T.A.; Bosworth, B.T. Design and evaluation of a multiplex polymerase chain reaction assay for the simultaneous identification of genes for nine different virulence factors associated with Escherichia coli that cause diarrhea and edema disease in swine. J. Vet. Diagn. Investig. 2009, 21, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Gaskins, H.R.; Collier, C.T.; Anderson, D.B. Antibiotics as growth promotants: Mode of action. Anim. Biotechnol. 2002, 13, 29–42. [Google Scholar] [CrossRef] [PubMed]
Pathogen | Escherichia coli | Streptococcus suis |
---|---|---|
Culture morphology | Hemolytic | |
Adhesins/fimbriae | ||
F4 (K88) | Negative | |
F18 | Positive | |
Toxins | ||
STa | Positive | |
STb | Positive | |
LT | Negative | |
Stx2e | Negative | |
Pathotype | F18-ETEC | |
Virotype | F18 STa STb | |
Antimicrobial resistance profile | ||
Amoxicillin | Resistant | Sensitive |
Apramycin | Resistant | |
Cefalexin | Intermediary | Sensitive |
Cefquinome | Sensitive | Sensitive |
Ceftiofur | Sensitive | Sensitive |
Colistin | Resistant | |
Doxycyclin | Resistant | |
Enrofloxacin | Sensitive | Sensitive |
Erythromycin | Resistant | |
Florfenicol | Sensitive | Sensitive |
Flumequine | Resistant | |
Gentamycin | Resistant | |
Kanamycin | Resistant | Resistant |
Lincomycin | Resistant | |
Marbofloxacin | Sensitive | |
Paromomseycin | Sensitive | |
Penicillin | Sensitive | |
Spectinomycin | Resistant | |
Sulfa-trimethoprim | Resistant | Sensitive |
Tetracyclin | Resistant | Resistant |
Tylosin | Resistant |
Performance Parameter | Control | Vaccine | p-Value |
---|---|---|---|
Number of groups | 10 | 10 | - |
Number of weaned piglets (±SEM) | 2632 ± 63 | 2720 ± 98 | 0.181 |
Total BW of weaned piglets (kg ± SEM) | 17,475 ± 921 | 17,895 ± 1088 | 0.386 |
Average BW at weaning (kg ± SEM) | 6.61 ± 0.22 | 6.53 ± 0.23 | 0.406 |
Number of sold piglets (±SEM) | 2541 ± 68 | 2641 ± 69 | 0.157 |
Percentage sold piglets (±SEM) | 96.48 ± 0.4 | 97.10 ± 0.2 | 0.094 |
Total BW of sold piglets (kg) | 60,732 ± 1325 | 61,183 ± 1567 | 0.414 |
Average BW at selling (kg ± SEM) | 23.97 ± 0.41 | 23.18 ± 0.26 | 0.063 |
Total WG (kg ± SEM) | 17.36 ± 0.50 | 16.65 ± 0.34 | 0.129 |
# days in nursery (d ± SEM) | 46.7 ± 1.2 a | 49.6 ± 0.6 b | 0.027 |
Mortality (# ± SEM) (% ± SEM) | 91 ± 9 | 79 ± 6 | 0.133 |
3.52 ± 0.38 | 2.90 ± 0.25 | 0.094 | |
BW of dead piglets (kg ± SEM) | 7.80 ± 0.26 a | 5.46 ± 0.42 b | 0.00013 |
FI per sold piglet (kg ± SEM) | 28.98 ± 1.00 | 26.84 ± 0.56 | 0.052 |
ADFI (g ± SEM) | 625 ± 27 a | 540 ± 9 b | 0.008 |
ADWG (g ± SEM) | 375 ± 15 a | 336 ± 6 b | 0.018 |
FCR (kg feed/kg gain ± SEM) | 1.67 ± 0.02 a | 1.61 ± 0.02 b | 0.041 |
Antimicrobial treatment cost per piglet (€ ± SEM) | 0.36 ± 0.11 a | 0.05 ± 0.02 b | 0.0086 |
Reduction in cost of antimicrobial treatment | 86.1% | - | |
TI100 (d ± SEM) | 69.43 ± 9.44 a | 0.13 ± 0.13 b | 0.000022 |
Reduction in antimicrobial use (%) | 99.8% | - | |
Month with TI100 = 0 | 0 | 9 | - |
Pathogen | S. suis | E. coli | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Total Amount | Average per Group | Total Amount | Average Per Group | |||||||
Active ingredient | Amoxicillin | Lincomycin- spectinomycin | Colistin | Doxycycline | Trimethoprim-sulfa | Apramycin | ||||
Control | 59 | 59 | 5.90 | 3 | 4 | 27 | 4 | 12.6 | 50.60 | 5.06 |
Vaccine | 5 | 5 | 0.50 | 0 | 0 | 0 | 0 | 0 | 0.00 | 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vangroenweghe, F.A.C.J.; Boone, M. Vaccination with an Escherichia coli F4/F18 Vaccine Improves Piglet Performance Combined with a Reduction in Antimicrobial Use and Secondary Infections Due to Streptococcus suis. Animals 2022, 12, 2231. https://doi.org/10.3390/ani12172231
Vangroenweghe FACJ, Boone M. Vaccination with an Escherichia coli F4/F18 Vaccine Improves Piglet Performance Combined with a Reduction in Antimicrobial Use and Secondary Infections Due to Streptococcus suis. Animals. 2022; 12(17):2231. https://doi.org/10.3390/ani12172231
Chicago/Turabian StyleVangroenweghe, Frédéric A. C. J., and Mieke Boone. 2022. "Vaccination with an Escherichia coli F4/F18 Vaccine Improves Piglet Performance Combined with a Reduction in Antimicrobial Use and Secondary Infections Due to Streptococcus suis" Animals 12, no. 17: 2231. https://doi.org/10.3390/ani12172231
APA StyleVangroenweghe, F. A. C. J., & Boone, M. (2022). Vaccination with an Escherichia coli F4/F18 Vaccine Improves Piglet Performance Combined with a Reduction in Antimicrobial Use and Secondary Infections Due to Streptococcus suis. Animals, 12(17), 2231. https://doi.org/10.3390/ani12172231