Effect of Cardamine violifolia on Plasma Biochemical Parameters, Anti-Oxidative Capacity, Intestinal Morphology, and Meat Quality of Broilers Challenged with Lipopolysaccharide
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Animals and Design
2.2. Sample Collection
2.3. Plasma Biochemical Indicators Measurement
2.4. Plasma Anti-Oxidative Capacity Measurement
2.5. Intestinal Morphology Measurement
2.6. Meat Quality of the Breast and Thigh Muscle Measurement
2.7. Statistical Analyses
3. Results
3.1. Plasma Biochemical Indicators
3.2. Plasma Anti-Oxidative Capacity
3.3. Intestinal Morphology
3.4. Meat Quality of the Breast and Thigh Muscle
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Kieliszek, M.; Błażejak, S. Current knowledge on the importance of selenium in food for living organisms: A Review. Molecules 2016, 21, 609. [Google Scholar] [CrossRef] [PubMed]
- Celi, P.; Selle, P.H.; Cowieson, A.J. Effects of organic selenium supplementation on growth performance, nutrient utilisation, oxidative stress and selenium tissue concentrations in broiler chickens. Anim. Prod. Sci. 2014, 54, 966–971. [Google Scholar] [CrossRef]
- Gao, X.J.; Xing, H.J.; Li, S.; Li, J.L.; Ying, T.; Xu, S.W. Selenium regulates gene expression of selenoprotein W in chicken gastrointestinal tract. Biol. Trace. Elem. Res. 2012, 145, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Heindl, J.; Ledvinka, Z.; Englmaierová, M.; Zita, L.; Tůmová, E. The effect of dietary selenium sources and levels on performance, selenium content in muscle and glutathione peroxidase activity in broiler chickens. Czech J. Anim. Sci. 2010, 55, 572–578. [Google Scholar] [CrossRef]
- Deng, S.T.; Hu, S.J.; Xue, J.J.; Yang, K.; Zhuo, R.W.; Xiao, Y.Y.; Fang, R.J. Productive performance, serum antioxidant status, tissue selenium deposition, and gut health analysis of broiler chickens supplemented with selenium and probiotics—A pilot study. Animals 2022, 12, 1086. [Google Scholar] [CrossRef]
- Attia, Y.A.; Abdalah, A.A.; Zeweil, H.S.; Bovera, F.; Tag El-Din, A.A.; Araft, M.A. Effect of inorganic or organic selenium supplementation on productive performance, egg quality and some physiological traits of dual purpose breeding hens. Czezh J. Anim. Sci. 2010, 55, 505–519. [Google Scholar] [CrossRef]
- Puvača, N.; Stanaćev, V. Selenium in poultry nutrition and its effect on meat quality. Worlds Poult. Sci. 2011, 67, 479–484. [Google Scholar] [CrossRef]
- Ibrahim, D.; Kishawy, A.T.Y.; Khater, S.I.; Hamed, A.A.; Mohammed, H.A.; Abdelaziz, A.S.; Abd El-Rahman, G.I.; Elabbasy, M.T. Effect of dietary modulation of selenium form and level on performance, tissue retention, quality of frozen stored meat and gene expression of antioxidant status in Ross broiler chickens. Animals 2019, 9, 342. [Google Scholar] [CrossRef]
- Wolffram, S.; Anliker, E.; Scharrer, E. Uptake of selenate and selenite by isolated intestinal brush border membrane vesicles from pig, sheep, and rat. Biol. Trace. Elem. Res. 1986, 10, 293–306. [Google Scholar] [CrossRef]
- Briens, M.; Mercier, Y.; Rouffineau, F.; Vacchina, V.; Geraert, P.A. Comparative study of a new organic selenium source v. seleno-yeast and mineral selenium sources on muscle selenium enrichment and selenium digestibility in broiler chickens. Brit. J. Nutr. 2013, 110, 617–624. [Google Scholar] [CrossRef] [Green Version]
- Zhu, S.; Du, C.D.; Yu, T.; Cong, X.; Liu, Y.F.; Chen, S.W.; Li, Y. Antioxidant activity of selenium-enriched peptides from the protein hydrolysate of Cardamine violifolia. J. Food Sci. 2019, 84, 3504–3511. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Tian, X.; Qin, Z.; Pan, S.; Xu, X. Anti-motor fatigue activity of selenium-containing protein from Cardamine hupingshanensis. Food Sci. 2015, 36, 160–165. [Google Scholar]
- Cui, L.W.; Zhao, J.T.; Chen, J.Y.; Zhang, W.; Gao, Y.X.; Li, B.; Li, Y.F. Translocation and transformation of selenium in hyperaccumulator plant Cardamine enshiensis from Enshi, Hubei, China. Plant Soil. 2018, 425, 577–588. [Google Scholar] [CrossRef]
- Mohammadi, A.; Ghazanfari, S.; Sharifi, S.D. Comparative effects of dietary organic, inorganic, and nano-Selenium complexes and rosemary essential oil on performance, meat quality and selenium deposition in muscles of broiler chickens. Livest. Sci. 2019, 226, 21–30. [Google Scholar] [CrossRef]
- Zoidis, E.; Simitzis, P.; Kampantais, D.; Katsoulas, P.; Pappas, A.C.; Papadomichelakis, G.; Goliomytis, M. Dietary orange pulp and organic selenium effects on growth performance, meat quality, fatty acid profile, and oxidative stability parameters of broiler chickens. Sustainability 2022, 14, 1534. [Google Scholar] [CrossRef]
- Xie, H.; Rath, N.C.; Huff, G.R.; Huff, W.E.; Balog, J.M. Effects of salmonella typhimurium lipopolysaccharide on broiler chickens. Poult. Sci. 2000, 79, 33–40. [Google Scholar] [CrossRef]
- Sun, L.L.; Dong, H.B.; Zhang, Z.C.; Liu, J.; Hu, Y.; Ni, Y.D.; Grossmann, R.; Zhao, R.Q. Activation of epithelial proliferation induced by Eimeria acervulina infection in the duodenum may be associated with cholesterol metabolism. Oncotarget 2016, 7, 27627–27640. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Wang, H.L.; Pan, L.; Ma, X.K.; Tian, Q.Y.; Xu, Y.T.; Long, S.F.; Zhang, Z.H.; Piao, X.S. Effects of coated proteases on the performance, nutrient retention, gut morphology and carcass traits of broilers fed corn or sorghum based diets supplemented with soybean meal. Anim. Feed Sci. Technol. 2017, 223, 119–127. [Google Scholar] [CrossRef]
- Shang, Q.H.; Liu, S.J.; He, T.F.; Liu, H.S.; Mahfuz, S.; Ma, X.K.; Piao, X.S. Effects of wheat bran in comparison to antibiotics on growth performance, intestinal immunity, barrier function, and microbial composition in broiler chickens. Poult. Sci. 2020, 99, 4929–4938. [Google Scholar] [CrossRef]
- Niu, Z.Y.; Min, Y.N.; Wang, J.J.; Wang, Z.P.; Wei, F.X.; Liu, F.Z. On oxidation resistance and meat quality of broilers challenged with lipopolysaccharide. J. Appl. Anim. Res. 2016, 44, 215–220. [Google Scholar] [CrossRef]
- Xue, G.; Cheng, S.; Yin, J.W.; Zhang, R.X.; Su, Y.Y.; Li, X.; Li, J.H.; Bao, J. Influence of pre-slaughter fasting time on weight loss, meat quality and carcass contamination in broilers. Anim. Biosci. 2021, 34, 1070–1077. [Google Scholar] [CrossRef] [PubMed]
- Miezeliene, A.; Alencikiene, G.; Gruzauskas, R.; Barstys, T. The effect of dietary selenium supplementation on meat quality of broiler chickens. Biotechnol. Agron. Soc. Env. 2011, 15, 61–69. [Google Scholar]
- Savaris, V.D.L.; Broch, J.; de Souza, C.; Rohloff Junior, N.; de Avila, A.S.; Polese, C.; Kaufmann, C.; de Oliveira Carvalho, P.L.; Pozza, P.C.; Vieites, F.M.; et al. Effects of vitamin A on carcass and meat quality of broilers. Poult. Sci. 2021, 100, 101490. [Google Scholar] [CrossRef] [PubMed]
- Mushtaq, M.; Fatima, M.; Shah, S.Z.H.; Khan, N.; Naveed, S.; Khan, M. Effects of sodium selenite, selenium methionine, and selenium yeast on growth performance, carcass composition, blood biochemistry, and antioxidant status of intensively reared Hypophthalmichthys molitrix. Aquac. Rep. 2022, 24, 101182. [Google Scholar] [CrossRef]
- Chen, F.; Liu, Y.L.; Zhu, H.L.; Hong, Y.; Wu, Z.F.; Hou, Y.Q.; Li, Q.; Ding, B.Y.; Yi, D.; Chen, H.B. Fish oil attenuates liver injury caused by LPS in weaned pigs associated with inhibition of TLR4 and nucleotide-binding oligomerization domain protein signaling pathways. Innate Immun. 2013, 19, 504–515. [Google Scholar] [CrossRef]
- Biasi, F.; Albano, E.; Chiarpotto, E.; Corongiu, F.P.; Pronzato, M.A.; Marinari, U.M.; Parola, M.; Dianzani, M.U.; Poli, G. In vivo and in vitro evidence concerning the role of lipid peroxidation in the mechanism of hepatocyte death due to carbon tetrachloride. Cell Biochem. Funct. 1991, 9, 111–118. [Google Scholar] [CrossRef]
- Parola, M.; Leonarduzzi, G.; Biasi, F.; Albano, E.; Biocca, M.E.; Poli, G.; Dianzani, M.U. Vitamin E dietary supplementation protects against carbon tetrachloride-induced chronic liver damage and cirrhosis. Hepatol. Baltim. Md. 1992, 16, 1014–1021. [Google Scholar] [CrossRef]
- Aslanturk, A.; Uzunhisarcikli, M.; Kalender, S.; Demir, F. Sodium selenite and vitamin E in preventing mercuric chloride induced renal toxicity in rats. Food Chem. Toxicol. 2014, 70, 185–190. [Google Scholar] [CrossRef]
- Ozardali, I.; Bitiren, M.; Karakilçik, A.Z.; Zerin, M.; Aksoy, N.; Musa, D. Effects of selenium on histopathological and enzymatic changes in experimental liver injury of rats. Exp. Toxicol. Pathol. 2005, 56, 59–64. [Google Scholar] [CrossRef]
- Al-Seeni, M.N.; El Rabey, H.A.; Al-Solamy, S.M. The protective role of bee honey against the toxic effect of melamine in the male rat kidney. Toxicol. Ind. Health. 2015, 31, 485–493. [Google Scholar] [CrossRef]
- Hao, X.F.; Ling, Q.F.; Hong, F.S. Effects of dietary selenium on the pathological changes and oxidative stress in loach (Paramisgurnus Dabryanus). Fish Physiol. Biochem. 2014, 40, 1313–1323. [Google Scholar] [CrossRef] [PubMed]
- Saffari, S.; Keyvanshokooh, S.; Zakeri, M.; Johari, S.A.; Pasha-Zanoosi, H. Effects of different dietary selenium sources (sodium selenite, selenomethionine and nanoselenium) on growth performance, muscle composition, blood enzymes and antioxidant status of common carp (Cyprinus carpio). Aquac. Nutr. 2017, 23, 611–617. [Google Scholar] [CrossRef]
- Zheng, X.C.; Wu, Q.J.; Song, Z.H.; Zhang, H.; Zhang, J.F.; Zhang, L.L.; Zhang, T.Y.; Wang, C.; Wang, T. Effects of oridonin on growth performance and oxidative stress in broilers challenged with lipopolysaccharide. Poult. Sci. 2016, 95, 2281–2289. [Google Scholar] [CrossRef] [PubMed]
- Li, J.L.; Hou, Y.Q.; Yi, D.; Zhang, J.; Wang, L.; Qiu, H.Y.; Ding, B.Y.; Gong, J.S. Effects of tributyrin on intestinal energy status, antioxidative capacity and immune response to lipopolysaccharide challenge in broilers. Asian-Australas. J. Anim. Sci. 2017, 12, 1784–1793. [Google Scholar] [CrossRef]
- Wang, Z.; Li, L.; Zheng, F.P.; Jia, C.F.; Ruan, Y.; Li, H. Correlation between the amplitude of glucose excursion and the oxidative/antioxidative system in subjects with different types of glucose regulation. Biomed. Environ. Sci. 2011, 24, 68–73. [Google Scholar]
- Hosen, M.B.; Islam, M.R.; Begum, F.; Kabir, Y.; Howlader, M.Z.H. Oxidative stress induced sperm DNA damage, a possible reason for male infertility. Int. J. Reprod. Biomed. 2015, 13, 525–532. [Google Scholar]
- Diyabalanage, S.; Dangolla, A.; Mallawa, C.; Rajapakse, S.; Chandrajith, R. Bioavailability of selenium (Se) in cattle population in Sri Lanka based on qualitative determination of glutathione peroxidase (GSH-Px) activities. Environ. Geochem. Health. 2020, 42, 617–624. [Google Scholar] [CrossRef]
- Zhu, S.; Yang, W.; Lin, Y.; Du, C.D.; Huang, D.J.; Chen, S.W.; Yu, T.; Cong, X. Antioxidant and anti-fatigue activities of selenium-enriched peptides isolated from Cardamine Violifolia protein hydrolysate. J. Funct. Foods. 2021, 79, 104412. [Google Scholar] [CrossRef]
- Yu, T.; Guo, J.; Zhu, S.; Li, M.; Zhu, Z.; Cheng, S.; Wang, S.; Sun, Y.; Cong, X. Protective effects of selenium-enriched peptides from Cardamine Violifolia against high-fat diet induced obesity and its associated metabolic disorders in mice. RSC Adv. 2020, 10, 31411–31424. [Google Scholar] [CrossRef]
- Bogusławska-Tryk, M.; Piotrowska, A.; Burlikowska, K. Dietary fructans and their potential beneficial influence on health and performance parametrs in broiler chickens. J. Cent. Eur. Agric. 2012, 13, 272–291. [Google Scholar] [CrossRef]
- Manzanilla, E.G.; Nofrarías, M.; Anguita, M.; Castillo, M.; Perez, J.F.; Martín-Orúe, S.M.; Kamel, C.; Gasa, J. Effects of butyrate, avilamycin, and a plant extract combination on the intestinal equilibrium of early-weaned pigs. J. Anim. Sci. 2006, 84, 2743–2751. [Google Scholar] [CrossRef] [PubMed]
- Dalia, A.M.; Loh, T.C.; Sazili, A.Q.; Samsudin, A.A. Influence of bacterial organic selenium on blood parameters, immune response, selenium retention and intestinal morphology of broiler chickens. BMC Vet. Res. 2020, 16, 365. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.W.; Zhang, J.Y.; Zhou, H.B.; Guo, Y.P.; Ma, Q.G.; Ji, C.; Zhao, L.H. Effects of dietary pyrroloquinoline quinone disodium supplementation on inflammatory responses, oxidative stress, and intestinal morphology in broiler chickens challenged with lipopolysaccharide. Poult. Sci. 2020, 99, 5389–5398. [Google Scholar] [CrossRef]
- Zhang, X.H.; Zhao, L.G.; Cao, F.L.; Ahmad, H.; Wang, G.B.; Wang, T. Effects of feeding fermented ginkgo biloba leaves on small intestinal morphology, absorption, and immunomodulation of early lipopolysaccharide-challenged chicks. Poult. Sci. 2013, 92, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Zamani, M.A.K.; Mehraei, H.M.H.; Khajali, F.; Hassanpour, H. Role of selenium from different sources in prevention of pulmonary arterial hypertension syndrome in broiler chickens. Biol. Trace Elem. Res. 2017, 180, 164–170. [Google Scholar]
- Tong, C.; Li, P.; Yu, L.H.; Li, L.; Li, K.; Chen, Y.L.; Yang, S.H.; Long, M. Selenium-rich yeast attenuates ochratoxin a-induced small intestinal injury in broiler chickens by activating the Nrf2 pathway and inhibiting NF-κB activation. J. Funct. Foods. 2020, 66, 103784. [Google Scholar] [CrossRef]
- Jessica, R.S.; Edens, F.W.; Cantor, A.H.; Pescatore, A.J.; Pierce, J.L. Effect of dietary selenium on small intestine villus integrity in reovirus-challenged broilers. Int. J. Poult. Sci. 2009, 8, 829–835. [Google Scholar] [CrossRef]
- O’Sullivan, M.G.; Byrne, D.V.; Martens, M. Evaluation of pork colour sensory colour assessment using trained and untrained sensory panellists. Meat Sci. 2003, 63, 119–129. [Google Scholar]
- Mohamed, D.A.; Sazili, A.Q.; Chwen, L.T.; Samsudin, A.A. Effect of microbiota-selenoprotein on meat selenium content and meat quality of broiler chickens. Animals 2020, 10, 981. [Google Scholar] [CrossRef]
- Juncher, D.; Rønn, B.; Mortensen, E.; Henckel, P.; Karlsson, A.; Skibsted, L.; Bertelsen, G. Effect of pre-slaughter physiological conditions on the oxidative stability of colour and lipid during chill storage of pork. Meat Sci. 2001, 58, 347–357. [Google Scholar] [CrossRef]
- Rosenvold, K.; Andersen, H.J. The significance of pre-slaughter stress and diet on colour and colour stability of pork. Meat Sci. 2003, 63, 199–209. [Google Scholar] [CrossRef]
- Yang, Y.R.; Meng, F.C.; Wang, P.; Jiang, Y.B.; Yin, Q.Q.; Chang, J.; Zuo, R.Y.; Zheng, Q.H.; Liu, J.X. Effect of organic and inorganic selenium supplementation on growth performance meat quality and antioxidant property of broilers. Afr. J. Biotechnol. 2012, 11, 3031–3036. [Google Scholar]
- Perić, L.; Milošević, N.; Žikić, D.; Kanački, Z.; Džinić, N.; Nollet, L.; Spring, P. Effect of selenium sources on performance and meat characteristics of broiler chickens. J. Appl. Poult. Res. 2010, 18, 403–409. [Google Scholar] [CrossRef]
- Wang, C.L.; Xing, G.Z.; Wang, L.S.; Li, S.F.; Zhang, L.Y.; Lu, L.; Luo, X.G.; Liao, X.D. Effects of selenium source and level on growth performance, antioxidative ability and meat quality of broilers. J. Integr. Agric. 2021, 20, 227–235. [Google Scholar] [CrossRef]
Item | Saline | LPS | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
SeNa | SeCv | SeNa | SeCv | Diets | LPS | Interaction | ||
TP, g/L | 23.5 | 24.5 | 22.4 | 22.7 | 2.01 | 0.358 | 0.414 | 0.798 |
ALB, g/L | 12.5 | 12.7 | 12.4 | 12.5 | 1.11 | 0.845 | 0.715 | 0.920 |
GLU, mmol/L | 10.3 | 10.4 | 10.5 | 10.6 | 0.35 | 0.685 | 0.465 | 0.882 |
TG, mmol/L | 2.86 | 2.34 | 2.78 | 2.38 | 0.17 | 0.021 | 0.835 | 0.924 |
BUN, mmol/L | 0.51 b | 0.42 b | 0.62 a | 0.44 b | 0.04 | <0.001 | 0.273 | 0.014 |
AST, U/L | 237 b | 220 b | 295 a | 266 ab | 20 | 0.024 | 0.034 | 0.038 |
ALT, U/L | 4.50 b | 4.48 b | 5.34 a | 4.62 b | 0.28 | 0.358 | 0.260 | <0.001 |
Item | Saline | LPS | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
SeNa | SeCv | SeNa | SeCv | Diets | LPS | Interaction | ||
T-AOC, mM | 1.15 a | 1.29 a | 0.87 b | 1.12 a | 0.11 | 0.320 | 0.129 | <0.001 |
GSH-Px, U/mL | 1423 a | 1527 a | 1017 b | 1458 a | 126 | <0.001 | 0.256 | <0.001 |
SOD, U/mL | 298 | 302 | 223 | 235 | 24 | 0.748 | <0.001 | 0.820 |
MDA, nmol/mL | 2.40 b | 2.23 b | 2.87 a | 2.43 b | 0.18 | 0.245 | 0.028 | <0.001 |
Item | Saline | LPS | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
SeNa | SeCv | SeNa | SeCv | Diets | LPS | Interaction | ||
Duodenum | ||||||||
VH, μm | 985 a | 1025 a | 804 b | 945 a | 35 | 0.030 | 0.011 | <0.001 |
CD, μm | 231 | 238 | 220 | 241 | 17 | 0.429 | 0.893 | 0.660 |
VH/CD | 4.26 | 4.31 | 3.65 | 3.92 | 0.14 | 0.253 | <0.001 | 0.088 |
Jejunum | ||||||||
VH, μm | 1001 a | 1038 a | 788 c | 895 b | 34 | 0.313 | <0.001 | <0.001 |
CD, μm | 227 | 220 | 245 | 220 | 15 | 0.860 | 0.799 | 0.931 |
VH/CD | 4.41 ab | 4.72 a | 3.22 c | 4.07 b | 0.15 | <0.001 | <0.001 | <0.001 |
Ileum | ||||||||
VH, μm | 810 a | 826 a | 711 b | 789 a | 26 | 0.081 | 0.043 | <0.001 |
CD, μm | 201 | 196 | 204 | 200 | 13 | 0.741 | 0.960 | 0.729 |
VH/CD | 4.03 a | 4.21 a | 3.49 b | 3.95 a | 0.14 | 0.014 | <0.001 | <0.001 |
Item | Saline | LPS | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
SeNa | SeCv | SeNa | SeCv | Diets | LPS | Interaction | ||
Breast muscle | ||||||||
Color | ||||||||
L* | 58.4 | 53.6 | 57.6 | 58.0 | 2.88 | 0.775 | 0.690 | 0.489 |
a* | 14.4 a | 14.9 a | 12.1 b | 14.2 a | 0.80 | 0.206 | 0.358 | 0.020 |
b* | 6.88 | 7.59 | 7.05 | 7.33 | 0.75 | 0.658 | 0.801 | 0.699 |
Drip loss, % | 1.24 b | 1.13 b | 2.05 a | 1.36 b | 0.28 | 0.089 | 0.251 | 0.006 |
Cooking loss, % | 26.4 b | 25.3 b | 31.1 a | 26.4 b | 1.31 | 0.236 | 0.331 | 0.014 |
Shear force, N | 24.7 b | 25.1 b | 29.8 a | 25.4 b | 1.25 | 0.510 | 0.389 | 0.042 |
Thigh muscle | ||||||||
Color | ||||||||
L* | 60.3 | 62.4 | 63.5 | 61.6 | 2.98 | 0.818 | 0.798 | 0.843 |
a* | 18.9 a | 19.3 a | 14.8 b | 18.6 a | 1.16 | 0.013 | 0.189 | <0.001 |
b* | 7.69 | 7.25 | 8.02 | 7.50 | 0.70 | 0.593 | 0.796 | 0.882 |
Drip loss, % | 1.01 b | 0.89 b | 1.98 a | 1.12 b | 0.25 | 0.007 | <0.001 | <0.001 |
Cooking loss, % | 22.6 b | 22.7 b | 28.8 a | 24.2 b | 1.20 | 0.425 | <0.001 | <0.001 |
Shear force, N | 12.8 b | 11.6 b | 15.7 a | 12.2 b | 0.73 | 0.015 | 0.072 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Y.; Gao, Q.; Jing, X.; Zhang, Y.; Zhu, H.; Cong, X.; Cheng, S.; Liu, Y.; Xu, X. Effect of Cardamine violifolia on Plasma Biochemical Parameters, Anti-Oxidative Capacity, Intestinal Morphology, and Meat Quality of Broilers Challenged with Lipopolysaccharide. Animals 2022, 12, 2497. https://doi.org/10.3390/ani12192497
Wei Y, Gao Q, Jing X, Zhang Y, Zhu H, Cong X, Cheng S, Liu Y, Xu X. Effect of Cardamine violifolia on Plasma Biochemical Parameters, Anti-Oxidative Capacity, Intestinal Morphology, and Meat Quality of Broilers Challenged with Lipopolysaccharide. Animals. 2022; 12(19):2497. https://doi.org/10.3390/ani12192497
Chicago/Turabian StyleWei, Yu, Qingyu Gao, Xiaoqing Jing, Yue Zhang, Huiling Zhu, Xin Cong, Shuiyuan Cheng, Yulan Liu, and Xiao Xu. 2022. "Effect of Cardamine violifolia on Plasma Biochemical Parameters, Anti-Oxidative Capacity, Intestinal Morphology, and Meat Quality of Broilers Challenged with Lipopolysaccharide" Animals 12, no. 19: 2497. https://doi.org/10.3390/ani12192497
APA StyleWei, Y., Gao, Q., Jing, X., Zhang, Y., Zhu, H., Cong, X., Cheng, S., Liu, Y., & Xu, X. (2022). Effect of Cardamine violifolia on Plasma Biochemical Parameters, Anti-Oxidative Capacity, Intestinal Morphology, and Meat Quality of Broilers Challenged with Lipopolysaccharide. Animals, 12(19), 2497. https://doi.org/10.3390/ani12192497