Antibacterial Drug Residues in Small Ruminant Edible Tissues and Milk: A Literature Review of Commonly Used Medications in Small Ruminants
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Screening Results
3. Data Extraction and Presentation (Antibiotic Drug Classes, Residue Detection, and Analytical Methods)
3.1. Aminoglycosides
3.2. Amphenicols
3.3. Penicillin and Penicillin-Derivatives
3.4. Cephalosporins
3.5. Fluoroquinolones/Quinolones
3.6. Macrolides
3.7. Sulfonamides
3.8. Tetracyclines
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AMDUCA | Animal Medicinal Drug Use Clarification Act of 1994 |
CFR | Code of Federal Regulations |
EMA | European Medicines Agency |
FAO | Food and Agriculture Organization of the United Nations |
FARAD | Food Animal Residue Avoidance and Depletion Program |
FDA | Food and Drug Administration |
MIC | Minimum inhibitory concentration |
MRL | Maximum residue limit |
NSAIDs | Non-steroidal anti-inflammatory drugs |
USDA | United States Department of Agriculture |
WHO | World Health Organization |
References
- Akinmoladun, O.F.; Muchenje, V.; Fon, F.N.; Mpendulo, C.T. Small Ruminants: Farmers’ Hope in a World Threatened by Water Scarcity. Animals 2019, 9, 456. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations. FAOSTAT. 2022. Available online: https://www.fao.org/faostat/en/#compare (accessed on 22 November 2021).
- Food and Drug Administration. Minor Use/Minor Species; Food and Drug Administration: Spring, MD, USA, 2022.
- European Medicines Agency. Guideline on Safety and Residue Data Requirements for the Establishment of Maximum Residue Limits in Minor Species; European Medicines Agency: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Congress of the United States. Minor Use and Minor Species Animal Health Act of 2004; Congress of the United States: Washington, DC, USA, 2004.
- Food and Drug Administration. Title 21, Chapter I, Subchapter E, Part 530: Extralabel Drug Use in Animals; Food and Drug Administration: Silver Spring, MD, USA, 2022.
- Northcutt, J.K. Preslaughter factors affecting poultry meat quality. In Poultry Meat Processing; Woodhead Publishing: Cambridge, UK, 2000. [Google Scholar]
- World Health Organization. Critically Important Antimicrobials for Human Medicine 6th Revision; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Riviere, J.E.; Craigmill, A.L.; Sundlof, S.F. Aminoglycosides. In Handbook of Comparative Pharmacokinetics and Residues of Veterinary Antimicrobials; CRC Press: Boca Raton, FL, USA, 1991. [Google Scholar]
- European Medicines Agency Committee for Veterinary Medicinal Products. Apramycin Summary Report (2); European Medicines Agency Committee for Veterinary Medicinal Products: Amsterdam, The Netherlands, 1999; Volume 526, pp. 1–8. [Google Scholar]
- Heitzman, R. Dihydrostreptomycin Streptomycin. Residues Some Vet. Drugs Anim. Foods 1995, 41, 17–29. [Google Scholar]
- Brown, S.; Riviere, J.; Coppoc, G.; Hinsman, E.; Carlton, W.; Steckel, R. Single intravenous and multiple intramuscular dose pharmacokinetics and tissue residue profile of gentamicin in sheep. Am. J. Vet. Res. 1985, 46, 69–74. [Google Scholar] [PubMed]
- Brown, S.; Coppoc, G.; Riviere, J. Effects of dose and duration of therapy on gentamicin tissue residues in sheep. Am. J. Vet. Res. 1986, 47, 2373–2379. [Google Scholar] [PubMed]
- Brown, S.; Baird, A. Evaluation of renal gentamicin depletion kinetic properties in sheep, using serial percutaneous biopsies. Am. J. Vet. Res. 1988, 49, 2056–2059. [Google Scholar]
- The Upjohn Company. NADA 011-315 Neomycin 325/Neomix Ag 325 Soluble Powder—Supplemental Approval (Date of Approval: 3 April 1996); FOI—Neomix- NADA 011-315; The Upjohn Company: Hastings, MI, USA, 1996; pp. 1–3. [Google Scholar]
- European Medicines Agency Committee for Veterinary Medicinal Products. Neomycin Summary Report (2); EMEA/MRL/730/00-Final; European Medicines Agency Committee for Veterinary Medicinal Products: Amsterdam, The Netherlands, 2000; Volume 730, pp. 1–8. [Google Scholar]
- Livingston, R.C. Neomycin. Residues Some Vet. Drugs Anim. Foods 1995, 41, 57–67. [Google Scholar]
- National Library of Medicine. Drugs and Lactation Database (LactMed); National Library of Medicine: Bethesda, MD, USA, 2006. [Google Scholar]
- El-Sooud, K.A. Pharmacokinetics of amikacin in lactating goats. Zent. Vet. A 1999, 46, 239–246. [Google Scholar] [CrossRef]
- Agrawal, A.; Singh, S.; Jayachandran, C. Pharmacokinetics of amikacin in goats after single intramuscular administration. Indian J. Pharmacol. 2001, 33, 374. [Google Scholar]
- Haritova, A.; Lashev, L. Pharmacokinetics of amikacin in lactating sheep. Vet. Res. Commun. 2004, 28, 429–435. [Google Scholar] [CrossRef]
- Ziv, G.; Kurtz, B.; Risenberg, R.; Glickman, A. Serum and milk concentrations of apramycin in lactating cows, ewes and goats. J. Vet. Pharmacol. Ther. 1995, 18, 346–351. [Google Scholar] [CrossRef]
- El-Gendi, A.Y.; Amer, A.M.; Azooz, H.A. Disposition kinetics and milk residues of apramycin in goats. In Proceedings of the European Association of Veterinary Pharmacology and Toxicology 8th Congress, Jerusalem, Israel, 30 July–3 August 2000. [Google Scholar]
- Ziv, G.; Bogin, E.; Shani, J.; Sulman, F.G. Distribution and blood-to-milk transfer of labeled antibiotics. Antimicrob. Agents Chemother. 1973, 3, 607–613. [Google Scholar] [CrossRef]
- European Medicines Agency Committee for Veterinary Medicinal Products. Dihydrostreptomycin (Extrapolation to All Ruminants) Summary Report (4); EMEA/CVMP/211249/2005-Final; European Medicines Agency Committee for Veterinary Medicinal Products: Amsterdam, The Netherlands, 2005; Volume 211249, pp. 1–5. [Google Scholar]
- Friedlander, L.G.; Stephany, R.W. Dihydrostreptomycin and Streptomycin Addendum. Residues Some Vet. Drugs Anim. Foods 2002, 41, 37–41. [Google Scholar]
- Lohuis, J.; Poutrel, B.; Cremoux, R.; Parez, V.; Aguer, D. Milk residues of penicillin, nafcillin and dihydrostreptomycin in dairy goats postpartum treated with Nafpenzal N8 at drying-off. In Proceedings of the Residues of Antimicrobial Drugs and Other Inhibitors in Milk, Kiel, Germany, 28–31 August 1995. [Google Scholar]
- Lohuis, J.; Berthelot, X.; Cester, C.; Parez, V.; Aguer, D. Pharmacokinetics and milk residues of penicillin, nafcillin and dihydrostreptomycin in dairy sheep treated with nafpenzal DC at drying-off. In Proceedings of the Residues of Antimicrobial Drugs and Other Inhibitors in Milk, Kiel, Germany, 28–31 August 1995. [Google Scholar]
- Ziv, G.; Bogin, E.; Shani, J.; Sulman, F. Penetration of radioactive-labeled antibiotics from blood serum into milk in normal and mastitic ewes. Ann. Rech. Vét. 1974, 5, 15–28. [Google Scholar]
- European Medicines Agency Committee for Veterinary Medicinal Products. Streptomycin and Dihydrostreptomycin Summary Report (2); EMEA/MRL/728/00-Final; European Medicines Agency Committee for Veterinary Medicinal Products: Amsterdam, The Netherlands, 2000; Volume 728, pp. 1–7. [Google Scholar]
- Heitzman, R.J. Dihydrostreptomycin/Streptomycin Addendum. Residues Some Vet. Drugs Anim. Foods 1998, 41, 39–44. [Google Scholar]
- Toutain, P.; De Pomyers, H.; Larrieu, G.; Periquet, B.; More, J. An in vivo model for pharmacokinetic studies in the kidney. J. Pharmacol. Methods 1985, 14, 1–11. [Google Scholar] [CrossRef]
- Andreini, G.; Pignattelli, P. Kanamycin blood levels and residues in domestic animals. Vet. Milano 1972, 21, 51–72. [Google Scholar]
- Pfizer, Inc. ANADA 200-046 Neomycin Sulfate Soluble Powder 325 g/lb—Supplemental Approval (3 April 1996); FOI—Neomycin ANADA 200-046; Pfizer: New York, NY, USA, 1996; pp. 1–3. [Google Scholar]
- Lavy, E.; Ziv, G.; Glickman, A. Single-dose pharmacokinetics of thiamphenicol in lactating goats. Acta Vet. Scand. Suppl. 1991, 87, 99–102. [Google Scholar]
- Lavy, E.; Ziv, G.; Soback, S.; Glickman, A.; Winkler, M. Clinical pharmacology of florfenicol in lactating goats. Acta Vet. Scand. Suppl. 1991, 87, 133–136. [Google Scholar]
- Government of Canada. Questions and Answers on Health Canada’s Policy on Extra-Label Drug Use (ELDU) in Food-Producing Animals; Government of Canada: Ottowa, ON, Canada, 2009.
- European Food Safety Authority. Scientific Opinion on Chloramphenicol in Food and Feed; European Food Safety Authority: Parma, Italy, 2014. [Google Scholar] [CrossRef]
- Ziv, G.; Bogin, E.; Sulman, F. Blood and milk levels of chloramphenicol in normal and mastitic cows and ewes after intramuscular administration of chloramphenicol and chloramphenicol sodium succinate. Zent. Vet. Reihe A 1973, 20, 801–811. [Google Scholar] [CrossRef]
- Dagorn, M.; Guillot, P.; Sanders, P. Pharmacokinetics of chloramphenicol in sheep after intravenous, intramuscular and subcutaneous administration. Vet. Q. 1990, 12, 166–174. [Google Scholar] [CrossRef]
- Ziv, G. Pharmacokinetics of antimycoplasma antibiotics in dairy cows and ewes. In Proceedings of the 8th International Meeting of Diseases in Cattle, Milan, Italy, 9–13 September 1974; pp. 80–92. [Google Scholar]
- Wetzlich, S.E.; Lane, V.M.; Craigmill, A.L. Tissue residue depletion after multiple subcutaneous administration of florfenicol to sheep. In Proceedings of the European Association of Veterinary Pharmacology and Toxicology 10th Congress, Turin, Italy, 17–22 September 2006; Volume 29, pp. 154–155. [Google Scholar]
- Lane, V.M.; Villarroel, A.; Wetzlich, S.; Clifford, A.; Taylor, I.; Craigmill, A. Tissue residues of florfenicol in sheep. J. Vet. Pharmacol. Ther. 2008, 31, 178–180. [Google Scholar] [CrossRef]
- Wells, R.J. Thiamphenicol; Addendum to the thiamphenicol residue monograph prepared by the 47th meeting of the Committee and published in FAO Food and Nutrition Paper 41/9, Rome 1996. Residues Some Vet. Drugs Anim. Foods 2000, 41, 119–128. [Google Scholar]
- Roy, B.; Banerjee, N. Distribution of chloramphenicol in goat blood and milk after intramuscular administration. Indian J. Anim. Sci. 1983, 53, 847–849. [Google Scholar]
- Wal, J.-M.; Peleran, J.-C.; Bories, G.F. High performance liquid chromatographic determination of chloramphenicol in milk. J. Assoc. Off. Anal. Chem. 1980, 63, 1044–1048. [Google Scholar] [CrossRef]
- Ziv, G.; Nouws, J. Serum and milk concentrations of ampicillin and amoxycillin in ruminants. Refuah Vet. 1979, 36, 104–110. [Google Scholar]
- Ramos, F.; Boison, J.; Friedlander, L.G. Amoxicillin. Residues Some Vet. Drugs Anim. Foods 2012, 1–35. Available online: https://www.fao.org/fileadmin/user_upload/vetdrug/docs/12-2012-amoxicillin.pdf (accessed on 7 August 2022).
- Buswell, J.; Knight, C.; Barber, D. Antibiotic persistence and tolerance in the lactating goat following intramammary therapy. Vet. Rec. 1989, 125, 301–303. [Google Scholar] [CrossRef]
- Roncada, P.; Tomasi, L.; Stracciari, G.; Ermini, L.; Strocchia, A. Milk depletion of dicloxacillin residues in cows and sheep following intramammary administration. J. Vet. Pharmacol. Ther. 2000, 23, 237–241. [Google Scholar] [CrossRef] [PubMed]
- Buswell, J.; Barber, D. Antibiotic persistence and tolerance in the lactating sheep following a course of intramammary therapy. Br. Vet. J. 1989, 145, 552–557. [Google Scholar] [CrossRef]
- Pengov, A.; Kirbis, A. Risks of antibiotic residues in milk following intramammary and intramuscular treatments in dairy sheep. Anal. Chim. Acta 2009, 637, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Hill, B.; Jagusch, K.; Rajan, L.; Kidd, G. Antibiotic residues in goats milk following intramammary treatment. N. Z. Vet. J. 1984, 32, 130–131. [Google Scholar] [CrossRef]
- Ferrini, A.M.; Trenta, S.; Mannoni, V.; Rosati, R.; Coni, E. Depletion of long-acting ampicillin in goat milk following intramuscular administration. J. Agric. Food Chem. 2010, 58, 12199–12203. [Google Scholar] [CrossRef]
- Boatto, G.; Cerri, R.; Pau, A.; Palomba, M.; Pintore, G.; Denti, M.G. Monitoring of benzylpenicillin in ovine milk by HPLC. J. Pharm. Biomed. Anal. 1998, 17, 733–738. [Google Scholar] [CrossRef]
- Gee, H.-E.; Ho, K.-B.; Toothill, J. Liquid chromatographic determination of benzylpenicillin and cloxacillin in animal tissues and its application to a study of the stability at –20 °C of spiked and incurred residues of benzylpenicillin in ovine liver. J. AOAC Int. 1996, 79, 640–644. [Google Scholar] [CrossRef]
- Longo, F.; Cozzani, R.; Santis, L.d.; Boselli, C.; Rosati, R.; Fagiolo, A.; Cinquina, A. Amoxicillin detection in milk using screening tests and liquid chromatography after administration to lactating sheep. Riv. Sci. Dell’alimentazione 2002, 31, 313–319. [Google Scholar]
- Chaleva, E.; Dincheva, E. Ampicillin tolerance and content in the mammary gland of lactating cows and sheep. Vet. Med. Nauk. 1977, 14, 73–78. [Google Scholar]
- Edwards, S. Penicillin levels in the milk following intramuscular injection. Vet. Rec. 1966, 78, 583–585. [Google Scholar] [CrossRef]
- Long, P.; Heavner, J.; Ziv, G.; Geleta, J.; Nepote, K. Depletion of antibiotics from the mammary gland of goats. J. Dairy Sci. 1984, 67, 707–712. [Google Scholar] [CrossRef]
- Norbrook Laboratories, Ltd. Freedom of Information Summary, Supplemental New Animal Drug Application, NADA 065-010. Norocillin (Penecillin G Procaine Injectable Suspension) Cattle, Sheep, Swine, and Horses; To Revise the Currently Approved Formulation to Include Lecithin as a Surfactant; FOI—Norocillin NADA 065-010; Norbrook Laboratories, Ltd.: Newry, UK, 2010; pp. 1–27. [Google Scholar]
- Rule, R.; Lacchini, R.; Mordujovich, P.; Antonini, A. Evaluation of cefepime kinetic variables and milk production volume in goats. Arq. Bras. Med. Vet. Zootec. 2004, 56, 116–118. [Google Scholar] [CrossRef]
- Badillo, E.; Escudero, E.; Hernandis, V.; Galecio, J.S.; Marín, P. Pharmacokinetics of cefonicid in lactating goats after intravenous, intramuscular and subcutaneous administration, and after a long-acting formulation for subcutaneous administration. J. Vet. Pharmacol. Ther. 2020, 43, 50–56. [Google Scholar] [CrossRef]
- Yadav, K.; Jayachandran, C.; Singh, M.; Jha, H.; Sinha, S. Kinetics of intravenously administered ceftriaxone in lactating goat. Indian J. Anim. Sci. 2013, 70, 163–165. [Google Scholar]
- Ismail, M. Pharmacokinetics, urinary and mammary excretion of ceftriaxone in lactating goats. J. Vet. Med. Ser. A 2005, 52, 354–358. [Google Scholar] [CrossRef]
- Ziv, G.; Nouws, J. Clinical pharmacology of cephacetrile in ruminants. Zent. Vet. Reihe B 1977, 24, 798–811. [Google Scholar] [CrossRef]
- El Badawy, S.; Amer, A.; Kamel, G.; Eldeib, K.; Constable, P. Comparative pharmacokinetics using a microbiological assay and high performance liquid chromatography following intravenous administration of cefquinome in lactating goats with and without experimentally induced Staphylococcus aureus mastitis. Small Rumin. Res. 2015, 133, 67–76. [Google Scholar] [CrossRef]
- El Badawy, S.A.; Amer, A.M.; Kamel, G.M.; Eldeib, K.M.; Constable, P.D. Pharmacokinetics and pharmacodynamics of intramammary cefquinome in lactating goats with and without experimentally induced Staphylococcus aureus mastitis. J. Vet. Pharmacol. Ther. 2019, 42, 452–460. [Google Scholar] [CrossRef]
- Soback, S.; Ziv, G.; Bor, A.; Shapira, M. Pharmacokinetics of cephalexin glycinate in lactating cows and ewes. Zent. Vet. Reihe A 1988, 35, 755–760. [Google Scholar]
- Wetzel, R.K.; Stayer, P.A.; Wildman, E.E.; Randy, H.A. Depletion of cephapirin in goat’s milk following intramammary infusion. J. Dairy Sci. 1986, 69, 245. [Google Scholar]
- Courtin, F.; Wetzlich, S.; Gustafson, C.; Craigmill, A. Pharmacokinetics and milk residues of ceftiofur and metabolites in dairy goats. In Proceedings of the European Association of Veterinary Pharmacology and Toxicology 6th Congress, Edinburgh, UK, 7–11 August 1994; pp. 81–82. [Google Scholar]
- El-Rabbat, N.A.; Abdel-Wadood, H.M.; Sayed, M.; Mousa, H.S. High-performance liquid chromatographic determination and pharmacokinetic study of cefepime in goat plasma and milk after pre-column derivatization with Hg (I). J. Sep. Sci. 2010, 33, 2599–2609. [Google Scholar] [CrossRef]
- Rule, R.; Villagra, S.; Barrena, P.; Lacchini, R.; Reynaldni, F.J. Pharmacokinetics of ceftazidime administered to lactating and non-lactating goats. J. S. Afr. Vet. Assoc. 2011, 82, 219–223. [Google Scholar] [CrossRef]
- European Medicines Agency Committee for Veterinary Medicinal Products. Ceftiofur (Extension to Ovine and Extrapolation to All Mammalian Species) Summary Report (4); European Medicines Agency Committee for Veterinary Medicinal Products: Amsterdam, The Netherlands, 2006; Volume 80785, pp. 1–3. [Google Scholar]
- Garrett, E.; Dirikolu, L.; Grover, G. Milk and serum concentration of ceftiofur following intramammary infusion in goats. J. Vet. Pharmacol. Ther. 2015, 38, 569–574. [Google Scholar] [CrossRef]
- Goudah, A.; Shin, H.; Shim, J.; El-Aty, A.A. Characterization of the relationship between serum and milk residue disposition of ceftriaxone in lactating ewes. J. Vet. Pharmacol. Ther. 2006, 29, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Rageh, A.H.; Abdel-Rahim, S.A.; Askal, H.F.; Saleh, G.A. Hydrophilic-interaction planar chromatography in ultra-sensitive determination of α-aminocephalosporin antibiotics. Application to analysis of cefalexin in goat milk samples using modified QuEChERS extraction technique. J. Pharm. Biomed. Anal. 2019, 166, 421–434. [Google Scholar] [CrossRef] [PubMed]
- Rule, R.; Cordiviola, C.; Vita, M.; Lacchini, R. Correlations between milk production and kinetic variables in milk of cephalothin administered to lactating goats. Vet. Med. 2004, 49, 370. [Google Scholar] [CrossRef]
- Rule, R.; Lacchini, R.; Román, A.G.; Antonini, A.; de Buschiazzo, P. Influence of feed type on the pharmacokinetics of cephalothin administered to lactating goats. Arch. Zootec. 2007, 56, 807–815. [Google Scholar]
- El-Sayed, M.; Atef, M.; El-Komy, A. Disposition kinetics of cephradine in normal and Escherichia coli infected goats. Dtsch. Tierarztl. Wochenschr. 1994, 101, 56–60. [Google Scholar]
- Singh, C.S.; Singh, S.D.; Singh, M.K.; Jayachandran, C. Disposition kinetics and distribution of ciprofloxacin in biological fluids of goats after intravenous administration. Indian J. Anim. Sci. 2001, 71, 635–637. [Google Scholar]
- El-Banna, H.; El-Sooud, K.A. Disposition kinetics of ciprofloxacin in lactating goats. Dtsch. Tierarztl. Wochenschr. 1998, 105, 35–38. [Google Scholar]
- Escudero, E.; Cárceles, C.; Fernandez-Varon, E.; Marin, P.; Benchaoui, H. Pharmacokinetics of danofloxacin 18% in lactating sheep and goats. J. Vet. Pharmacol. Ther. 2007, 30, 572–577. [Google Scholar] [CrossRef]
- Escudero, E.; Marín, P.; Cárceles, C.M.; Ramírez, M.J.; Fernández-Varón, E. Pharmacokinetic and milk penetration of a difloxacin long-acting poloxamer gel formulation with carboxy-methylcellulose in lactating goats. Vet. J. 2011, 188, 92–95. [Google Scholar] [CrossRef]
- El-Sooud, K.A. Influence of albendazole on the disposition kinetics and milk antimicrobial equivalent activity of enrofloxacin in lactating goats. Pharmacol. Res. 2003, 48, 389–395. [Google Scholar] [CrossRef]
- Marin, P.; Escudero, E.; Fernandez-Varon, E.; Espuny, A.; Titos, J.; Hernandis, V.; Carceles, C. Pharmacokinetics and milk penetration of an enrofloxacin long-acting poloxamer 407 gel formulation in lactating goats. J. Vet. Pharamcol. Ther. 2009, 32, 195–196. [Google Scholar]
- Narayan, J.P.; Kumar, N.; Jha, H.; Jayachandran, C. Effect of probenecid on kinetics of enrofloxacin in lactating goats after subcutaneous administration. Indian J. Exp. Biol. 2009, 47, 53–56. [Google Scholar]
- Haritova, A.; Lashev, L.; Pashov, D. Pharmacokinetics of enrofloxacin in lactating sheep. Res. Vet. Sci. 2003, 74, 241–245. [Google Scholar] [CrossRef]
- Marín, P.; Cárceles, C.M.; Escudero, E.; Fernández-Varón, E. Pharmacokinetics and milk penetration of ibafloxacin after intravenous administration to lactating goats. Can. J. Vet. Res. 2007, 71, 74. [Google Scholar]
- Goudah, A.; Abo-El-Sooud, K. Pharmacokinetics, urinary excretion and milk penetration of levofloxacin in lactating goats. J. Vet. Pharmacol. Ther. 2009, 32, 101–104. [Google Scholar] [CrossRef]
- Lorenzutti, A.; Litterio, N.; Himelfarb, M.; Zarazaga, M.D.P.; Andrés, M.S.; De Lucas, J. Pharmacokinetics, milk penetration and PK/PD analysis by Monte Carlo simulation of marbofloxacin, after intravenous and intramuscular administration to lactating goats. J. Vet. Pharmacol. Ther. 2017, 40, 629–640. [Google Scholar] [CrossRef]
- Shem-Tov, M.; Ziv, G.; Glickman, A.; Saran, A. Pharmacokinetics and penetration of marbofloxacin from blood into the milk of cows and ewes. J. Vet. Med. Ser. A 1997, 44, 511–519. [Google Scholar] [CrossRef]
- Fernández-Varón, E.; Villamayor, L.; Escudero, E.; Espuny, A.; Cárceles, C.M. Pharmacokinetics and milk penetration of moxifloxacin after intravenous and subcutaneous administration to lactating goats. Vet. J. 2006, 172, 302–307. [Google Scholar] [CrossRef]
- Goudah, A.; Cho, H.J.; Shin, H.C.; Shim, J.H.; Regmi, N.L.; Shimoda, M.; Abd El-Aty, A.M. Pharmacokinetics and milk distribution characteristics of orbifloxacin following intravenous and intramuscular injection in lactating ewes. J. Vet. Pharmacol. Ther. 2009, 32, 338–344. [Google Scholar] [CrossRef]
- El-Aty, A.M.A.; Goudah, A. Some pharmacokinetic parameters of pefloxacin in lactating goats. Vet. Res. Commun. 2002, 26, 553–561. [Google Scholar] [CrossRef]
- Real, R.; Egido, E.; Pérez, M.; Gonzalez-Lobato, L.; Barrera, B.; Prieto, J.; Alvarez, A.; Merino, G. Involvement of breast cancer resistance protein (BCRP/ABCG2) in the secretion of danofloxacin into milk: Interaction with ivermectin. J. Vet. Pharmacol. Ther. 2011, 34, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Perez, M.; Otero, J.A.; Barrera, B.; Prieto, J.G.; Merino, G.; Alvarez, A.I. Inhibition of ABCG2/BCRP transporter by soy isoflavones genistein and daidzein: Effect on plasma and milk levels of danofloxacin in sheep. Vet. J. 2013, 196, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Pulido, M.M.; Molina, A.J.; Merino, G.; Mendoza, G.; Prieto, J.G.; Alvarez, A.I. Interaction of enrofloxacin with breast cancer resistance protein (BCRP/ABCG2): Influence of flavonoids and role in milk secretion in sheep. J. Vet. Pharmacol. Ther. 2006, 29, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Shem-Tov, M.; Ziv, G.; Glickman, A.; Saran, A. Pharmacokinetics and penetration of danofloxacin from the blood into the milk of ewes. Vet. Res. 1997, 28, 571–579. [Google Scholar]
- Barrera, B.; González-Lobato, L.; Otero, J.A.; Real, R.; Prieto, J.G.; Álvarez, A.I.; Merino, G. Effects of triclabendazole on secretion of danofloxacin and moxidectin into the milk of sheep: Role of triclabendazole metabolites as inhibitors of the ruminant ABCG2 transporter. Vet. J. 2013, 198, 429–436. [Google Scholar] [CrossRef]
- Otero, J.A.; García-Mateos, D.; Alvarez-Fernández, I.; García-Villalba, R.; Espín, J.C.; Álvarez, A.I.; Merino, G. Flaxseed-enriched diets change milk concentration of the antimicrobial danofloxacin in sheep. BMC Vet. Res. 2018, 14, 14. [Google Scholar] [CrossRef] [Green Version]
- Marín, P.; Escudero, E.; Fernández-Varón, E.; Ramírez, M.; Cárceles, C. Pharmacokinetics and milk penetration of difloxacin after a long-acting formulation for subcutaneous administration to lactating goats. J. Dairy Sci. 2010, 93, 3056–3064. [Google Scholar] [CrossRef]
- Fernandez-Varon, E.; Escudero, E.; Marin, P.; Titos, J.; Espuny, A.; Carceles, C. Pharmacokinetics and milk penetration of enrofloxacin and its metabolite ciprofloxacin after subcutaneous administration to lactating goats. J. Vet. Pharmacol. Ther. 2009, 32, 196–197. [Google Scholar]
- European Medicines Agency Committee for Veterinary Medicinal Products. Enrofloxacin (Extension to Sheep, Rabbits and Lactating Cows) Summary Report (3); EMEA/MRL/389/98-Final; European Medicines Agency Committee for Veterinary Medicinal Products: Amsterdam, The Netherlands, 1998; Volume 389, pp. 1–5. [Google Scholar]
- Cárceles, C.M.; Villamayor, L.; Escudero, E.; Marín, P.; Fernández-Varón, E. Pharmacokinetics and milk penetration of moxifloxacin after intramuscular administration to lactating goats. Vet. J. 2007, 173, 452–455. [Google Scholar] [CrossRef]
- Soback, S.; Gips, M.; Bialer, M.; Bor, A. Effect of lactation on single-dose pharmacokinetics of norfloxacin nicotinate in ewes. Antimicrob. Agents Chemother. 1994, 38, 2336–2339. [Google Scholar] [CrossRef]
- Marín, P.; Escudero, E.; Fernández-Varón, E.; Cárceles, C. Pharmacokinetics and milk penetration of orbifloxacin after intravenous, subcutaneous, and intramuscular administration to lactating goats. J. Dairy Sci. 2007, 90, 4219–4225. [Google Scholar] [CrossRef]
- Delmas, J.; Chapel, A.; Gaudin, V.; Sanders, P. Pharmacokinetics of flumequine in sheep after intravenous and intramuscular administration: Bioavailability and tissue residue studies. J. Vet. Pharmacol. Ther. 1997, 20, 249–257. [Google Scholar] [CrossRef]
- Francis, P.G.; Wells, R.J. Flumequine. Residues Some Vet. Drugs Anim. Foods 1998, 41, 59–70. [Google Scholar]
- European Medicines Agency Committee for Veterinary Medicinal Products. Erythromycin Summary Report (2); EMEA/MRL/720/99-Final; European Medicines Agency Committee for Veterinary Medicinal Products: Amsterdam, The Netherlands, 2000; Volume 720, pp. 1–8. [Google Scholar]
- Goudah, A.; Sher Shah, S.; Shin, H.; Shim, J.; Abd El-Aty, A. Pharmacokinetics and mammary residual depletion of erythromycin in healthy lactating ewes. J. Vet. Med. Ser. A 2007, 54, 607–611. [Google Scholar] [CrossRef]
- Ramadan, A. Pharmacokinetics of tilmicosin in serum and milk of goats. Res. Vet. Sci. 1997, 62, 48–50. [Google Scholar] [CrossRef]
- MacNeil, J.D. Tilmicosin. Residues Some Vet. Drugs Anim. Foods 1997, 41, 106–118. [Google Scholar]
- Xu, S.; Arnold, D. Tilmicosin: Addendum to tho monographs prepared by the 47th meeting of the Committee and published in the FAO Food and Nutrition paper 41/9. Residues Some Vet. Drugs Anim. Foods 2008, 41, 1–37. [Google Scholar]
- Grismer, B.; Rowe, J.D.; Carlson, J.; Wetzlich, S.; Tell, L.A. Pharmacokinetics of tulathromycin in plasma and milk samples after a single subcutaneous injection in lactating goats (C apra hircus). J. Vet. Pharmacol. Ther. 2014, 37, 205–208. [Google Scholar] [CrossRef]
- Amer, A.; Constable, P.; Goudah, A.; El Badawy, S. Pharmacokinetics of tulathromycin in lactating goats. Small Rumin. Res. 2012, 108, 137–143. [Google Scholar] [CrossRef]
- Lin, Z.; Cuneo, M.; Rowe, J.D.; Li, M.; Tell, L.A.; Allison, S.; Carlson, J.; Riviere, J.E.; Gehring, R. Estimation of tulathromycin depletion in plasma and milk after subcutaneous injection in lactating goats using a nonlinear mixed-effects pharmacokinetic modeling approach. BMC Vet. Res. 2016, 12, 258. [Google Scholar] [CrossRef] [Green Version]
- Atef, M.; Youssef, S.; Atta, A.; El-Maaz, A. Disposition of tylosin in goats. Dtsch. Tierarztl. Wochenschr. 1991, 98, 451–453. [Google Scholar] [CrossRef]
- Ziv, G.; Sulman, F.G. Serum and milk concentrations of spectinomycin and tylosin in cows and ewes. Am. J. Vet. Res. 1973, 34, 329–333. [Google Scholar]
- Nagy, J.; Popelka, P.; Sokol, J.; Turek, P.; Neuschl, J. The excretion of tylosin residues in ewes milk after its experimental administration. Folia Vet. 2001, 45, 196–198. [Google Scholar]
- Ambros, L.; Montoya, L.; Kreil, V.; Waxman, S.; Albarellos, G.; Rebuelto, M.; Hallu, R.; Andres, M.S. Pharmacokinetics of erythromycin in nonlactating and lactating goats after intravenous and intramuscular administration. J. Vet. Pharmacol. Ther. 2007, 30, 80–85. [Google Scholar] [CrossRef]
- Ziv, G. Concentrations and residues of antibiotics in the milk of goats after parenteral and intramammary administration. In Proceedings of the Symposium Internacional de Ordeno Mecanico de Pequenos Rumiantes, Valladolid, Spain; 1984; pp. 513–528. [Google Scholar]
- Romanet, J.; Smith, G.W.; Leavens, T.L.; Baynes, R.E.; Wetzlich, S.E.; Riviere, J.E.; Tell, L.A. Pharmacokinetics and tissue elimination of tulathromycin following subcutaneous administration in meat goats. Am. J. Vet. Res. 2012, 73, 1634–1640. [Google Scholar] [CrossRef]
- Clothier, K.A.; Leavens, T.; Griffith, R.W.; Wetzlich, S.E.; Baynes, R.E.; Riviere, J.E.; Tell, L.A. Tulathromycin assay validation and tissue residues after single and multiple subcutaneous injections in domestic goats (Capra aegagrus hircus). J. Vet. Pharmacol. Ther. 2012, 35, 113–120. [Google Scholar] [CrossRef]
- Kellermann, M.; Huang, R.A.; Forbes, A.B.; Rehbein, S. Gamithromycin plasma and skin pharmacokinetics in sheep. Res. Vet. Sci. 2014, 97, 199–203. [Google Scholar] [CrossRef]
- European Medicines Agency Committee for Veterinary Medicinal Products. European Public MRL Assessment Report (EPMAR) Gamithromycin (All Ruminants Except Bovine Species.)12 December 2016; EMA/CVMP/454092/2016; European Medicines Agency Committee for Veterinary Medicinal Products EPMAR: Amsterdam, The Netherlands, 2016; Volume 454092, pp. 1–11. [Google Scholar]
- Atef, M.; El-Sooud, K.A.; Nahed, E.; Tawfik, M. Elimination of tilmicosin in lactating ewes. Dtsch. Tierarztl. Wochenschr. 1999, 106, 291–294. [Google Scholar]
- Parker, R.; Patel, R.; Mclaren, I.; Francis, P. Residues of tilmicosin in milk of sheep after subcutaneous administration. In Proceedings of the European Association for Veterinary Pharmacology and Toxicology, Edinburgh, UK, 7–11 August 1994; pp. 226–227. [Google Scholar]
- Elanco Animal Health. Freedom of Information Summary; Micotil 300 Injection (tilmicosin phosphate); Supplement to NADA 140-929; Date of Approval: 4 September 2002; FOI—Micotil NADA 140-929; Elanco Animal Health: Greenfield, IN, USA, 2002; pp. 1–14. [Google Scholar]
- European Medicines Agency Committee for Veterinary Medicinal Products. European Public MRL Assessment Report (EPMAR) Tulathromycin (Ovine and Caprine Species) 23 February 2015; EMA/CVMP/131462/2014; European Medicines Agency Committee for Veterinary Medicinal Products EPMAR: Amsterdam, The Netherlands, 2015; Volume 131462, pp. 1–11. [Google Scholar]
- Tunnicliff, E.; Swingle, K. Sulfonamide concentrations in milk and plasma from normal and mastitic ewes treated with sulfamethazine. Am. J. Vet. Res. 1965, 26, 920–927. [Google Scholar]
- Rasmussen, F. Mammary excretion of sulphonamides. Acta Pharmacol. Toxicol. 1958, 15, 139–148. [Google Scholar] [CrossRef]
- Akogwu, E.; Saganuwan, S.; Onyeyili, P. Effects of piroxicam on tissue distribution of sulfadimidine in west African dwarf male and female goats. Hum. Exp. Toxicol. 2018, 37, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Bevill, R.; Sharma, R.; Meachum, S.; Wozniak, S.; Bourne, D.; Dittert, L. Disposition of sulfonamides in food-producing animals: Concentrations of sulfamethazine and its metabolites in plasma, urine, and tissues of lambs following intravenous administration. Am. J. Vet. Res. 1977, 38, 973–977. [Google Scholar] [PubMed]
- Jha, H.; Banerjee, N. A note on distribution of sulphadimethoxine in blood, milk and urine of goats. Indian J. Anim. Sci. 1977, 47, 496–497. [Google Scholar]
- Yndestad, M.; Underdal, B. Residues of Sulfadimidine/Sulfanilamide and Sulfamethoxypyridazine in Sheep Tissue. Acta Vet. Scand. 1977, 18, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Bevill, R.F.; Koritz, G.D.; Dittert, L.W.; Bobrne, D.W. Disposition of sulfonamides in food-producing animals V: Disposition of sulfathiazole in tissue, urine, and plasma of sheep following intravenous administration. J. Pharm. Sci. 1977, 66, 1297–1300. [Google Scholar] [CrossRef]
- Righter, H.F.; Worthington, J.M.; Mercer, H.D. Tissue residue depletion of sulfamerazine in sheep. J. Agric. Food Chem. 1972, 20, 876–878. [Google Scholar] [CrossRef]
- Atef, M. Half-life, volume of distribution and acetylation of sulphamerazine in sheep. Zent. Vet. Reihe A 1978, 25, 585–591. [Google Scholar] [CrossRef]
- Bulgin, M.; Lane, V.M.; Archer, T.; Baggot, J.; Craigmill, A. Pharmacokinetics, safety and tissue residues of sustained-release sulfamethazine in sheep. J. Vet. Pharmacol. Ther. 1991, 14, 36–45. [Google Scholar] [CrossRef]
- Bevill, R.F. Application of Pharamcokinetics to the Study of Sulfonamide Behavior in Cattle, Sheep, and Swine. In Proceedings of the Symposium of Veterinary Pharmacology and Therapeutics, Baton Rouge, LA, USA, 13–15 March 1978; pp. 75–101. [Google Scholar]
- Paulson, G.; Struble, C.; Mitchell, A. Comparative metabolism of sulfamethazine [4-amino-N-(4,6-dimethyl-2-pyrimidinyl) benzenesulfonamide] in the rat, chicken, pig and sheep. In Mode of Action, Metabolism and Toxicology; Elsevier: Amsterdam, The Netherlands, 1983; pp. 375–380. [Google Scholar]
- Hashem, M.; Tayeb, F.; El-Mekkawi, T. The level of some sulphonamide preparations in tissues and blood of cocks and sheep. J. Egypt. Vet. Med. Assoc. 1980, 40, 5–11. [Google Scholar]
- Attaie, R.; Bsharat, M.; Mora-Gutierrez, A.; Woldesenbet, S. Short communication: Determination of withdrawal time for oxytetracycline in different types of goats for milk consumption. J. Dairy Sci. 2015, 98, 4370–4376. [Google Scholar] [CrossRef]
- Payne, M.; Babish, J.; Bulgin, M.; Lane, M.; Wetzlich, S.; Craigmill, A. Serum pharmacokinetics and tissue and milk residues of oxytetracycline in goats following a single intramuscular injection of a long-acting preparation and milk residues following a single subcutaneous injection. J. Vet. Pharmacol. Ther. 2002, 25, 25–32. [Google Scholar] [CrossRef]
- Fletouris, D.; Papapanagiotou, E. Tissue residue depletion of oxytetracycline after repeated intramuscular administration of Oxysentin 100 in sheep. J. Vet. Pharmacol. Ther. 2009, 32, 56–61. [Google Scholar] [CrossRef]
- Anifantakis, E.M. Excretion rates of antibiotics in milk of sheep and their effect on yogurt production. J. Dairy Sci. 1982, 65, 426–429. [Google Scholar] [CrossRef]
- Wells, R.J. Chlortetracycline. Residues Some Vet. Drugs Anim. Foods 1996, 41, 31–66. [Google Scholar]
- Jha, V.; Jayachandran, C.; Singh, M.; Singh, S. Pharmacokinetic data on doxycycline and its distribution in different biological fluids in female goats. Vet. Res. Commun. 1989, 13, 11–16. [Google Scholar] [CrossRef]
- Jayachandran, C.; Singh, M.; Singh, S.; Jha, H. Pharmacokinetics and distribution of minocydine in different biological fluids of goats after intravenous administration. Indian J. Anim. Sci. 2012, 69, 304–306. [Google Scholar]
- Immelman, A.; Ziv, G. Serum and milk concentrations of oxytetracycline after the administration of a long-acting formulation to sheep. J. S. Afr. Vet. Assoc. 1982, 53, 199–200. [Google Scholar]
- Arndt, T.; Robinson, D.; Holland, R.; Wetzlich, S.; Craigmill, A. Oxytetracycline residues in sheep following im dosing with a long-acting formulation. J. Vet. Pharmacol. Ther. 1997, 20, 314–315. [Google Scholar]
- Boatto, G.; Pau, A.; Palomba, M.; Arenare, L.; Cerri, R. Monitoring of oxytetracycline in ovine milk by high-performance liquid chromatography. J. Pharm. Biomed. Anal. 1999, 20, 321–326. [Google Scholar] [CrossRef]
- Craigmill, A.; Holland, R.; Robinson, D.; Wetzlich, S.; Arndt, T. Serum pharmacokinetics of oxytetracycline in sheep and calves and tissue residues in sheep following a single intramuscular injection of a long-acting preparation. J. Vet. Pharmacol. Ther. 2000, 23, 345–352. [Google Scholar] [CrossRef]
- Fletouris, D.J.; Papapanagiotou, E.P. A new liquid chromatographic method for routine determination of oxytetracycline marker residue in the edible tissues of farm animals. Anal. Bioanal. Chem. 2008, 391, 1189–1198. [Google Scholar] [CrossRef] [PubMed]
- Fletouris, D.J.; Papapanagiotou, E.P.; Nakos, D.S. Liquid chromatographic determination and depletion profile of oxytetracycline in milk after repeated intramuscular administration in sheep. J. Chromatogr. B 2008, 876, 148–152. [Google Scholar] [CrossRef] [PubMed]
- Cinquina, A.L.; Longo, F.; Barchi, D.; Fagiolo, A.; Rosati, R.; Cozzani, R. Comparative pharmacokinetics of oxytetracycline in goat and sheep milk. Residues of Veterinary Drugs in Food. In Proceedings of the European Residue Conference IV, Veldhoven, The Netherlands, 8–10 May 2000; pp. 285–290. [Google Scholar]
- Hassan, S.A.A.; Shaddad, S.A.I.; El-Tayeb, L.B.; Omer, M.A.; Al-Nazawi, M.H.; Homeida, A.M. Detection of long-acting oxytetracycline residue levels in tissue of desert sheep following intramuscular injection. Int. J. Pharmacol. 2007, 3, 299–301. [Google Scholar]
- Reja, A.; Gonzalez, R.; Serrano, J.M.; Santiago, D.; Guimera, M.E.; Cano, M. Oxytetracycline and tetracycline residues in goat milk. In Proceedings of the European Associations of Veterinary Pharmacology and Toxicology 6th Congress, Edinburgh, UK, 7–11 August 1994. [Google Scholar]
- Reja Sanchez, A.; Gonzalez Pedrajas, R.; Serrano Caballero, J.M.; Santiago Laguna, D. Experimental determination of occurrence of tetracycline and oxytetracycline residues in goat milk. Blood/milk transference rates. Rev. Toxicol. 1995, 12, 29–34. [Google Scholar]
- Cinquina, A.L.; Gianetti, L.; Barchi, D.; Lanzi, S.; Longo, F.; Coresi, A.; Fagiolo, A.; Cozzani, R. Oxytetracycline residues in goat milk. Obiettivi Doc. Vet. 2002, 23, 37–40. [Google Scholar]
- Rule, R.; Moreno, L.; Serrano, J.M.; Garcia Roman, A.; Moyano, R.; Garcia, J. Pharmacokinetics and residues in milk of oxytetracyclines administered parenterally to dairy goats. Aust. Vet. J. 2001, 79, 492–496. [Google Scholar] [CrossRef]
Analyte | Species; Breed; Age; # of Animals per Time Point | Tolerance/ MRL | Analytical Method | LOD | LOQ | Route of Admin-istration | Dose & Active Ingredient | # of Doses | Matrix | Last Sampling Time Point (Post-Last Treatment) When Residues WERE Detected | Sampling Time Point When NO Residues Were Detected (Post-Last Treatment) * | Health Status | Additional Information | Source/Year |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Amikacin | Goat; Baladi; 2–3 years; n = 5 | US Tol: Not established. EMA MRL: Not established. | Bioassay | NS | 0.2 ppm | IV | 7.5 mg/kg Amikacin sulfate | 1 | Milk | 4 h (0.22 ppm) | 6 h | Healthy | Mid- lactation; Milked 2× | [19] 1999 |
IM | 7.5 mg/kg Amikacin sulfate | 1 | Milk | 6 h (0.21 ppm) | 8 h | |||||||||
Amikacin | Goat; NS; 1.5–2 years; n = 6 | US Tol: Not established. EMA MRL: Not established. | Bioassay | 0.1 ppm | NS | IM | 10 mg/kg Amikacin sulfate | 1 | Milk | 5 h (NS) | 6 h | Healthy | Lactating | [20] 2001 |
Amikacin | Sheep; crossbred; 2–4 years; n = 6 | US Tol: Not established. EMA MRL: Not established | Bioassay | NS | 0.19 ppm | IV | 7.5 mg/kg Amikacin sulfate | 1 | Milk | 9.5 h (0.85 ppm §) | >1 day | Healthy | Lactating; Milked 2×/day | [21] 2004 |
IM | 7.5 mg/kg Amikacin sulfate | 1 | Milk | 9.5 h (0.21 ppm §) | >1 day | |||||||||
Apramycin | Goat; Saanen; adult; n = 10 | US Tol: Not established. EMA MRL: Not established. | Bioassay | NS | 0.1 ppm | IV | 20 mg/kg Apramycin sulfate | 1 | Milk | 10 h (0.12 ppm §) | >10 h | Healthy | Early Lactation | [22] 1995 |
Apramycin | Sheep; Awassi; adult; n = 6 | US Tol: Not established. EMA MRL: Not established. | Bioassay | NS | 0.1 ppm | IM | 10 mg/kg Apramycin sulfate | 1 | Milk | 720 min (0.15 ppm §) | 1440 min | Diseased-Mastitis | Mid-lactation | [22] 1995 |
Apramycin | Sheep; Awassi; adult; n = 10 | US Tol: Not established. EMA MRL: Not established. | Bioassay | NS | 0.1 ppm | IV | 20 mg/kg Apramycin sulfate | 1 | Milk | 6 h (0.11 ppm §) | 8 h | Healthy | Mid-lactation | [22] 1995 |
Apramycin | Sheep; NS; Lambs; n = 12 study; n = 3/time pt | US Tol: Not established. EMA MRL: Not established. | Bioassay | 500 ppb | NS | PO | 10 mg/kg Apramycin daily | 3 | Liver | ND@1 day | 1 day | Healthy | NS | [10] 1999 |
Kidney | 21 days (1730 ppb) | 35 days | ||||||||||||
Muscle | ND@1 day | 1 day | ||||||||||||
Fat | 21 days (960 ppb) | 28 days | ||||||||||||
NS; Lambs; n = 20 study; n = 4/time pt | HPLC | Liver: 368 ppb | Liver: 2500 ppb | PO | 10 mg/kg Apramycin daily | 5 | Liver | 30 days (700 ppb) | >30 days | |||||
Kidney: 394 ppb | Kidney: 2500 ppb | Kidney | 30 days (1700 ppb) | >30 days | ||||||||||
Muscle: 124 ppb | Muscle: 500 ppb | Muscle | ND @ 6 days | 6 days | ||||||||||
Fat: 42 ppb | Fat: 500 ppb | Fat | ND @ 6 days | 6 days | ||||||||||
Apramycin | Goat; NS; Adult; NS | US Tol: Not established. EMA MRL: Not established. | NS | NS | NS | IM | 20 mg/kg Apramycin | 1 | Milk | 10 h (NS) | 12 h | NS | NS | [23] 2000 |
IV | 20 mg/kg Apramycin | 1 | Milk | 12 h (NS) | >12 h | |||||||||
Dihydro- strepto-mycin | Goat; NS; Adults; n = 220 | US Tol: Not established. EMA MRL: Not established. | Bioassay | 0.13 ppm | 0.15 ppm | IMM | 300,000 IU Procaine benzyl-penicillin; 100 mg dihydro-strepto-mycin; 100 mg nafcillin | 1 | Milk | 6 days post kidding (≥0.2 ppm) | 7 days post kidding | Healthy | Dry off period (mean 61.0 ± 4.3 days SD (range 23–156 days); 1 tube per gland before drying off. Sample collected after kidding | [27] 1995 |
Dihydro-strepto-mycin | Sheep; Lacaune; adult; n = 8 | US Tol: Not established. EMA established MRL: 200 ppb (milk). | Bioassay | 0.02 ppm | NS | IMM | 300,000 IU Procaine benzyl-penicillin; 100 mg dihydro-streptomycin; 100 mg nafcillin | 1 | Milk | 3 days (0.02 ppm §) | 4 days | Healthy | Dry off period (mean 112 days (range 85–223 days); 1 tube per gland before drying off. Sample collected after lambing | [28] 1995 |
Dihydro-strepto-mycin | Sheep; Awassi; adult; n = 3 | US Tol: Not established. EMA established MRL: 200 ppb (milk). | Bioassay | NS | NS | IV | 20 mg/kg Dihydro-streptomycin (radio-labeled) then 10 mg/kg for 4 doses 45 min interval | 5 | Milk | 24 h (0.20 ppm §) | 36 h | Healthy | Lactating; Milked 2×/day | [24] 1973 |
Radio-activity | NS | NS | IV | 5 | Milk | 8 h (1.83 ppm §) | 10 h | |||||||
Dihydro-strepto-mycin | Sheep; NS; NS; n = 22 study n = 4/time pt | US Tol: Not established. EMA established MRL: 500 ppb (liver, muscle, fat); 1000 ppb (kidney). | Bioassay | 0.5 ppm | NS | IM | 10 mg/kg Dihydro-streptomycin combined w/ 10,000 IU procaine penicillin-G daily | 5 | Kidney | 28 days (0.8 ppm) | >28 days | Healthy | NS | [11] 1995 |
Muscle | 14 days (0.07 ppm) | 21 days | ||||||||||||
Inj. Site | 28 days (0.2 ppm) | >28 days | ||||||||||||
Dihydro-strepto-mycin | Sheep; Awassi; Adult; n = 2 | US Tol: Not established. EMA established MRL: 200 ppb (milk). | Bioassay | NS | NS | IM | 20 mg/kg Dihydro-streptomycin (radio-labeled) | 1 | Milk | 12 h (0.22 ppm §) | 24 h | Healthy | Lactating | [29] 1974 |
Milk | 48 h (0.11 ppm §) | 56 h | Disease-mastitis | |||||||||||
Radio-activity | NS | NS | IM | Milk | 48 h (0.75 ppm §) | >48 h | Healthy | |||||||
Milk | 12 h (0.42 ppm §) | 24 h | Disease-mastitis | |||||||||||
Dihydro-strepto-mycin | Sheep; NS; NS; n = 12 study; n = 4/ time pt NS; Adult; n = 8 | US Tol: Not established. EMA established MRL: 500 ppb (liver, muscle, fat); 1000 ppb (kidney); 200 ppb (milk). | NS | NS | NS | IM | 10 mg/kg Dihydro-streptomycin combined with benzyl-penicillin daily | 3 | Liver | <400 ppb @ 14 days | 14 days | Healthy | NS | [25] 2005 |
Kidney | <400 ppb @ 14 days | 14 days | ||||||||||||
Muscle | <400 ppb @ 14 days | 14 days | ||||||||||||
Fat | <400 ppb @ 14 days | 14 days | ||||||||||||
Inj. Site | 18 days (0.58 ppm) | 28 days | ||||||||||||
HPLC | NS | 50 ppb | IM | 10 mg/kg Dihydro-streptomycin sulfate combined with 10 mg/kg streptomycin daily | 3 | Milk | 48 h (0.06 ppm) | 60 h | Healthy | Lactating | ||||
Dihydro-strepto-mycin | Sheep; Suffolk & Suffolk/Cheviot; adult; n = 8 | US Tol: Not established. EMA established MRL: 200 ppb (milk). | HPLC | 0.02 ppm | 0.05 ppm | IM | 10 mg/kg Dihydro-streptomycin combined with 10 mg/kg streptomycin daily | 3 | Milk | 48 h (0.06 ppm) | 60 h | Healthy | Lactating; Milked 2×/day | [26] 2002 |
Dihydro-strepto-mycin | Sheep; NS; NS; n = 12 study; n = 4/time pt | US Tol: Not established. EMA established MRL: 500 ppb (liver, muscle, fat); 1000 ppb (kidney). | NS | NS | 400 ppb | IM | 10 mg/kg Dihydro-streptomycin combined w/ benzyl-penicillin daily | 3 | Liver | <LOQ @ 14 days | 14 days | Healthy | NS | [30] 2000 |
Kidney | <LOQ @ 14 days | 14 days | ||||||||||||
Muscle | <LOQ @ 14 days | 14 days | ||||||||||||
Fat | <LOQ @ 14 days | 14 days | ||||||||||||
Inj. Site | 18 days (0.584 ppm) | 28 days | ||||||||||||
Dihydro-strepto-mycin | Sheep; NS; NS; n = 12 study; n = 4/time pt | US Tol: Not established. EMA established MRL: 500 ppb (liver, muscle, fat); 1000 ppb (kidney). | HPLC | NS | 400 ppb | IM | 10 mg/kg Dihydro-streptomycin combined w/ procaine penicillin daily | 3 | Liver | <LOQ @ 14 days | 14 days | Healthy | NS | [31] 1998 |
Kidney | <LOQ @ 14 days | 14 days | ||||||||||||
Muscle | <LOQ @ 14 days | 14 days | ||||||||||||
Fat | <LOQ @ 14 days | 14 days | ||||||||||||
Inj. Site | 18 days (0.584 ppm) | 28 days | ||||||||||||
Gentamicin | Sheep; mixed breed; adult; n = 7 | US Tol: Not established. EMA established MRL in all mammalian food producing species: 750 ppb (kidney). | Bioassay | NS | NS | IV | 4 mg/kg Gentamicin | 1 | Kidney *biopsy | 28 days (9.9 ppm) | 35 days | Healthy | NS | [32] 1985 |
Gentamicin | Sheep; Suffolk; adult; n = 9 study; n = 3/time pt | US Tol: Not established. EMA established MRL in all mammalian food producing species: 750 ppb (kidney); 50 ppb (muscle). | Immuno-assay | 0.01 ppm | NS | IM | 3 mg/kg Gentamicin sulfate at 8 h intervals | 2 | Kidney | 15 days (20.0 ppm §) | >15 days | Healthy | NS | [12] 1985 |
Muscle | 15 days (0.21 ppm §) | >15 days | ||||||||||||
Heart | 15 days (0.64 ppm §) | >15 days | ||||||||||||
Gentamicin | Sheep; Suffolk; adult; n = 12 study; n = 3/time pt | US Tol: Not established. EMA Established MRL in all mammalian food producing species: 200 ppb (liver); 750 ppb (kidney); 50 ppb (muscle, fat). | Immuno-assay | 0.01 ppm | NS | IM | 2 mg/kg Gentamicin sulfate | 1 | Liver | 12 days (0.31 ppt) | >12 days | Healthy | NS | [13] 1986 |
Kidney | 12 days (2.74 ppt) | >12 days | ||||||||||||
Muscle | 12 days (0.2 ppt) | >12 days | ||||||||||||
Inj. Site | 12 days (0.15 ppt) | >12 days | ||||||||||||
6 mg/kg Gentamicin sulfate | 1 | Liver | 12 days (1.5 ppt) | >12 days | ||||||||||
Kidney | 12 days (5.15 ppt) | >12 days | ||||||||||||
Muscle | 12 days (0.002 ppt) | >12 days | ||||||||||||
Inj. Site | 12 days (0.02 ppt) | >12 days | ||||||||||||
18 mg/kg Gentamicin sulfate | 1 | Liver | 12 days (4.0 ppt) | >12 days | ||||||||||
Kidney | 12 days (9.23 ppt) | >12 days | ||||||||||||
Muscle | 12 days (0.14 ppt) | >12 days | ||||||||||||
Inj. Site | 12 days (0.53 ppt) | >12 days | ||||||||||||
2 mg/kg Gentamicin sulfate at 8 h intervals | 9 | Liver | 12 days (4.02 ppt) | >12 days | ||||||||||
Kidney | 12 days (9.74 ppt) | >12 days | ||||||||||||
Muscle | 12 days (0.04 ppt) | >12 days | ||||||||||||
Inj. Site | 12 days (2.49 ppt) | >12 days | ||||||||||||
6 mg/kg Gentamicin sulfate daily | 3 | Liver | 12 days (3.12 ppt) | >12 days | ||||||||||
Kidney | 12 days (10.0 ppt) | >12 days | ||||||||||||
Muscle | 12 days (0.14 ppt) | >12 days | ||||||||||||
Inj. Site | 12 days (5.03 ppt) | >12 days | ||||||||||||
Gentamicin | Sheep; western range; adult; n = 4 | US Tol: Not established. EMA established MRL in all mammalian food producing species: 750 ppb (kidney). | Immuno-assay | 0.04 ppm | NS | IM | 3 mg/kg Gentamicin sulfate at 12 h intervals | 20 | Kidney (biopsy) | 77 days (9.71 ppm) | >77 days | NS | NS | [14] 1988 |
Kanamycin | Sheep; Bergamo; adult; n = 12 study; n = 3/time pt | US Tol: Not established. EMA established MRL: 600 ppb (liver); 2500 ppb (kidney); 100 ppb (muscle). | Bioassay | NS | NS | IM | 20 mg/kg Kanamycin | 1 | Liver | 3 days (2.2 ppm) | 6 days | NS | NS | [33] 1991 |
Kidney | 10 days (8.31 ppm) | 14 days | ||||||||||||
Muscle | ND @ 3 days | 3 days | ||||||||||||
Neomycin | Goat; NS; NS; n = 18 study; n = 4/ time pt | US Tol: 3600 ppb (liver); 7200 ppb (kidney);1200 ppb (muscle); 7200 ppb (fat). EMA MRL extrapolated to all food producing species: 5500 ppb (liver); 9000 ppb (kidney); 500 ppb (muscle, fat). | Bioassay | NS | 0.5 ppm | POMW | 22 mg/kg Neomycin sulfate daily | 14 | Liver | ND @ 12 h | 12 h | Healthy | NS | [15] 1996 |
Kidney | 96 h (0.6 ppm) | >96 h | ||||||||||||
Muscle | ND @ 12 h | 12 h | ||||||||||||
Fat | ND @ 12 h | 12 h | ||||||||||||
Neomycin | Goat; NS; NS; n = 20 study; n = 5/time pt | US Tol: 3600 ppb (liver); 7200 ppb (kidney); 1200 ppb (muscle); 7200 ppb (fat). EMA MRL extrapolated to all food producing species: 5500 ppb (liver); 9000 ppb (kidney); 500 ppb (muscle, fat). | Bioassay | NS | 500 ppb | POMW | 20 mg/kg Neomycin sulfate daily | 14 | Liver | ND @ 12 h | 12 h | Healthy | NS | [16] 2000 |
Kidney | 96 h (700 ppb) | >96 h | ||||||||||||
Muscle | ND @ 12 h | 12 h | ||||||||||||
Fat | ND @ 12 h | 12 h | ||||||||||||
Neomycin | Goat; NS; NS; n = 20 study, n = 4/time pt | US Tol: 3600 ppb (liver); 7200 ppb (kidney); 1200 ppb (muscle); 7200 ppb (fat). EMA MRL extrapolated to all food producing species: 5500 ppb (liver); 9000 ppb (kidney); 500 ppb (muscle, fat). | Bioassay | NS | 0.5 ppm | PO | 22 mg/kg Neomycin sulfate daily | 14 | Liver | ND @ 12 h | 12 h | Healthy | NS | [17] 1995 |
Kidney | 96 h (0.7 ppm) | >96 h | ||||||||||||
Muscle | ND @ 12 h | 12 h | ||||||||||||
Fat | ND @ 12 h | 12 h | ||||||||||||
Neomycin | Goat; NS; NS; n = 20 study, n = 4/time pt | US Tol: 3600 ppb (liver); 7200 ppb (kidney); 1200 ppb (muscle); 7200 ppb (fat). EMA MRL extrapolated to all food producing species: 5500 ppb (liver); 9000 ppb (kidney); 500 ppb (muscle, fat). | NS | NS | 0.5 ppm | POMW | 22 mg/kg Neomycin sulfate daily | 14 | Liver | ND @ 12 h | 12 h | Healthy | NS | [34] 1996 |
Kidney | 96 h (0.57 ppm) | >96 h | ||||||||||||
Muscle | ND @ 12 h | 12 h | ||||||||||||
Fat | ND @ 12 h | 12 h | ||||||||||||
Neomycin | Sheep; NS; NS; n = 18 study; n = 4/time pt | US Tol: 3600 ppb (liver); 7200 ppb (kidney); 1200 ppb (muscle); 7200 ppb (fat). EMA MRL extrapolated to all food producing species: 5500 ppb (liver); 9000 ppb (lidney); 500 ppb (muscle, fat). | Bioassay | NS | 0.5 ppm | POMW | 22 mg/kg Neomycin sulfate daily | 14 | Liver | ND @ 1 day | 1 day | Healthy | NS | [15] 1996 |
Kidney | 1 day (female) (1.28 ppm) | 3 days (female) | ||||||||||||
Kidney | 3 days (male) (0.45 ppm) | 7 days (male) | ||||||||||||
Muscle | ND @ 1 day | 1 day | ||||||||||||
Fat | ND @ 1 day | 1 day | ||||||||||||
Neomycin | Sheep; NS; NS; n = 20 study; n = 5/time pt | US Tol: 3600 ppb (liver); 7200 ppb (kidney); 1200 ppb (muscle); 7200 ppb (fat). EMA MRL extrapolated to all food producing species: 5500 ppb (liver); 9000 ppb (kidney); 500 ppb (muscle, fat). | Bioassay | NS | 500 ppb | POMW | 20 mg/kg Neomycin sulfate daily | 14 | Liver | ND @ 1 day | 1 day | Healthy | NS | [16] 2000 |
Kidney | 3 days (522 ppb) | 7 days | ||||||||||||
Muscle | ND @ 1 day | 1 day | ||||||||||||
Fat | ND @ 1 day | 1 day | ||||||||||||
Neomycin | Sheep; NS; NS; n = 20 study, n = 4/time pt | US Tol: 3600 ppb (liver); 7200 ppb (kidney); 1200 ppb (muscle); 7200 ppb (fat). EMA MRL extrapolated to all food producing species: 5500 ppb (liver); 9000 ppb (kidney); 500 ppb (muscle, fat). | Bioassay | NS | 0.5 ppm | PO | 22 mg/kg Neomycin sulfate daily | 14 | Liver | ND @ 1 day | 1 day | Healthy | NS | [17] 1995 |
Kidney | 3 days (522 ppb) | 7 days | ||||||||||||
Muscle | ND @ 1 day | 1 day | ||||||||||||
Fat | ND @ 1 day | 1 day | ||||||||||||
Neomycin | Sheep; NS; NS; n = 20 study, n = 4/time pt | US Tol: 3600 ppb (liver); 7200 ppb (kidney); 1200 ppb (muscle); 7200 ppb (fat). EMA MRL extrapolated to all food producing species: 5500 ppb (liver); 9000 ppb (kidney); 500 ppb (muscle, fat). | NS | NS | 0.5 ppm | POMW | 22 mg/kg Neomycin sulfate daily | 14 | Liver | ND @ 1 day | 1 day | Healthy | NS | [34] 1996 |
Kidney | 1 day (female) (1.28 ppm) | 3 days (female) | ||||||||||||
Kidney | 3 days (male) (0.45 ppm) | 7 days (male) | ||||||||||||
Muscle | ND @ 1 day | 1 day | ||||||||||||
Fat | ND @ 1 day | 1 day | ||||||||||||
Strepto-mycin | Sheep; NS; NS; n = 4 | US Tol: Not established. EMA established MRL: 200 ppb (milk). | HPLC | NS | 50 ppb | IM | 10 mg/kg Streptomycin combined w/ dihydro-streptomycin daily | 3 | Milk | 48 h (0.07 ppm) | 60 h | Healthy | Lactating, Milked 2×/day | [25] 2005 |
Strepto-mycin | Sheep; Suffolk & Suffolk/Cheviot; adult; n = 8 | US Tol: Not established. EMA established MRL: 200 ppb (milk). | HPLC | 0.02 ppm | 0.05 ppb († 0.05 ppm) | IM | 10 mg/kg Streptomycin combined w/ dihydro-streptomycin daily | 3 | Milk | 48 h (0.07 ppm) | 60 h | Healthy | Milked 2×/day | [26] 2002 |
Strepto-mycin | Sheep; NS; NS; NS | US Tol: Not established. EMA established MRL: 500 ppb (liver, muscle, fat); 1000 ppb (kidney). | HPLC | NS | 200 ppb | IM | 10 mg/kg Streptomycin daily | 3 | Liver | 2 days (655 ppb) | >2 days | Healthy | NS | [30] 2000 |
Kidney | 2 days (914 ppb) | >2 days | ||||||||||||
Muscle | ND @ 2 days | 2 days | ||||||||||||
Fat | ND @ 2 days | 2 days | ||||||||||||
Inj. Site | 2 days (1373 ppb) | >2 days |
Analyte | Species; Breed; Age; # of Animals per Time Point | Tolerance/ MRL | Analytical Method | LOD | LOQ | Route of Admin-istration | Dose & Active Ingredient | # of Doses | Matrix | Last Sampling Time Point (Post-Last Treatment) When Residues WERE Detected | Sampling Time Point When NO Residues Were Detected (Post-Last Treatment) * | Health Status | Additional Information | Source/ Year |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Chloram-phenicol | Sheep; Awassi; adult; n = 2 | US Tol: Not established. EMA MRL: Not established. | Chemically | NS | NS | IM | 50 mg/kg Chloramphenicol | 1 | Milk | 26 h (1.68 ppm §) | >26 h | Healthy | Lactating | [39] 1973 |
Milk | 26 h (1.82 ppm §) | >26 h | Diseased-mastitis | |||||||||||
Bioassay | NS | NS | IM | 50 mg/kg Chloramphenicol | 1 | Milk | 26 h (1.02 ppm §) | >26 h | Healthy | |||||
Milk | 26 h (1.54 ppm §) | >26 h | Diseased-mastitis | |||||||||||
Radio-activity | NS | NS | IM | 50 mg/kg Chloramphenicol (radiolabeled) | 1 | Milk | 13 h (NS) | >13 h | Healthy | |||||
Milk | 13 h (NS) | >13 h | Diseased-mastitis | |||||||||||
Chloramphenicol | Sheep; Awassi; adult; n = 1 | US Tol: Not established. EMA MRL: Not established. | Bioassay | NS | NS | IV | 50 mg/kg Chloramphenicol sodium succinate then 12.5 mg/kg for 2 doses at 90 min interval | 3 | Milk | 24 h (0.65 ppm §) | 36 h | Healthy | Lactating; Milked 2x/day | [24] 1973 |
Radio-activity | NS | NS | IV | 50 mg/kg Chloramphenicol (radiolabeled) then 12.5 mg/kg for 2 doses at 90 min interval | 3 | Milk | 48 h (0.81 ppm §) | 60 h | ||||||
Chloram-phenicol | Sheep; Awassi; Adult; n = 2 | US Tol: Not established. EMA MRL: Not established. | Bioassay | NS | NS | IM | 50 mg/kg Chloramphenicol | 1 | Milk | 56 h (0.85 ppm §) | >56 h | Healthy | Lactating; Milked 2×/day | [29] 1974 |
Milk | 56 h (1.28 ppm §) | >56 h | Diseased-mastitis | |||||||||||
Radio-activity | NS | NS | IM | 50 mg/kg Chloramphenicol (radiolabeled) | 1 | Milk | 56 h (0.2 ppm §) | >56 h | Healthy | |||||
Milk | 56 h (0.18 ppm §) | >56 h | Diseased-mastitis | |||||||||||
Chloram-phenicol | Sheep; Rouge de L’Ouest; adult; n = 11 study; n = 3 & 2/time pt | US Tol: Not established. EMA MRL: Not established. | HPLC | 2 ppb | NS | IM | 30 mg/kg Chloramphenicol | 1 | Liver | 24 h (0.35 ppb §) | 336 h | NS | NS | [40] 1990 |
Kidney | 336 h (0.76 ppb §) | >336 h | ||||||||||||
Muscle | 336 h (2.13 ppb §) | >336 h | ||||||||||||
Inj. Site | 336 h (4.18 ppb §) | >336 h | ||||||||||||
Chloram-phenicol | Sheep; Awassi; adult; n = 2 | US Tol: Not established. EMA MRL: Not established. | Bioassay | NS | NS | IV | 50 mg/kg Chloramphenicol sodium succinate | 1 | Milk | NS | NS | Healthy | Lactating; Milked 2×/day | [41] 1975 |
Florfenicol amine | Sheep; Polypay; NS; n = 25 study; n = 5/time pt | US Tol: Not established. EMA MRL by extension from bovine to ovine: 3000 ppb (liver); 300 ppb (kidney); 200 ppb (muscle). | HPLC | NS | NS | SC | 40 mg/kg Florfenicol daily | 3 | Liver | 40 days (1.99 ppm) | >40 days | NS | NS | [42] 2006 |
Kidney | 40 days (0.17 ppm) | >40 days | ||||||||||||
Muscle | 40 days (0.08 ppm) | >40 days | ||||||||||||
Fat | 40 days (0.01 ppm) | >40 days | ||||||||||||
Inj. Site | 40 days (0.15 ppm) | >40 days | ||||||||||||
Florfenicol amine | Sheep; mixed breed; 6–7 months; n = 26 study; n = 5/time pt | US Tol: Not established. EMA MRL by extension from bovine to ovine: 3000 ppb (liver); 300 ppb (kidney); 200 ppb (muscle). | HPLC | NS | Liver: 0.32 ppm | SC | 40 mg/kg Florfenicol daily | 3 | Liver | 40 days (NS) | >40 days | Healthy | NS | [43] 2008 |
Kidney: 0.1 ppm | Kidney | 40 days (NS) | >40 days | |||||||||||
Muscle: 0.05 ppm | Muscle | 40 days (NS) | >40 days | |||||||||||
Fat: 0.04 ppm | Fat | 40 days (NS) | >40 days | |||||||||||
Inj. Site: 0.05 ppm | Inj. Site | 40 days (NS) | >40 days | |||||||||||
Thiam-phenicol | Sheep; crossbred; adult; n = 16 study; n = 4/time pt. | US Tol: Not established. EMA MRL by extension from bovine to ovine: 50 ppb (liver, kidney, muscle, fat, milk). | HPLC | 5 ppb | 21 ppb | IM | 30 mg/kg Thiamphenicol daily | 5 | Liver | ND @ 4 days | 4 days | Healthy | NS | [44] 2000 |
Kidney | 4 days (40.2 ppb) | 8 days | ||||||||||||
Muscle | <LOD @ 4 days | 4 days | ||||||||||||
Fat | 4 days (342.5 ppb) | 8 days | ||||||||||||
Chloram-phenicol | Goat; Desi; 9–12 months; n = NS | US Tol: Not established. EMA MRL: Not established. | Colorimetric | NS | NS | IM | 10 mg/kg Chloramphenicol | 1 | Milk | 24 h (2.16 ppm) | 2 days | Healthy | Lactating | [45] 1983 |
IM | 30 mg/kg Chloramphenicol | 1 | Milk | 96 h (3.33 ppm) | >4 days | Healthy | ||||||||
Chloram-phenicol | Goat; NS; Adult; n = 2 | US Tol: Not established. EMA MRL: Not established. | HPLC | 5 ppb | NS | IM | 600 mg Chloram-phenicol | 1 | Milk | 8 h (0.077 ppm) | 1 day | Healthy | Lactating | [46] 1980 |
IMM | 600 mg Chloram-phenicol | 1 | Milk | 24 h (0.026 ppm) | 32 h | Healthy | ||||||||
Thiam-phenicol | Goat; Saanen & crossbred; adult; n = 6 | US Tol: Not established. EMA MRL by extension from bovine to ovine: 50 ppb (liver, kidney, muscle, fat, milk). | HPLC | NS | NS | IV | 50 mg/kg Thiamphenicol | 1 | Milk | 12 h (4.92 ppm §) | >12 h | Healthy | Late lactation | [35] 1991 |
IM | 50 mg/kg Thiamphenicol | 1 | Milk | 12 h (4.90 ppm §) | >12 h | Healthy | ||||||||
Florfenicol | Goat; Saanen & crossbred; adult; n = 10 | US Tol: Not established. EMA MRL: Not established. | HPLC | NS | NS | IV | 25 mg/kg Florfenicol | 1 | Milk | 8 h (0.21 ppm §) | >8 h | Healthy | Mid-lactation | [36] 1991 |
IM | 25 mg/kg Florfenicol | 1 | Milk | 8 h (0.11 ppm §) | >8 h | Healthy |
Analyte | Species; Breed; Age; # of Animals | Tolerance/MRL | Analytical Method | LOD | LOQ | Route of Admin-istration | Dose & Active Ingredient | # of Doses | Matrix | Last Sampling Time Point (Post-Last Treatment) When Residues WERE Detected | Sampling Time Point When NO Residues Were Detected (Post-Last Treatment) * | Health Status | Additional Information | Source/ Year |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Amoxicillin | Sheep; Texel; adult; n = 12 | US Tol: Not established. EMA MRL: Not established. | Bioassay | NS | NS | IM | 10 mg/kg Amoxicillin sodium | 1 | Milk | 500 min (0.03 ppm §) | >500 min | Healthy & Diseased- mastitis | Lactating | [47] 1979 |
Amoxicillin | Goats; Saanen; adult; n = 6 | US Tol: Not established. EMA MRL: Not established. | Bioassay | 0.001 ppm | NS | IMM | 200 mg Amoxicillin trihydrate; 50 mg potassium clavulanate; 10 mg prednisolone combo product at 8 h intervals | 3 | Milk | 5 days (0.07 ppm §) | >5 days | Healthy | Lactating; Milked 2×/day; 1 syringe/ gland | [49] 1989 |
Amoxicillin | Sheep; Texel; adult; n = 12 | US Tol: Not established. EMA MRL: Not established. | Bioassay | NS | NS | IM | 10 mg/kg Amoxicillin trihydrate | 1 | Milk | 500 min (0.06 ppm §) | >500 min | Healthy & Diseased- mastitis | Lactating | [47] 1979 |
Amoxicillin | Sheep; Friesland; adult; n = 6 | US Tol: Not established. EMA MRL: Not established. | Bioassay | 0.001 ppm | NS | IMM | 200 mg Amoxicillin trihydrate; 50 mg potassium clavulanate; 10 mg prednisolone combo product at 8 h intervals | 3 | Milk | 7 days (0.003 ppm §) | >7 days | Healthy | Lactating; Milked 2×/day; 1 syringe/ gland | [51] 1989 |
Amoxicillin | Sheep; Comisana; adult; n = 10 | US Tol: Not established. EMA MRL: Not established. | HPLC | 1.5 ppb | 2.5 ppb | IM | 12.5 mg/kg Amoxicillin trihydrate (long acting) | 1 | Milk | 132 h (1.5 ppb) | 6 days | Healthy | Lactating; Milked 2×/day | [57] 2002 |
Amoxicillin | Sheep; domestic dairy breed; adult; n = 10 | US Tol: Not established. EMA MRL: Not established. | Bioassay | 3 ppb | 4 ppb | IMM w/ IM | 200 mg Amoxicillin trihydrate, 50 mg potassium clavulanate, 10 mg prednisolone combination product (IMM) at 12 h intervals co-administered with 140 mg/35 mg per mL amoxicillin trihydrate/ clavulanic acid (IM) at 24 h intervals | 5 (IMM); 2(IM) | Milk | 192 h (4.5 ppb) | >192 h | Diseased- mastitis | Lactating; 1 syringe/gland | [52] 2009 |
Amoxicillin | Sheep; crossbred; NS; n = 36 study; n = 4/time pt Dairy type; adult; n = 20 | US Tol: Not established. EMA MRL: Not established. | LC-MS | 5.8 ppb | 25.6 ppb | IM | 7 mg/kg Amoxicilllin † daily | 5 | Liver | NS | 48 h | Healthy | NS | [48] 2012 |
Kidney | NS | 48 h | ||||||||||||
Muscle | NS | 48 h | ||||||||||||
Fat | NS | 48 h | ||||||||||||
Inj. Site | 64 days (25.6 ppb) | >64 days | ||||||||||||
NS | NS | NS | IM | 7 mg/kg Amoxicilllin † daily | 5 | Milk | 120 h (2.09 ppb) | >120 h | Healthy | Lactating; Milked 2×/day | ||||
Ampicillin | Sheep; Texel; adult; n = 12 | US Tol: Not established. EMA MRL: Not established. | Bioassay | NS | NS | IM | 10 mg/kg Ampicillin sodium | 1 | Milk | 8 h (0.03 §) | >8 h | Healthy | Lactating | [47] 1979 |
10 h (0.03 §) | >10 h | Diseased- mastitis | ||||||||||||
Ampicillin | Goats; Saanen; adult; n = 24 study | US Tol: Not established. EMA MRL: Not established. | HLPC | 1.5 ppb | 2.2 ppb | IM | 15 mg/kg Amoxicilllin † (long acting) at 72 h interval | 2 | Milk | 168 h (6.0 ppb) | 180 h | Healthy | Mid-lactation; Milked 2×/day | [54] 2010 |
Ampicillin | Sheep; Texel; adult; n = 12 | US Tol: Not established EMA MRL: Not established. | Bioassay | NS | NS | IM | 10 mg/kg Ampicillin trihydrate | 1 | Milk | 12 h (0.04 ppm §) | >12 h | Healthy | Lactating | [47] 1979 |
12 h (0.1 ppm §) | >12 h | Diseased- mastitis | ||||||||||||
Ampicillin | Sheep; NS; adult; n = 4 | US Tol: Not established. EMA MRL: Not established. | NS | NS | NS | IMM | 250,000 IU Ampicillin trihydrate | 1 | Milk | 72 h (0.11 ppm) | 96 h | NS | Lactating; Half syringe per gland | [58] 1977 |
Cloxacillin | Goats; Saanen; adult; n = 8 | US Tol: Not established. EMA MRL: Not established. | Bioassay | 0.02 ppm | NS | IMM | 200 mg Cloxacillin at 48 h intervals | 3 | Milk | 13 h (0.15 ppm§) | >13 h | Healthy | Late lactation; Milked 2×/day. Only one half/gland treated. | [53] 1984 |
Diclox-acillin | Sheep; Sarda; 2–3.5 years; n = 4 | US Tol: Not established. EMA MRL: Not established. | HPLC | NS | 0.02 ppm | IMM | 100 mg/half Dicloxacillin at 12 h intervals. | 3 | Milk | 60 h (0.029 ppm) | 72 h | Healthy | Lactating, High production; Milked 2x/day | [50] 2000 |
72 h (0.026 ppm) | 84 h | Healthy | Lactating, Low production; Milked 2×/day | |||||||||||
Nafcillin | Goats; NS; Adults; n = 220 | US Tol: Not established. EU MRL by extension from bovine to all ruminants: 30 ppb (milk). | Bioassay | 0.012 ppm | 0.015 ppm | IMM | 300,000 IU Procaine benzylpenicillin; 100 mg dihydro-streptomycin; 100 mg nafcillin | 1 | Milk | NS | 3 days | Healthy | Dry off period (mean 61.0 ± 14.3 days SD (range 23–156 days); 1 tube per gland before drying off. Sample collected after kidding | [27] 1995 |
Nafcillin | Sheep; Lacaune; adult; n = 8 | US Tol: Not established. EMA MRL by extension from bovine to all ruminants: 30 ppb (milk). | Bioassay | 0.02 ppm | NS | IMM | 300,000 IU Procaine benzylpenicillin; 100 mg dihydrostreptomycin; 100 mg nafcillin | 1 | Milk | ND | 2 days | Healthy | Dry off period (mean 112 days (range 85–223 days); 1 tube per gland before drying off. Sample collected after lambing | [28] 1995 |
Pen-ethamate | Goats; NS; Adult; n = 2 | US Tol: Not established. EMA MRL: Not established. | Bioassay | NS | NS | IM | 200,000 IU Penethamate (oil) 200,000 IU Penethamate (aqueous) | 1 | Milk | 1 day (0.004 U/mL) | >1 day | NS | Lactating | [59] 1966 |
Milk | 12 h (0.075 U/mL) | 1 day | ||||||||||||
IM | 500,000 IU Penethamate (oil) 500,000 IU Penethamate (aqueous) | 1 | Milk | 1 day (0.04 U/mL) | >1 day | |||||||||
Milk | 1 day (0.2 U/mL) | >1 day | ||||||||||||
Penicillin | Sheep; Awassi; Adult; n = 2 | US Tol: Not established. EMA MRL: Not established. | Bioassay | NS | NS | IM | 20 mg/kg Penicillin † | 1 | Milk | 12 h (0.02 ppm §) | 1 day | Healthy | Lactating | [29] 1974 |
Radioactivity | NS | NS | Milk | 56 h (0.03 ppm §) | >56 h | Diseased- mastitis | ||||||||
Bioassay | NS | NS | IM | 20 mg/kg Benzylpenicillin-14C | 1 | Milk | 48 h (0.01 ppm §) | 56 h | Healthy | |||||
Radioactivity | NS | NS | Milk | 12 h (0.02 ppm §) | 1 day | Diseased- mastitis | ||||||||
Penicillin | Goats; NS; Adult; n = 2 | US Tol: Not established. EMA MRL: Not established. | Bioassay | NS | NS | IM | 200,000 IU Procaine penicillin (oil) | 1 1 | Milk | 1 day (0.008 U/mL) | >1 day | NS | Lactating | [59] 1966 |
200,000 IU Procaine penicillin (aqueous) | Milk | 12 h (0.012 U/mL) | 1 day | |||||||||||
IM | 500,000 IU Procaine penicillin (oil) | Milk | 1 day (0.07 U/mL) | >1 day | ||||||||||
500,000 IU Procaine penicillin (aqueous) | Milk | 1 day (0.02 U/mL) | >1 day | |||||||||||
Penicillin | Goats; NS; Adults; n = 217 | US Tol: Not established. EMA MRL: Not established. | Bioassay | 0.002 IU/mL | 0.004 IU/mL | IMM | 300,000 IU Procaine benzylpenicillin; 100 mg dihydro-streptomycin; 100 mg nafcillin combo product | 1 | Milk | NS | 7 days | Healthy | Dry off period (mean 61.0 ± 14.3 days SD (range 23–156 days). 1 tube per gland before drying off. Sample collected after kidding | [27] 1995 |
Penicillin | Goats; dairy type; 2–7 years; n = 10 | US Tol: Not established. EMA MRL: Not established. | Bioassay | NS | NS | IMM | 100,000 IU Penicillin G procaine at 12 h intervals | 3 | Milk | 60 h (0.49 ppm §) | >60 h | Healthy | Early & mid-lactation; Milked 2x/day; 1 syringe per gland | [60] 1984 |
Penicillin | Sheep; NS; NS; n = 2 | US Tol: Zero. EMA MRL: Not established. | LC-MS | 0.005 ppm | NS | IM | 1500 mg Benzylpenicillin daily | 3 | Liver | 2 days (0.24 ppm) | >2 days | NS | NS | [56] 1996 |
Kidney | 2 days (0.87 ppm) | >2 days | ||||||||||||
Muscle | 2 days (0.02 ppm) | >2 days | ||||||||||||
Penicillin | Sheep; Lacaune; adult; n = 8 | US Tol: Zero. EMA MRL: Not established. | Bioassay | 0.006 ppm | NS | IMM | 300,000 IU Procaine benzylpenicillin; 100 mg dihydro-streptomycin; 100 mg nafcillin | 1 | Milk | 3 days (0.01 ppm §) | 4 days | Healthy | Dry off period (mean 112 days (range 85–223 days); 1 tube per gland before drying off. Sample collected after lambing | [28] 1995 |
Penicillin | Sheep; NS; 14–17 months; n = 10 study; n = 10/time pt | US Tol: Zero. EMA MRL: Not established. | Bioassay | 0.0125 ppm | NS | IM | 3000 IU/lb Penicillin G procaine daily | 4 | Liver | NS | 9 days | Healthy | NS | [61] 2010 |
Kidney | NS | 9 days | ||||||||||||
Muscle | NS | 9 days | ||||||||||||
Fat | NS | 9 days | ||||||||||||
Inj. Site | NS | 9 days | ||||||||||||
Penicillin | Sheep; Awassi; adult; n = 3 | US Tol: Zero. EMA MRL: Not established. | Bioassay | NS | NS | IV | 20 mg/kg Penicillin †, then 10 mg/kg for 4 doses 45 min interval | 5 | Milk | 36 h (0.01 ppm §) | 48 h | Healthy | Lactating; Milked 2×/day | [24] 1973 |
Radioactivity | NS | NS | IV | 20 mg/kg Penicillin † (radiolabeled) then 10 mg/kg for 4 doses 45 min interval | 5 | Milk | 8 h (0.08 ppm §) | 10 h | ||||||
Penicillin | Sheep; Sardinian; Adult; n = 5 | US Tol: Zero. EMA MRL: Not established. | HPLC | 2.6 ppb | 8.8 ppb | IM | 24 mg/kg Penicillin G sodium | 1 | Milk | 8 days (0.01 ppm) | > 8 days | NS | Lactating; Milked 2×/day | [55] 1998 |
IMM | 24 mg/kg Penicillin G sodium | 1 | Milk | 7 days (0.001 ppm) | 8 days | |||||||||
Penicillin | Sheep; domestic dairy breed; adult; n = 10 | US Tol: Zero. EMA MRL: Not established. | Bioassay | 3 ppb | 4 ppb | IMM co-admin w/IM | 1,000,000 IU Benzylpenicillin (IMM) daily co- administered with 250,000 IU benzylpenicillin (IM) at 24 h intervals. | 5 (IMM) 2 (IM) | Milk | 192 h (9.9 ppb) | >192 h | Diseased | Lactating; 1 syringe/gland | [52] 2009 |
Analyte | Species; Breed; Age; # of Animals | Tolerance/MRL | Analytical Method | LOD | LOQ | Route of Admini-stration | Dose & Active Ingredient | # of Doses | Matrix | Last Sampling Time Point (Post-Last Treatment) When Residues WERE Detected | Sampling Time Point When NO Residues Were Detected (Post-Last Treatment) * | Health Status | Additional Information | Source/Year |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cefepime | Goat; NS; Adult; n = 10 | US Tol: Not established. EMA MRL: Not established. | Bioassay | NS | NS | IV | 20 mg/kg Cefepime | 1 | Milk | 12 h (0.17 ppm) | >12 h | Healthy | Lactating; Milked 2×/day | [62] 2004 |
IM | 20 mg/kg Cefepime | 1 | Milk | 12 h (0.25 ppm) | >12 h | |||||||||
Cefepime | Goat; NS; 1 year; n = 5 | US Tol: Not established. EMA MRL: Not established. | HPLC | 1.15 ppb | 3.49 ppm | IM | 50 mg/kg Cefepime | 1 | Milk | 4 h (5.14 ppm§) | > 4 h | Healthy | Lactating | [72] 2010 |
Cefonicid | Goat; Muriano-Granadina; 2–4 years; n = 6 | US Tol: Not established. EMA MRL: Not established. | HPLC | 500 ppb | 750 ppb | IV | 10 mg/kg Cefonicid sodium | 1 | Milk | <LOQ @ 1 h | 1 h | Healthy | Lactating; Milked 1×/day | [63] 2020 |
IM | 10 mg/kg Cefonicid sodium | 1 | Milk | <LOQ @ 1 h | 1 h | |||||||||
SC | 10 mg/kg Cefonicid sodium | 1 | Milk | <LOQ @ 1 h | 1 h | |||||||||
SC | 20 mg/kg Cefonicid sodium | 1 | Milk | <LOQ @ 1 h | 1 h | |||||||||
Cef-quinome | Goat; Zaraibi; 30–36 months; n = 5 | US Tol: Not established. EMA MRL: Not established. | Bioassay | 0.009 ppm | 0.027 ppm | IV | 3 mg/kg Cefquinome sulfate | 1 | Milk | 48 h (0.02 ppm §) | >2 days | Healthy | Lactating; Milked 1×/day | [67] 2015 |
HPLC | 0.006 ppm | 0.017 ppm | Milk | 48 h (0.01 ppm §) | >2 days | |||||||||
Bioassay | 0.009 ppm | 0.027 ppm | IV | 3 mg/kg Cefquinome sulfate | 1 | Milk | 48 h (0.02 ppm §) | >2 days | Diseased-Mastitis | |||||
HPLC | 0.006 ppm | 0.017 ppm | Milk | 48 h (0.02 ppm §) | >2 days | |||||||||
Cef-quinome | Goat; Zaraibi; 30–36 months; n = 5 | US Tol: Not established. EMA MRL: Not established. | HPLC | 0.006 ppm | 0.018 ppm | IMM | 75 mg Cefquinome sulfate | 1 | Milk | 120 h (0.01 ppm §) | >120 h | Healthy | Early & mid-lactating; 1 full tube per gland 1 full tube into single infected udder half | [68] 2019 |
IMM | 75 mg Cefquinome sulfate | 1 | Milk | 96 h (0.01 ppm §) | 120 h | Diseased-Mastitis | ||||||||
Cef-tazidime | Goat; Creole; Adult; n = 6 | US Tol: Not established. EMA MRL: Not established. | Bioassay | 0.125 ppm | 0.3 ppm | IV | 10 mg/kg Ceftazidime | 1 | Milk | 12 h (0.52 ppm §) | >12 h | Healthy | Lactating; Milked 2x/day | [73] 2011 |
IM | 10 mg/kg Ceftazidime | 1 | Milk | 12 h (0.54 ppm §) | >12 h | |||||||||
Ceftiofur | Goat; Alpine & Alpine-Saanen; 4 years; n = 6 | US Tol: 100 ppb (milk). EMA MRL extrapolated from bovine to all mammalian species: 100 ppb (milk). | HPLC | NS | 0.05 ppm | IV | 2.2 mg/kg Ceftiofur sodium | 1 | Milk | 24 h (NS) | 2 days | Healthy | Lactating; Milked 2×/day | [71] 1994 |
IM | 2.2 mg/kg Ceftiofur sodium daily | 5 | Milk | 24 h (NS) | 2 days | |||||||||
Ceftiofur | Sheep; NS; Adult; n = 9 | US Tol: 100 ppb (milk). EMA MRL by extension from bovine to ovine: 100 ppb (milk). | HPLC | NS | NS | IM | 2 mg/kg Ceftiofur sodium daily | 5 | Milk | <LOQ @ 12 h | 12 h | Healthy | Lactating | [74] 2006 |
Ceftiofur | Goat; mixed dairy type; 28 months; n = 5 | US Tol: 100 ppb (milk). EMA MRL extrapolated from bovine to all mammalian species: 100 ppb (milk). | LC-MS | NS | 20 ppb | IMM | 125 mg Ceftiofur hydrochloride daily | 2 | Milk | 72 h (37 ppb) | 4 days | Healthy | Mid- & late lactation; Milked 2×/day. Left udder half infused. | [75] 2015 |
Ceftriaxone | Goat; Dairy type; 1.5–2 years; n = 6 | US Tol: Not established. EMA MRL: Not established. | Bioassay | NS | NS | IV | 20 mg/kg Ceftriaxone sodium | 1 | Milk | 2 h (0.11 ppm) | 2.5 h | Healthy | Lactating | [64] 2013 |
Ceftriaxone | Goat; NS; 2–2.5 years; n = 10 | US Tol: Not established. EMA MRL: Not established. | Bioassay | NS | 0.2 ppm | IV | 20 mg/kg Ceftriaxone | 1 | Milk | 8 h (0.36 ppm) | 10 h | Healthy | Lactating | [65] 2005 |
IM | 20 mg/kg Ceftriaxone | 1 | Milk | 10 h (0.26 ppm) | 12 h | |||||||||
Ceftriaxone | Sheep; native breed; 2–3 years; n = 6 | US Tol: Not established. EMA MRL: Not established. | Bioassay | NS | 0.1 ppm | IV | 10 mg/kg Ceftriaxone | 1 | Milk | 10 h (0.22 ppm) | 12 h | Healthy | Lactating; Milked 2×/day | [76] 2006 |
IM | 10 mg/kg Ceftriaxone | 1 | Milk | 12 h (0.19 (ppm) | 24 h | |||||||||
Ceph-acetrile | Sheep; Texel; adult; n = 6 | US Tol: Not established. EMA MRL: Not established. | Bioassay | NS | NS | IM | 12 mg/kg Benzathine cephacetrile | 1 | Milk | 24 h (NS) | >1 day | Healthy | Lactating | [66] 1977 |
Cephalexin | Goat; NS; 1 year; n = 2 | US Tol: Not established. EMA MRL: Not established. | HPLC | 0.165 ppm | NS | IM | 10 mg/kg Cephalexin | 1 | Milk | 72 h (0.07 ppm §) | >3 days | NS | Lactating | [77] 2019 |
Cephalexin | Sheep; Awassi; adult; n = 10 | US Tol: Not established. EMA MRL: Not established. | Bioassay | 0.1 ppm | NS | IM | 10 mg/kg Cephalexin | 1 | Milk | 8 h (0.46 ppm §) | >8 h | Healthy | Late lactation | [69] 1988 |
Ceph-alothin | Goat; Creole; adult; n = 20 | US Tol: Not established. EMA MRL: Not established. | HPLC | 0.01 ppm | NS | IV | 10 mg/kg Cephalothin | 1 | Milk | 12 h (0.31 ppm §) | >12 h | Healthy | Lactating; Milked 2x/day | [78] 2004 |
Ceph-alothin | Goat; Creole; adult; n = 22 study; groups of 8, 8 and 6 | US Tol: Not established. EMA MRL: Not established. | HPLC | 0.01 ppm | NS | IV | 20 mg/kg Cephalothin | 1 | Milk | 6 h (0.08 ppm §) | 8 h | Healthy | Early lactation; Restricted diet | [79] 2007 |
IV | 20 mg/kg Cephalothin | 1 | Milk | 8 h (0.28 ppm §) | 10 h | Early lactation; Restricted diet + additional energy | ||||||||
IV | 20 mg/kg Cephalothin | 1 | Milk | 12 h (0.12 ppm §) | 14 h | Early lactation; Balanced diet | ||||||||
Cephapirin | Goat; French Alpine; 1–7 years; n = 20 | US Tol: Not established. EMA MRL: Not established. | Bioassay | NS | NS | IMM | 200 mg Cephapirin at 12 h intervals | 2 | Milk | ND @ 192 h | 8 days | Healthy | Mid-lactation; 1 full tube into R half udder | [70] 1986 |
IMM | 200 mg Cephapirin at 12 h intervals | 3 | Milk | ND @ 192 h | 8 days | |||||||||
Cephapirin | Goat; dairy type; 2–7 years; n = 10 | US Tol: Not established. EMA MRL: Not established. | Bioassay | NS | NS | IMM | 200 mg Sodium cephapirin at 12 h intervals | 2 | Milk | 48 h (0.03 ppm §) | 60 h | Healthy | Early & mid- lactation; Milked 2×/day; 1 full tube into each gland | [60] 1984 |
Cephradine | Goat; NS; adult; n = 4 | US Tol: Not established. EMA MRL: Not established. | Spectrophoto-metrically | 0.2 ppm | NS | IM | 10 mg/kg Cephradine | 1 | Milk | 8 h (1.55 ppm) | 12 h | Healthy and Diseased | Lactating | [80] 1994 |
IM | 10 mg/kg Cephradine at 12 h intervals | 3 | Milk | 8 h (1.28 ppm) | 12 h | |||||||||
IM | 10 mg/kg Cephradine at 12 h intervals | 5 | Milk | 8 h (3.02 ppm) | 12 h | |||||||||
IM | 10 mg/kg Cephradine at 12 h intervals | 7 | Milk | 8 h (2.78 ppm) | 12 h | |||||||||
IM | 10 mg/kg Cephradine at 12 h intervals | 9 | Milk | 8 h (3.02 ppm) | 12 h |
Analyte | Species; Breed; Age; # of Animals | Tolerance/ MRL | Analytical Method | LOD | LOQ | Route of Admini-stration | Dose & Active Ingredient | # of Doses | Matrix | Last Sampling Time Point (Post-Last Treatment) When Residues WERE Detected | Sampling Time Point When NO Residues Were Detected (Post-Last Treatment) * | Health Status | Additional Information | Source/ Year |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ciprofloxacin | Goats; NS; adult; n = 6 | US Tol: Prohibited. EMA MRL: Not established. | Bioassay | 0.05 ppm | NS | IV | 4 mg/kg Ciprofloxacin | 1 | Milk | 24 h (0.07 ppm) | 30 h | Healthy | Lactating | [81] 2014 |
Ciprofloxacin | Goats; Baladi; 30–36 months; n = 5 | US Tol: Prohibited. EMA MRL: Not established. | Bioassay | 0.01 ppm | NS | IV | 5 mg/kg Ciprofloxacin | 1 | Milk | 10 h (0.11 ppm) | 18 h | Healthy | Lactating | [82] 1998 |
IM | 5 mg/kg Ciprofloxacin | 1 | Milk | 10 h (0.07 ppm) | 18 h | |||||||||
IM | 5 mg/kg Ciprofloxacin daily | 5 | Milk | 3 days (0.07 ppm) | 4 days | |||||||||
Danofloxacin | Goats; Murciano-Granadina; 1.5–3 years; n = 6 | US Tol: Prohibited. EMA MRL: Not established. | HPLC | 0.005 ppm | 0.015 ppm | SC | 6 mg/kg Danofloxacin | 1 | Milk | 36 h (0.01 ppm §) | 48 h | Healthy | Mid-lactation; Milked 2×/day | [83] 2007 |
Danofloxacin | Sheep; Manchega; 2–4 years; n = 6 | US Tol: Prohibited. EMA MRL: Not established. | HPLC | 0.005 ppm | 0.015 ppm | SC | 6 mg/kg Danofloxacin | 1 | Milk | 36 h (0.02 ppm §) | 48 h | Healthy | Mid-lactation; Milked 2×/day | [83] 2007 |
Danofloxacin | Sheep; Assaf; adult; n = 12 | US Tol: Prohibited. EMA MRL: Not established. | Bioassay | 0.04 ppm | NS | IV | 1.25 mg/kg Danofloxacin | 1 | Milk | 24 h (0.1 ppm §) | >1 day | Healthy | Mid-lactation | [99] 1997 |
IM | 1.25 mg/kg Danofloxacin | 1 | Milk | 24 h (0.07 ppm §) | >1 day | |||||||||
Danofloxacin | Sheep; Assaf; 2–3 years; n = 5 | US Tol: Prohibited. EMA MRL: Not established. | HPLC | 4 ppb | 5 ppb | IM | 1.25 mg/kg | 1 | Milk | 24 h (0.07 ppm §) | >24 h | Healthy | Mid-lactation; Milked 2×/day | [96] 2011 |
IM | 1.25 mg/kg co-administered with 0.2 mg/kg ivermectin | 1 | Milk | 24 h (0.09 ppm §) | >24 h | |||||||||
Danofloxacin | Sheep; Assaf; 2–3 years; n = 6 | US Tol: Prohibited. EMA MRL: Not established. | HPLC | 4 ppb | 5 ppb | IM | 1.25 mg/kg Danofloxacin | 1 | Milk | 24 h (0.08 ppm §) | >24 h | Healthy | Mid-lactation; Milked 2×/day | [97] 2013 |
IM | 1.25 mg/kg Danofloxacin + soy diet | 1 | Milk | 24 h (0.1 ppm §) | >24 h | |||||||||
IM | 1.25 mg/kg Danofloxacin + Gen-daid (isoflavones) | 1 | Milk | 24 h (0.03 ppm §) | >24 h | |||||||||
Danofloxacin | Sheep; Assaf; 2–3 years; n = 6 | US Tol: Prohibited EMA MRL: Not established. | HPLC | NS | 100 ppb | IM | 1.25 mg/kg Danofloxacin | 1 | Milk | 24 h (0.03 ppm §) | >24 h | Healthy | Mid-lactation; Milked 2×/day | [100] 2013 |
IM | 1.25 mg/kg Danofloxacin co-administered with 1 mg/kg IV triclabendazole | 1 | Milk | 24 h (0.25 ppm §) | >24 h | |||||||||
Danofloxacin | Sheep; Assaf; adult; n = 6 | US Tol: Prohibited. EMA MRL: Not established. | HPLC | NS | 19 ppb | IM | 1.25 mg/kg Danofloxacin standard diet | 1 | Milk | 24 h (0.05 ppm §) | > 24 h | Healthy | Mid-lactation; Milked 2×/day | [101] 2018 |
IM | 1.25 mg/kg Danofloxacin w/ 10% flaxseed diet | 1 | Milk | 24 h (0.04 ppm §) | >24 hr | |||||||||
IM | 1.25 mg/kg Danofloxacin w/ 15% flaxseed diet | 1 | Milk | 24 h (0.05 ppm §) | > 24 h | |||||||||
Difloxacin | Goats; Murciano-Granadina; 4–5 years; n = 6 | US Tol: Prohibited. EMA MRL: Not established. | HPLC | NS | 10 ppb | IV | 5 mg/kg Difloxacin | 1 | Milk | 48 h (0.02 ppm §) | 72 h | Healthy | Lactating; Milked 1×/day | [102] 2010 |
SC | 5 mg/kg Difloxacin | 1 | Milk | 36 h (0.02 ppm §) | 48 h | |||||||||
SC | 15 mg/kg Difloxacin (long acting) | 1 | Milk | 144 h (0.59 ppm §) | >144 h | |||||||||
Difloxacin | Goats; Murciano-Granadina; 4–5 years; n = 6 | US Tol: Prohibited. EMA MRL: Not established | HPLC | NS | 10 ppb | SC | 15 mg/kg Difloxacin (long acting) | 1 | Milk | 144 h (0.07 ppm §) | >144 h | Healthy | Lactating; Milked 1x/day | [84] 2011 |
Enrofloxacin | Goats; Sham; 2–3 years; n = 10 | US Tol: Prohibited. EMA MRL extension from bovine to all food producing species: 100 ppb (milk). | Bioassay | NS | 0.02 ppm | IV | 5 mg/kg Enrofloxacin | 1 | Milk | 24 h (0.06 ppm) | 36 h | Healthy | Mid-lactation; Milked 2x/day | [85] 2003 |
IV | 5 mg/kg Enrofloxacin co-administered with 7.5 mg/kg albendazole PO | 1 | Milk | 12 h (0.11 ppm) | 24 h | |||||||||
IM | 5 mg/kg Enrofloxacin | 1 | Milk | 36 h (0.08 ppm) | 48 h | |||||||||
IM | 5 mg/kg Enrofloxacin co-administered with 7.5 mg/kg albendazole PO | 1 | Milk | 24 h (0.16 ppm) | 36 h | |||||||||
Enrofloxacin | Goats; Murciano-Granadina; 2.5–3.5 years; n = 6 | US Tol: Prohibited. EMA MRL extension from bovine to all food producing species: 100 ppb (milk). | HPLC | NS | NS | SC | 5 mg/kg Enrofloxacin | 1 | Milk | NS | NS † | Healthy | Lactating | [103] 2009 |
Ciprofloxacin | ||||||||||||||
Enrofloxacin | Goats; Murciano-Granadina; 2.5–3.5 years; n = 6 | US Tol: Prohibited. EMA MRL extension from bovine to all food producing species: 100 ppb (milk). | HPLC | NS | NS | IV | 5 mg/kg Enrofloxacin | 1 | Milk | NS | NS ‡ | Healthy | Lactating | [86] 2009 |
SC | 5 mg/kg Enrofloxacin (long acting) | 1 | Milk | NS | NS Ϙ | |||||||||
Enrofloxacin | Goats; NS; 1.5–2 years; n = 6 | US Tol: Prohibited. EMA MRL extension from bovine to all food producing species: 100 ppb (milk). | Bioassay | 0.01 ppm | NS | SC | 5 mg/kg Enrofloxacin | 1 | Milk | 30 h (0.08 ppm) | 36 h | Healthy | Lactating | [87] 2009 |
SC | 5 mg/kg Enrofloxacin SC, pretreated with 70 mg/kg probenecid PO | 1 | Milk | 36 h (0.02 ppm) | 48 h | |||||||||
Enrofloxacin | Sheep; NS; Neo-natal | US Tol: Prohibited. EMA MRL by extension from bovine to ovine: 300 ppb (liver); 200 ppb (kidney); 100 ppb (muscle, fat). | HPLC | NS | 10 ppb | PO | 7.5 mg/kg Enrofloxacin | 1 | Liver | NS | Enro ∼: 16 days | Healthy | NS | [104] 1998 |
Cipro ≈: 16 days | ||||||||||||||
Kidney | NS | Enro ∼: 16 days | ||||||||||||
Cipro ≈: 16 days | ||||||||||||||
Ciprofloxacin | Muscle | NS | Enro ∼: 16 days | |||||||||||
Cipro ≈: 16 days | ||||||||||||||
Fat | NS | Enro ∼: 16 days | ||||||||||||
Cipro ≈: 16 days | ||||||||||||||
Enrofloxacin | Sheep; crossbred; 2–4 years; n = 6 | US Tol: Prohibited. EMA MRL extension from bovine to all food producing species: 100 ppb (milk). | Bioassay | NS | 0.018 ppm | IV | 2.5 mg/kg Enrofloxacin | 1 | Milk | 24 h (0.13 ppm §) | >24 h | Healthy | Lactating; Milked 2×/day | [88] 2003 |
IM | 2.5 mg/kg Enrofloxacin | 1 | Milk | 24 h (0.15 ppm §) | >24 h | |||||||||
Enrofloxacin | Sheep; Assaf; 2–3 years; n = 12 | US Tol: Prohibited. EMA MRL extension from bovine to all food producing species: 100 ppb (milk). | HPLC | NS | NS | IV | 2.5 mg/kg Enrofloxacin | 1 | Milk | 24 h (0.09 ppm §) | > 24 h | Healthy | Mid-lactation; Milked 2×/day | [98] 2006 |
IV | 2.5 mg/kg Enrofloxacin co-administered with 0.8 mg/kg genistein IM | 1 | Milk | 24 h (0.05 ppm §) | > 24 h | |||||||||
IV | 2.5 mg/kg Enrofloxacin co-administered with 2 mg/kg albendazole IV | 1 | Milk | 24 h (0.06 ppm §) | > 24 h | |||||||||
Ibafloxacin | Goats; Murciano-Granadina; 3–4 years; n = 6 | US Tol: Prohibited. EMA MRL: Not established. | HPLC | NS | 10 ppb | IV | 15 mg/kg Ibafloxacin | 1 | Milk | 6 h (0.05 ppm §) | 12 h | Healthy | Lactating | [89] 2007 |
Levofloxacin | Goats; NS; 3–5 years; n = 6 | US Tol: Prohibited. EMA MRL: Not established. | Bioassay | NS | 0.05 ppm | IV | 4 mg/kg Levofloxacin hemihydrate | 1 | Milk | 36 h (0.04 ppm §) | 48 h | Healthy | Lactating | [90] 2009 |
IM | 4 mg/kg Levofloxacin hemihydrate | 1 | Milk | 36 h (0.06 ppm §) | 48 h | |||||||||
Marbo-floxacin | Goats; Anglo-nubian; 3–5 years; n = 6 | US Tol: Prohibited. EMA MRL: Not established. | HPLC | NS | 0.025 ppm | IV | 5 mg/kg Marbofloxacin | 1 | Milk | 36 h (0.06 ppm §) | 48 h | Healthy | Lactating | [91] 2017 |
IM | 5 mg/kg Marbofloxacin | 1 | Milk | 36 h (0.07 ppm §) | 48 h | |||||||||
Marbo-floxacin | Sheep; Assaf; adult; n = 15 | US Tol: Prohibited. EMA MRL: Not established. | Bioassay | 0.05 ppm ^ | 0.04 ppm ^ | IV | 2.5 mg/kg Marbofloxacin | 1 | Milk | 24 h (0.05 ppm §) | >24 h | Healthy | Mid-lactation | [92] 1997 |
IM | 2.5 mg/kg Marbofloxacin | 1 | Milk | 24 h (0.23 ppm §) | > 24 h | |||||||||
Moxifloxacin | Goats; Murciano-Granadina; 3–4 years; n = 6 | US Tol: Prohibited. EMA MRL: Not established. | HPLC | NS | 10 ppb | IV | 5 mg/kg Moxifloxacin | 1 | Milk | 32 h (0.01 ppm §) | 48 h | Healthy | Lactating | [93] 2006 |
SC | 5 mg/kg Moxifloxacin | 1 | Milk | 32 h (0.05 ppm §) | 48 h | |||||||||
Moxifloxacin | Goats; Murciano-Granadina; 3–4 years; n = 6 | US Tol: Prohibited. EMA MRL: Not established. | HPLC | NS | 10 ppb | IM | 5 mg/kg Moxifloxacin | 1 | Milk | 32 h (0.01 ppm §) | 48 h | Healthy | Lactating | [105] 2007 |
Norfloxacin | Sheep; crossbred; adult; n = 6 | US Tol: Prohibited. EMA MRL: Not established. | HPLC | 0.07 ppm | NS | IV | 25 mg/kg Norfloxacin nicotinate | 1 | Milk | 24 h (10 ppm) | >24 h | Healthy | Lactating | [106] 1994 |
Orbifloxacin | Goats; Murciano-Granadina; 5–6 years; n = 6 | US Tol: Prohibited. EMA MRL: Not established. | HPLC | 20 ppb | 25 ppb | IV | 2.5 mg/kg Orbifloxacin | 1 | Milk | 12 h (0.04 ppm §) | 24 h | Healthy | Lactating | [107] 2007 |
SC | 2.5 mg/kg Orbifloxacin | 1 | Milk | 24 h (0.03 ppm §) | 36 h | |||||||||
IM | 2.5 mg/kg Orbifloxacin | 1 | Milk | 12 h (0.05 ppm §) | 24 h | |||||||||
Orbifloxacin | Sheep; Barky; 4–6 years; n = 6 | US Tol: Prohibited. EMA MRL: Not established. | Bioassay | NS | 0.04 ppm | IV | 2.5 mg/kg Orbifloxacin | 1 | Milk | 24 h (0.09 ppm §) | 30 h | Healthy | Lactating | [94] 2009 |
IM | 2.5 mg/kg Orbifloxacin | 1 | Milk | 30 h (0.06 ppm §) | 48 h | |||||||||
Pefloxacin | Goats; Egyptian; 2 years; n = 5 | US Tol: Prohibited. EMA MRL: Not established. | Bioassay | NS | 0.078 ppm | IV | 10 mg/kg Pefloxacin | 1 | Milk | 10 h (0.1 ppm) | 12 h | Healthy | Lactating | [95] 2002 |
IM | 10 mg/kg Pefloxacin | 1 | Milk | 10 h (0.1 ppm) | 12 h | |||||||||
Flumequine | Sheep | US Tol: Not established. EMA established MRL: 100 ppb (liver); 300 ppb (kidney); 50 ppb (muscle, fat, skin). | HPLC | NS | 100 ppb | IM | 12 mg/kg Flumequine for first dose, then 6 mg/kg at 12 h intervals | 10 | Liver | Flu: 78 h (13.8 ppb) | Flu: >78 h | NS | NS | [108] 1997 |
7-OH: 48 h(10.24 ppb) | 7-OH: 60 h | |||||||||||||
Kidney | Flu: 78 h (38.6 ppb) | Flu: >78 h | ||||||||||||
7-OH: 78 h (4.5 ppb) | 7-OH: >78 h | |||||||||||||
Muscle | Flu: 78 h (9.0 ppb) | Flu: >78 h | ||||||||||||
7-Hydroxy-flumequine | 7-OH: 18 h (15.3 ppb) | 7-OH: 30 h | ||||||||||||
Fat | Flu: 78 h (52.5 ppb) | Flu: >78 h | ||||||||||||
7-OH: ND @ 18 h | 7-OH: 18 h | |||||||||||||
Inj. Site | Flu: 90 h (10 ppb) | Flu: >90 h | ||||||||||||
7-OH: 30 h (13.5 ppb) | 7-OH: 42 h | |||||||||||||
Flumequine | Sheep; NS; NS; n = 20 study; n = 4/time pt | US Tol: Not established. EMA established MRL: 100 ppb (liver); 300 ppb (kidney); 50 ppb (muscle, fat, skin). | HPLC | NS | 5 ppb | IM | 12 mg/kg Flumequine for first dose, then 6 mg/kg at 12 h intervals | 6 | Liver | 78 h (19.3 ppb) | >78 h | Healthy | NS | [109] 1998 |
Kidney | 78 h (62.5 ppb) | >78 h | ||||||||||||
Muscle | 78 h (12.4 ppb) | >78 h | ||||||||||||
Fat | 78 h (171.9 ppb) | >78 h |
Analyte | Species; Breed Age; # of Animals | Tolerance/ MRL | Analytical Method | LOD | LOQ | Route of Admini-stration | Dose & Active Ingredient | # of Doses | Matrix | Last Sampling Time Point (Post-Last Treatment) When Residues WERE Detected | Sampling Time Point When NO Residues Were Detected (Post-Last Treatment) * | Health Status | Additional Information | Source/Year |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Erythro-mycin | Goat; dairy type; 2–7 years; n = 10 | US Tol: Not established. EMA MRL by extension from bovine to all food producing species: 40 ppb (milk). | Bioassay | NS | NS | IMM | 300 mg Erythromycin at 12 h intervals | 3 | Milk | 24 h (0.05 ppm §) | 36 h | Healthy | Early & mid-lactation; Milked 2x/day, Whole tube per gland | [60] 1984 |
Erythro-mycin | Goat; NS; adult; n = 6 | US Tol: Not established. EMA MRL by extension from bovine to all food producing species: 40 ppb (milk). | Bioassay | NS | 0.024 ppm | IV | 10 mg/kg Erythromycin | 1 | Milk | 12 h (0.14 ppm §) | >12 h | Healthy | Early lactation | [121] 2007 |
IM | 15 mg/kg Erythromycin | 1 | Milk | 12 h (0.24 ppm §) | >12 h | |||||||||
Erythro-mycin | Sheep; NS; 3–4 years; n = 6 | US Tol: Not established. EMA MRL by extension from bovine to all food producing species: 40 ppb (milk). | Bioassay | NS | 0.039 ppm | IV | 10 mg/kg Erythromycin | 1 | Milk | 12 h (0.14 ppm §) | 24 h | Healthy | Lactating | [111] 2007 |
IM | 10 mg/kg Erythromycin | 1 | Milk | 12 h (0.16 ppm §) | 24 h | |||||||||
SC | 10 mg/kg Erythromycin | 1 | Milk | 24 h (0.05 ppm §) | >24 h | |||||||||
Erythro-mycin | Sheep; NS; NS; n = 20 study; n = 4/time pt | US Tol: Not established. EMA established MRL: 200 ppb (liver, kidney, muscle, fat). | Bioassay | NS | Liver: 250 ppb | IM | 10 mg/kg Erythromycin daily | 5 | Liver | 1 day (1.22 ppm) | 3 days | Healthy | NS | [110] 2000 |
Kidney: 250 ppb | Kidney | 1 days (0.77 ppm) | 3 days | |||||||||||
Muscle: 200 ppb | Muscle | 1 day (0.42 ppm) | 3 days | |||||||||||
Fat: 200 ppb | Fat | ND | 1 day | |||||||||||
Inj. Site: 200 ppb | Inj. Site | 15 days (0.37 ppm) | >15 days | |||||||||||
LS-MC | NS | 100 ppb | IM | 10 mg/kg Erythromycin daily | 5 | Liver | 1 days (0.41 ppm) | 3 days | Healthy | |||||
Kidney | 1 days (0.59 ppm) | 3 days | ||||||||||||
Muscle | 1 days (0.27 ppm) | 3 days | ||||||||||||
Fat | ND | 1 day | ||||||||||||
Inj. Site | 6 days (0.46 ppm) | 9 days | ||||||||||||
Gamithro-mycin | Sheep; Merino; 5–6 months; n = 9 study; n = 3/time pt | US Tol: Not established. EMA MRL: Not established. | LS-MC | NS | 10 ppb | SC | 6 mg/kg Gamithromycin | 1 | Skin | 10 days (276 ppb) | >10 days | Healthy | NS | [125] 2014 |
Gamithro-mycin | Sheep; NS; 7 months; n = 35 study; n = 5/ time pt | US Tol: Not established. EMA established MRL: 300 ppb (liver); 200 ppb (kidney); 50 ppb (muscle & fat). | LS-MC | NS | NS | SC | 6 mg/kg Gamithromycin | 1 | Liver | NS ‡ | NS ‡ | Healthy | NS | [126] 2016 |
Kidney | NS ‡ | NS ‡ | ||||||||||||
Muscle | NS ‡ | NS ‡ | ||||||||||||
Fat | NS ‡ | NS ‡ | ||||||||||||
Inj. Site | NS ‡ | NS ‡ | ||||||||||||
Spiramycin | Sheep; Awassi; adult; n = 1 | US Tol: Not established. EMA MRL: Not established. | Bioassay | NS | NS | IV | 20 mg/kg Spiramycin adipate | 1 | Milk | 60 h (2.78 ppm §) | >96 h | Healthy | Lactating; Milked 2×/day | [24] 1973 |
Radio-activity | NS | NS | IV | 20 mg/kg Spiramycin (radiolabeled) | 1 | Milk | 60 h (3.61 ppm §) | >96 h | ||||||
Spiramycin | Sheep; Awassi; Adult; n = 2 | US Tol: Not established. EMA MRL: Not established. | Bioassay | NS | NS | IM | 20 mg/kg Spiramycin adipate | 1 | Milk | 56 h (2.40 ppm §) | >56 h | Healthy | Lactating; Milked 2x/day | [29] 1974 |
Radio-activity | NS | NS | Milk | 56 h (3.61 ppm §) | >56 h | |||||||||
Bioassay | NS | NS | IM | 20 mg/kg Spiramycin (radiolabeled) | 1 | Milk | 56 h (1.79 ppm §) | >56 h | Diseased- mastitis | |||||
Radio-activity | NS | NS | Milk | 56 h (1.92 ppm §) | >56 h | |||||||||
Tilmicosin | Goats; NS; 2.5–3 years; n = 5 | US Tol: Not established. EMA MRL by extension from ovine to all food producing species: 40 ppb (milk). | Bioassay | 10 ppb | NS | SC | 10 mg/kg Tilmicosin | 1 | Milk | 11 days (0.16 ppm §) | 12 days | Healthy | Early lactation | [112] 1997 |
Tilmicosin | Sheep; Barki; 2–3 years; n = 5 | US Tol: Not established. EMA established MRL: 40 ppb (milk). | Bioassay | NS | 0.1 ppm | SC | 10 mg/kg Tilmicosin phosphate | 1 | Milk | 8 days (0.04 ppm §) | >8 days | Healthy | Mid-lactation | [127] 1999 |
Tilmicosin | Sheep; Suffolk crossbred; adult; n = 4 | US Tol: Not established. EMA established MRL: 40 ppb (milk). | HPLC | 50 ppb | NS | SC | 10 mg/kg Tilmicosin | 1 | Milk | 11 days (46 ppb) | >11 days | NS | Early & mid-lactation; Milked 2x/day | [128] 1994 |
Tilmicosin | Sheep; Beulah Cross; 10–11 weeks; n = 14 study (slaughter 4 time pts) | US Tol: 1200 ppb (liver); 100 ppb (muscle). EMA established MRL: 1000 ppb (liver & kidney); 50 ppb (muscle & fat). | Radio-activity | NS | NS | SC | 20 mg/kg Tilmicosin phosphate (radiolabeled) | 1 | Liver | 28 days (2.7 ppm) | >28 days | Healthy | NS | [129] 2002 |
Kidney | 28 days (0.55 ppm) | >28 days | ||||||||||||
Muscle | 28 days (1.35 ppm) | >28 days | ||||||||||||
Fat | 28 days (0.26 ppm) | >28 days | ||||||||||||
Inj. Site | 28 days (6.51 ppm) | >28 days | ||||||||||||
NS; NS; n = 16 & 4 slaughter time pts | HPLC | 50 ppb | NS | SC | 20 mg/kg Tilmicosin phosphate | 1 | Liver | 28 days (160 ppb) | >28 days | Healthy | ||||
Kidney | 28 days (73 ppb) | >28 days | ||||||||||||
Muscle | 7 days (193.5 ppb) | 21 days | ||||||||||||
Fat | 3 days (73 ppb) | 7 days | ||||||||||||
Inj. Site | 28 days (121.8 ppb) | >28 days | ||||||||||||
Scottish Blackface; 6 months; n = 24 study; n = 4/time pt | HPLC | NS | 50 ppb | SC | 30 mg/kg Tilmicosin phosphate | 1 | Liver | 56 days (81 ppb) | >56 days | Healthy | ||||
Kidney | 42 days (51 ppb) | 56 days | ||||||||||||
Muscle | <LOQ @ 14 days | 14 days | ||||||||||||
Fat | <LOQ @ 14 days | 14 days | ||||||||||||
Inj. Site | 56 days (81 ppb) | >56 days | ||||||||||||
Swaledale; NS; n = 28 study; n = 4/tme pt | HPLC | NS | 50 ppb | SC | 10 mg/kg Tilmicosin phosphate | 1 | Liver | 35 days (59 ppb) | 42 days | Healthy | ||||
Kidney | 21 days (73 ppb) | 28 days | ||||||||||||
Muscle | <LOQ @ 14 days | 14 days | ||||||||||||
Fat | <LOQ @ 14 days | 14 days | ||||||||||||
Inj. Site | 28 days (80 ppb) | 35 days | ||||||||||||
Tilmicosin | Sheep; NS; lambs; n = 12 study; n = 3/time pt | US Tol: 1200 ppb (liver); 100 ppb (muscle). EMA established MRL: 50 ppb (muscle & fat); 1000 ppb (liver & kidney). | Radio-activity | NS | NS | SC | 20 mg/kg Tilmicosin phosphate (radiolabeled) | 1 | Liver | 28 days (2.7 ppm) | >28 days | Healthy | NS | [113] 1997 |
Kidney | 28 days (0.55 ppm) | >28 days | ||||||||||||
Muscle | 28 days(<0.26 ppm) | >28 days | ||||||||||||
Fat | 28 days (<1.2 ppm) | >28 days | ||||||||||||
NS; lambs; n = 12 study; n = 3/time pt | Inj. Site | 28 days (1.32 ppm) | >28 days | |||||||||||
HPLC | NS | 0.05 ppm | SC | 20 mg/kg Tilmicosin phosphate | 1 | Liver | 28 days (0.16 ppm) | >28 days | Healthy | NS | ||||
Kidney | 28 days (0.06 ppm) | >28 days | ||||||||||||
Muscle | 7 days (0.19 ppm) | 21 days | ||||||||||||
Swaledale; NS; n = 28 study; n = 4/time pt | Fat | 7 days (<0.05 ppm) | 7 days | |||||||||||
Inj. Site | 28 days (0.12 ppm) | >28 days | ||||||||||||
LC | NS | 0.05 ppm | SC | 10 mg/kg Tilmicosin phosphate | 1 | Liver | 21 days (0.07 ppm) | 28 days | Healthy | NS | ||||
Kidney | 21 days (0.07 ppm) | 28 days | ||||||||||||
NS; adult; n = 4 | Muscle | ND @ 14 days | 14 days | |||||||||||
Fat | <LOQ @ 14 days | 14 days | ||||||||||||
Inj. Site | 28 days (0.08 ppm) | 35 days | ||||||||||||
HPLC | NS | 0.05 ppm | SC | 10 mg/kg Tilmicosin phosphate | 1 | Milk | 10 days (0.06 ppm) | 14 days | Healthy | Lactating | ||||
Tilmicosin | Sheep; Suffolk crossbred; Adult; n = 4 | US Tol: Not established. EMA established MRL: 50 ppb (milk). | HPLC | NS | 50 ppb | SC | 10 mg/kg Tilmicosin | 1 | Milk | 15 days (0.3 ppm §) | >15 days | Healthy | Early lactation | [114] 2008 |
Tulathro-mycin | Goats; Boer; 5–7 months; n = 16 study; n = 4/time pt | US Tol: Not established. EMA established MRL: 450 ppb (muscle); 250 ppb (fat); 5400 ppb (liver);1800 ppb (kidney). | UPLC | 0.7 ppb | 2 ppb | SC | 2.5 mg/kg Tulathromycin at 7-day interval | 2 | Liver | 20 days (0.78 ppm)) | >20 days | Healthy | NS | [123] 2012 |
Kidney | 20 days (0.44 ppm) | >20 days | ||||||||||||
Muscle | 5 days (0.46 ppm) | 10 days | ||||||||||||
Fat | 10 days (0.17 ppm) | 20 days | ||||||||||||
Tulathro-mycin | Goats; Mixed; 7–8 weeks; n = 6 | US Tol: Not established. EMA established MRL: 450 ppb (muscle); 250 ppb (fat); 5400 ppb (liver); 1800 ppb (kidney). | LC-MS | Liver: 0.75 ppm | Liver: 1.91 ppm | SC | 2.5 mg/kg Tulathromycin | 1 | Liver | <LOD @ 14 days | 14 days | Healthy Juveniles | NS | [124] 2012 |
Kidney | <LOD @ 14 days | 14 days | ||||||||||||
Kidney: 0.29 ppm | Kidney: 1.66 ppm | Muscle | <<LOD @ 14 days | 14 days | ||||||||||
Fat | <LOD @ 14 days | 14 days | ||||||||||||
Muscle: 0.24 ppm | Muscle: 0.69 ppm | Inj. Site | 35 days (0.25 ppm) | >35 days | ||||||||||
Mixed; 5–6 months; n = 30 stdy; n = 6/time pt | SC | 2.5 mg/kg Tulathromycin | 1 | Liver | 12 days (1.18 ppm) | 18 days | Healthy Market-age | |||||||
Fat: 0.14 ppm | Fat: 0.61 ppm | Kidney | 48 days (0.31 ppm) | >48 days | ||||||||||
Muscle | 5 days (0.24 ppm) | 12 days | ||||||||||||
Inj. Site: 0.24 ppm | Inj. Site: 0.69 ppm | Fat | 12 days (0.15 ppm) | 18 days | ||||||||||
Inj. Site | 18 days (1.27 ppm) | 27 days | ||||||||||||
Mixed; 2–3 weeks; n = 12 | SC | 2.5 mg/kg Tulathromycin at 7-day interval | 3 | Liver | 7 days (0.7 ppm) | >7 days | Healthy Juveniles | |||||||
Kidney | <LOD @ 7 days | >7 days | ||||||||||||
Muscle | <LOD @ 7 days | >7 days | ||||||||||||
Fat | <LOD @ 7 days | >7 days | ||||||||||||
Inj. Site | 7 days (8.76 ppm) | >7 days | ||||||||||||
SC | 7.5 mg/kg Tulathromycin at 7-day interval | 3 | Liver | 7 days (3.4 ppm) | >7 days | Healthy Juveniles | ||||||||
Kidney | 7 days (1.65 ppm) | >7 days | ||||||||||||
Muscle | 7 days (0.65 ppm) | >7 days | ||||||||||||
Fat | 7 days (0.36 ppm) | >7 days | ||||||||||||
Inj. Site | 7 days (17.9 ppm) | >7 days | ||||||||||||
SC | 12.5 mg/kg Tulathromycin at 7-day interval | 3 | Liver | 7 days (4.87 ppm) | >7 days | Healthy Juveniles | ||||||||
Kidney | 7 days (3.28 ppm) | >7 days | ||||||||||||
Muscle | 7 days (1.33 ppm) | >7 days | ||||||||||||
Fat | 7 days (0.65 ppm) | >7 days | ||||||||||||
Inj. Site | 7 days (24.4 ppm) | >7 days | ||||||||||||
Tulathro-mycin | Goats; dairy type; 2–5 years; n = 8 | US Tol: Not established. EMA MRL: Not established. | HPLC | 1.8 ppb | 5.0 ppb | SC | 2.5 mg/kg Tulathromycin | 1 | Milk | 45 days (2 ppb) | >45 days | Healthy, | Lactating; Milked 2×/day | [115] 2016 |
Tulathro-mycin | Goats; NS; 30–36 months; n = 5 | US Tol: Not established. EMA MRL: Not established. | Bioassay | NS | NS | IV | 2.5 mg/kg Tulathromycin | 1 | Milk | 19 days (0.08 ppm §) | >19 days | Healthy | Lactating | [116] 2012 |
IM | 2.5 mg/kg Tulathromycin | 1 | Milk | 19 days (0.1 ppm §) | >19 days | |||||||||
Tulathro-mycin | Goats; dairy type; 1–7 years; n = 8 | US Tol: Not established. EMA MRL: Not established. | LS-MS | 1.8 ppb | 5.0 ppb | SC | 2.5 mg/kg Tulathromycin at 7-day interval | 2 | Milk | 58 days (0.5 ppb) | 61 days | Healthy | Lactating; Milked 2×/day | [117] 2016 |
Tulathro-mycin | Sheep; NS; NS; n = 30 study; n = 3/time pt | US Tol: Not established. EMA established MRL: 450 ppb (muscle); 250 ppb (fat); 5400 ppb (liver); 1800 ppb (kidney). | LS-MC | NS | Liver: 300 ppb | IM | 2.5 mg/kg Tulathromycin | 1 | Liver | 35 days (0.3 ppm) | 42 days | Healthy | NS | [130] 2015 |
Kidney: 200 ppb | Kidney | 21 days (0.2 ppm) | 28 days | |||||||||||
Muscle; 50 ppb | Muscle | 21 days (0.05 ppm) | 28 days | |||||||||||
Fat: 50 ppb | Fat | 14 days (0.05 ppm) | 21 days | |||||||||||
Inj. Site: 50 ppb | Inj. Site | 49 days (0.15 ppm) | >49 days | |||||||||||
Tylosin | Goats; NS; adult; n = 5 | US Tol: Not established. EMA MRL by extension from bovine to all food producing species: 50 ppb (milk). | Bioassay | NS | NS | IV | 15 mg/kg Tylosin tartrate | 1 | Milk | 24 h (0.6 ppm) | >24 h | Healthy | Lactating | [118] 1991 |
IM | 15 mg/kg Tylosin tartrate | 1 | Milk | 24 h (1.7 ppm) | >24 h | |||||||||
Tylosin | Sheep; Awassi; adult; n = 3 | US Tol: Not established. EMA MRL by extension from bovine to all food producing species: 50 ppb (milk). | Bioassay | NS | NS | IM | 20 mg/kg Tylosin | 1 | Milk | 26 h (1.80 ppm) | >26 h | Healthy | Lactating; Milked 2x/day | [119] 1973 |
Milk | 26 h (0.67 ppm) | >26 h | Diseased- mastitis | |||||||||||
Tylosin | Sheep; Merino; adult; n = 7 | US Tol: Not established. EMA MRL by extension from bovine to all food producing species: 50 ppb (milk). | HPLC | NS | NS | IM | 10 mg/kg Tylosin | 5 | Milk | 36 h (30.9 ppb) | 48 h | Healthy | Lactating; Milked 2×/day | [120] 2001 |
Analyte | Species; Breed; Age; # of Animals | Tolerance/MRL | Analytical Method | LOD | LOQ | Route of Admini-stration | Dose & Active Ingredient | # of Doses | Matrix | Last Sampling Time Point (Post-Last Treatment) When Residues WERE Detected | Sampling Time Point When NO Residues Were Detected (Post-Last Treatment) * | Health Status | Additional Information | Source/Year |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sulfa-dimethoxine | Goat; NS; adult; n = 5 | US Tol: Not established. EMA MRL: Not established. | Color-imetrically | NS | NS | PO | 286 mg/kg sulfadimethoxine | 1 | Milk | 2 days (NS) | 3 days | Healthy | Lactating | [135] 2016 |
Sulfa-nilamide | Goat; NS; Adult; n = 1 | US Tol: Not established. EMA established MRL: 100 ppb (milk). | Spectro-metric | NS | NS | IMM | 1000 mg Sulfanilamide | 1 | Milk | 4 days (143 ppm) | >4 days | Healthy | Lactating; Single gland | [132] 1958 |
Sulfa-cetamide | Goat; NS; Adult; n = 1 | US Tol: Not established. EMA established MRL: 100 ppb (milk). | Spectro-metric | NS | NS | IMM | 1000 mg Sulfacetamide | 1 | Milk | 4 days (2520 ppm) | >4 days | Healthy | Lactating; Single gland | [132] 1958 |
Sulfa-nilamide | Sheep; NS; adult; n = 7 | US Tol: Not established. EMA MRL: Not established. | Bioassay | NS | NS | IV; PO | 150 mg/kg Sulfanilamide IV once then 100 mg/kg sulfanilamide PO at 12 h intervals | 8 | Liver | 8 days (79 ppm) | >8 days | Healthy | NS | [136] 1977 |
Kidney | 8 days (119 ppm) | >8 days | ||||||||||||
Muscle | 8 days (50 ppm) | >8 days | ||||||||||||
Sulfa-methoxy-pyridazine | Sheep; NS; adult; n = 7 | US Tol: Not established. EMA MRL: Not established. | Bioassay | NS | NS | PO | 35 mg/kg Sulfamethoxy-pyridazine once then 25 mg/kg Sulfamethoxy-pyridazine daily | 4 | Liver | 8 days (55 ppb) | >8 days | Healthy | NS | [136] 1977 |
Kidney | 8 days (115 ppb) | >8 days | ||||||||||||
Muscle | 8 days (41 ppb) | >8 days | ||||||||||||
Sulf-athiazole | Sheep; mixed; lambs; n = 15 study; n = 3/time pt | US Tol: Not established. EMA MRL: Not established. | Spectrometric | NS | NS | IV | 72 mg/kg Sodium sulfathiazole | 1 | Liver | 1 day (0.12 ppm §) | >1 day | Healthy | NS | [137] 1977 |
Kidney | 1 days (0.11 ppm §) | >1 day | ||||||||||||
Muscle | 16 h (0.27 ppm §) | 1 day | ||||||||||||
Fat | 16 h (0.26 ppm §) | 1 day | ||||||||||||
Sulfa-merazine | Sheep; mixed; 22 months; n = 13 study; n = 3/time pt | US Tol: Not established. EMA MRL: Not established. | HPLC | NS | 0.1 ppm | PO | 132 mg/kg Sulfamerazine once, then 66 mg/kg at 12 h intervals | 6 | Liver | 5 days (0.11 ppm) | 7 days | Healthy | NS | [138] 1972 |
Kidney | 5 days (0.07 ppm) | 7 days | ||||||||||||
Muscle | 7 days (0.12 ppm) | 10 days | ||||||||||||
Fat | 7 days (0.05 ppm) | >7 days | ||||||||||||
Sulfa-merazine | Sheep; NS; adult; n = 12 | US Tol: Not established. EMA established MRL: 100 ppb (milk). | Spectro-metric | NS | NS | PO | 100 mg/kg Sulfamerazine | 1 | Milk | 2 days (3.7 ppm) | >2 days | Healthy | Lactating; Full dose/ gland | [139] 1978 |
IV | 100 mg/kg Sulfamerazine | 1 | Milk | 1 day (5.0 ppm) | 2 days | |||||||||
IM | 100 mg/kg Sulfamerazine | 1 | Milk | 1 days (4.2 ppm) | 2 days | |||||||||
IMM | 500 mg Sulfamerazine | 1 | Milk | 12 min (428 ppm) | >12 min | |||||||||
Sulfa-methazine † | Goat; West African Dwarf; 1 year; n = 20 study; n = 1/time point | US Tol: Not established. EMA MRL: Not established. | Spectro-metric | 0.05 ppm | NS | IM | 100 mg/kg Sulfadimidine | 1 | Liver | 30 days (5.29 ppm) | >30 days | Healthy | NS | [133] 2018 |
Kidney | 30 days (3.84 ppm) | >30 days | ||||||||||||
Muscle | 30 days (2.01 ppm) | >30 days | ||||||||||||
Fat | 30 days (4.84 ppm) | >30 days | ||||||||||||
IM | 100 mg/kg Sulfadimidine co-admin w/5 mg/kg piroxicam | 1 | Liver | 30 days (5.33 ppm) | >30 days | |||||||||
Kidney | 30 days (4.79 ppm) | >30 days | ||||||||||||
Muscle | 30 days (1.38 ppm) | >30 days | ||||||||||||
Fat | 30 days (4.53 ppm) | >30 days | ||||||||||||
Sulfa-methazine † | Sheep; Targhee/Rambouillet; lambs; n = 16 study; n = 2/time pt | US Tol: Not established. EMA MRL: Not established. | Spectro-metric | NS | NS | IV | 107.25 mg/kg Sodium sulfamethazine | 1 | Liver | 4 days (0.11 ppm) | >4 days | Healthy | NS | [134] 1977 |
Kidney | 4 days (0.14 ppm) | >4 days | ||||||||||||
Muscle | 4 days (0.09 ppm) | >4 days | ||||||||||||
Fat | 4 days (0.05 ppm) | >4 days | ||||||||||||
Sulfa-methazine † | Sheep; crossbred; 2–3 years; n = 25 study; n = 5/time pt | US Tol: Not established. EMA MRL: Not established. | HPLC | NS | 0.1 ppm | PO | 391 mg/kg Sulfamethazine | 1 | Liver | 4 days (0.3 ppm) | 8 days | Healthy | NS | [140] 1991 |
Kidney | 4 days (0.25 ppm) | 8 days | ||||||||||||
Muscle | 4 days (0.2 ppm) | 8 days | ||||||||||||
Fat | ND | 4 days | ||||||||||||
Sulfa-methazine † | Sheep; crossbred; adult; n = 10 | US Tol: Not established. EMA Established MRL: 100 ppb (milk). | Spectro-metric | NS | NS | PO | 15,000 mg Sulfamethazine | 1 | Milk | 1 day (NS) | >1 day | Healthy | Lactating | [131] 1965 |
PO | 15,000 mg Sulfamethazine at 12 h interval | 2 | Milk | 2 days (NS) | >2 days | Healthy | ||||||||
PO | 15,000 mg Sulfamethazine at 16 h interval | 2 | Milk | 2 days (NS) | >2 days | Healthy | ||||||||
PO | 15,000 mg Sulfamethazine at 22 h interval | 2 | Milk | 2 days (NS) | >2 days | Healthy | ||||||||
PO | 15,000 mg Sulfamethazine at 24 h interval | 2 | Milk | 2 days (NS) | >2 days | Healthy | ||||||||
PO | 15,000 mg Sulfamethazine at 25 h interval | 2 | Milk | 53 h (NS) | >53 h | Diseased- mastitis | ||||||||
PO | 15,000 mg Sulfamethazine first dose, 10,000 mg second dose at 24 h interval | 2 | Milk | 2 days (NS) | >2 days | Healthy | ||||||||
PO | 15,000 mg Sulfamethazine first dose, 7000 mg second dose at 24 h interval | 3 | Milk | 2 days (NS) | >2 days | Healthy | ||||||||
PO | 15,000 mg Sulfamethazine first dose, 7000 mg second dose at 22 h interval | 3 | Milk | 78 h (NS) | >78 h | Diseased- mastitis | ||||||||
PO | 15,000 mg Sulfamethazine first 2 doses at 13 h interval, 7000 mg third dose at 23 h interval | 3 | Milk | 74 h (NS) | >74 h | Diseased- mastitis | ||||||||
PO | 15,000 mg Sulfamethazine first 2 doses at 13 h interval, 7000 mg third dose at 22 h interval | 3 | Milk | 83 h (NS) | >83 h | Diseased- mastitis | ||||||||
PO | 18,000 mg first dose, 6000 mg second dose at 17 h interval then 19 h interval | 3 | Milk | 80 h (NS) | >80 h | Diseased- mastitis | ||||||||
PO | 18,000 mg Sulfamethazine first dose, 6000 mg at 24 h intervals | 4 | Milk | 96 h (NS) | >96 h | Diseased- mastitis | ||||||||
Sulfa-methazine † | Sheep; NS; NS; NS | US Tol: Not established. EMA MRL: Not established. | NS | NS | NS | PO | 107.25 mg/kg Sulfamethazine | 1 | Liver | 2 days (0.1 ppm §) | >2 days | Healthy | NS | [141] 1978 |
Kidney | 2 days (0.23 ppm §) | >2 days | ||||||||||||
Muscle | 2 days (0.15 ppm §) | >2 days | ||||||||||||
Fat | 36 h (0.16 ppm §) | 2 days | ||||||||||||
Sulfa-methazine † | Sheep; Suffolk; NS; n = 2; n = 1/time pt | US Tol: Not established. EMA MRL: Not established. | Radioactivity | NS | NS | PO | 100 mg/kg Sulfamethazine (radiolabeled) | 1 | Liver | 2 days (10 ppm) | >2 days | Healthy | NS | [142] 1983 |
Kidney | 2 days (22 ppm) | >2 days | ||||||||||||
Muscle | 2 days (3 ppm) | >2 days | ||||||||||||
Sulfa-methazine † | Sheep; Balady; 2–4 years; n = 9 study; n = 3/time pt | US Tol: Not established. EMA MRL: Not established. | NS | NS | NS | IM | 0.1 mg/kg Sulfadimidine | 1 | Liver | 4 h (20 ppm) | >4 h | Healthy | NS | [143] 1980 |
Kidney | 4 h (198 ppm) | >4 h | ||||||||||||
Muscle | 4 h (11 ppm) | >4 h | ||||||||||||
Sulfadiazine | Sheep; Balady; 2–4 years; n = 9 study; n = 3/time pt | US Tol: Not established. EMA MRL: Not established. | NS | NS | NS | IM | 0.1 mg/kg Sulfadiazine | 1 | Liver | 4 h (25 ppm) | >4 h | Healthy | NS | [143] 1980 |
Kidney | 4 h (40 ppm) | >4 h | ||||||||||||
Muscle | 4 h (13 ppm) | >4 h |
Analyte | Species;Breed; Age; # of Animals | Tolerance/MRL | Analytical Method | LOD | LOQ | Route of Admini-stration | Dose & Active Ingredient | # of Doses | Matrix | Last Sampling Time Point (Post-Last Treatmnet) When Residues WERE Detected | Sampling Time Point When NO Residues Were Detected (Post-Last Treatment) * | Health Status | Additional Information | Source/Year |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Chlortetra-cycline | Sheep; Chios & Friesian; adult; n = 4 | US Tol: Not established. EMA established MRL for all food producing species: 100 ppb (milk). | Bioassay | NS | NS | IM | 25 mg/kg Chlor-tetracycline hydrochloride | 1 | Milk | 72 h (0.1 ppm) 120 h (R udder) (0.28 ppm) | >72 h >120 h (R udder) | Healthy | Lactating; Only right ½ of udder infused. | [147] 1982 |
IMM | 426 mg Chlor-tetracycline hydrochloride in right half of udder. | 1 | Milk | 38 h (L udder) (0.09 ppm) | 48 h (L udder) | |||||||||
Chlortetra-cycline | Sheep; NS; lambs; NS | US Tol: 6000 ppb (liver); 12,000 ppb (kidney, fat); 2000 ppb (muscle). EMA established MRL for all food producing species: 300 ppb (liver); 600 ppb (kidney); 100 ppb (muscle). | NS | NS | Liver: 0.03 ppm | POMF | 50 mg/kg Chlor-tetracycline daily | 42 | Liver | 0 days (0.11 ppm) | 2 days | Healthy | NS | [148] 1996 |
Kidney: 0.028 ppm | Kidney | 2 days (0.06 ppm) | 4 days | |||||||||||
Muscle: 0.027 ppm | Muscle | 0 days (0.03 ppm) | 2 days | |||||||||||
Fat: 0.025 ppm | Fat | ND | 0 days | |||||||||||
Chlortetra-cycline | Sheep; NS; lambs; NS | US Tol: 6000 ppb (liver); 12,000 ppb (kidney, fat); 2000 ppb (muscle). EMA established MRL for all food producing species: 300 ppb (liver); 600 ppb (kidney); 100 ppb (muscle). | NS | NS | Liver: 0.03 ppm | POMF | 50 mg/kg Chlor-tetracycline co-admin with 50 mg/kg sulfamethazine daily | 42 | Liver | 0 days (0.21 ppm) | 4 days | Healthy | NS | [148] 1996 |
Kidney: 0.028 ppm | Kidney | 6 days (0.05 ppm) | 8 days | |||||||||||
Muscle: 0.027 ppm | Muscle | 0 days (0.04 ppm) | 4 days | |||||||||||
Fat: 0.025 ppm | Fat | ND | 0 days | |||||||||||
Doxy-cycline | Goat; NS; adult; n = 6 | US Tol: Not established. EMA MRL: Not established. | Bioassay | NS | NS | IV | 5 mg/kg Doxycycline hydrochloride | 1 | Milk | 48 h (0.12 ppm §) | >2 days | Healthy | Lactating | [149] 1989 |
Mino-cycline | Goat; NS; 1.5–2 years; n = 6 | US Tol: Not established. EMA MRL: Not established. | Bioassay | NS | NS | IV | 5 mg/kg Minocycline hydrochloride | 1 | Milk | 36 h (0.11 ppm) | 2 days | Healthy | Lactating | [150] 1999 |
Oxytetra-cycline | Sheep; Chios & Friesian; adult; n = 4 | US Tol: Not established. EMA established MRL for all food producing species: 100 ppb (milk). | Bioassay | NS | NS | IM | 30 mg Oxytetracycline hydrochloride | 1 | Milk | 38 h (0.7 ppm) | 48 h | Healthy | Lactating; Only right ½ of udder infused. | [147] 1982 |
IMM | 420 mg Oxytetracycline hydrochloride in right half of udder | 1 | Milk | 110 h (R udder) (0.58 ppm) | 120 h (R udder) | |||||||||
14 h (L udder) (1.22 ppm | 24 h (L udder) | |||||||||||||
Oxytetra-cycline | Sheep; Awassi; adult; n = 8 | US Tol: Not established. EMA established MRL for all food producing species: 100 ppb (milk). | Bioassay | 0.5 ppm | NS | IM | 20 mg/kg Oxytetracycline | 1 | Milk | 72 h (NS) | >3 days | Healthy | Early lactation | [151] 1982 |
Oxytetra-cycline | Sheep; mixed breed; NS; n = 24 study; n = 4/time pt | US Tol: 6000 ppb (liver); 12,000 ppb (kidney, fat); 2000 ppb (muscle). EMA established MRL for all food producing species: 300 ppb (liver); 600 ppb (kidney); 100 ppb (muscle). | HPLC | NS | Liver: 85 ppb | IM | 19.8 mg/kg Oxytetracycline (long acting) | 1 | Liver | NS | 14 days | NS | NS | [152] 1997 |
Kidney: 42 ppb | Kidney | NS | 14 days | |||||||||||
Muscle: 45 ppb | Muscle | NS | 14 days | |||||||||||
Fat: 45 ppb | Fat | NS | 14 days | |||||||||||
Inj. Site | NS | 14 days | ||||||||||||
Oxytetra-cycline | Sheep; Sardinian; adult; n = 5 | US Tol: Not established. EMA established MRL for all food producing species: 100 ppb (milk). | HPLC | 5.2 ppb | 17.5 ppb | IMM | 20 mg/kg Oxytetracycline | 1 | Milk | 7 days (0.1 ppm §) | >7 days | NS | Lactating; Milked 2×/day | [153] 1999 |
IM | 20 mg/kg Oxytetracycline | 1 | Milk | 7 days (4.15 ppm §) | >7 days | |||||||||
Oxytetra-cycline | Sheep; mixed breed; NS; n = 24 study; n = 4/time pt | US Tol: 6000 ppb (liver);12,000 ppb (kidney, fat); 2000 ppb (muscle). EMA established MRL for all food producing species: 300 ppb (liver); 600 ppb (kidney); 100 ppb (muscle). | HPLC | NS | Liver: 85 ppb | IM | 20 mg/kg Oxytetracycline (long acting) | 1 | Liver | 7 days (52 ppb) | 14 days | Healthy | NS | [154] 2000 |
Kidney: 42 ppb | Kidney | 14 days (65 ppb) | >14 days | |||||||||||
Muscle: 45 ppb; | Muscle | 7 days (49 ppb) | 14 days | |||||||||||
Fat: 45 ppb | Fat | 7 days (88 ppb) | 14 days | |||||||||||
Inj. Site | 14 days (59 pb) | >14 days | ||||||||||||
Oxytetra-cycline | Sheep; NS; 16 months; n = 2 study; n = 1/ time pt | US Tol: 6000 ppb (liver); 12,000 ppb (kidney, fat); 2000 ppb (muscle). EMA established MRL for all food producing species: 300 ppb (liver); 600 ppb (kidney); 100 ppb (muscle). | LC-MS | Liver Oxy: 15.3 ppb | Liver Oxy: 50 ppb | IM | 10 mg/kg Oxytetracycline daily | 5 | Liver | Oxy: 2 days (272.8 ppb) | Oxy: >2 days | Healthy | NS | [155] 2008 |
Liver 4-Epi †: 16.6 ppb | Liver 4-Epi †: 50 ppb | 4-Epi †: 4 h (217.8 ppb) | 4-Epi †: 2 days | |||||||||||
Kidney Oxy: 15.7 ppb | Kidney Oxy: 50 ppb | Kidney | Oxy: 2 days (1342.4 ppb) | Oxy: >2 days | ||||||||||
Kidney 4-Epi †: 17.5 ppb | Kidney 4-Epi †: 50 ppb | 4-Epi †: 2 days (55 ppb) | 4-Epi †: >2 days | |||||||||||
Muscle Oxy: 12.4 ppb | Muscle Oxy: 50 ppb | Muscle | Oxy: 2 days (73.6 ppb) | Oxy: >2 days | ||||||||||
4-epi-Oxytetra-cycline | Muscle 4-Epi †: 13.9 ppb | Muscle 4-Epi †: 30 ppb | 4-Epi †: 4 h (34.2 ppb) | 4-Epi †: 2 days | ||||||||||
Fat Oxy: 12.4 ppb | Fat Oxy: 50 ppb | Fat | Oxy: 4 h (3610.7 ppb) | Oxy: 2 days | ||||||||||
Fat 4-Epi †: 14.1 ppb | Fat 4-Epi †: 30 ppb | 4-Epi †: <LOQ @ 4 h | 4-Epi †: 4 h | |||||||||||
Inj. Site Oxy: 12.4 ppb | Inj. Site Oxy: 30 ppb | Inj. Site | Oxy: 2 days (763.2 ppb) | Oxy: >2 days | ||||||||||
Inj. Site 4-Epi †: 13.9 ppb | Inj. Site 4-Epi †: 30 ppb | 4-Epi†: 2 days (34.5 ppb) | 4-Epi †: >2 days | |||||||||||
Oxytetra-cycline | Sheep; Chios; 3 years; n = 20 | US Tol: Not established. EMA established MRL for all food producing species: 100 ppb (milk). | LC-MS | NS | 20 ppb | IM | 10 mg/kg Oxytetracycline daily | 5 | Milk | 7 days (33.2 ppb) | 8 days | Healthy | Lactating; Milked 2×/day | [156] 2008 |
Oxytetra-cycline | Sheep; Comisana; adult; n = 8 | US Tol: Not established. EMA established MRL for all food producing species: 100 ppb (milk). | HPLC | NS | NS | IM | 20 mg/kg Oxytetracycline (long acting) | 1 | Milk | 7.5 days (50 ppb) | 8 days | Healthy | Lactating; Milked 2×/day | [157] 2000 |
Oxytetra-cycline | Sheep; desert; 9–12 months; n = 12/ study; n = 4/time pt | US Tol: 6000 ppb (liver);12,000 ppb (kidney, fat); 2000 ppb (muscle). EMA establsihed MRL for all food producing species: 300 ppb (liver); 600 ppb (kidney); 100 ppb (muscle). | Bioassay | NS | NS | IM | 5000 mg/kg Oxytetracycline (long acting) daily | 5 | Liver | 10 days (1.51 ppm) | >10 days | NS | NS | [158] 2007 |
Kidney | 10 days (6.7 ppm) | >10 days | ||||||||||||
Muscle | 10 days (70.87 ppm) | >10 days | ||||||||||||
Inj. Site | 10 days (1227.7 ppm) | >10 days | ||||||||||||
Oxytetra-cycline | Sheep; Chios; 16 months; n = 30 study; n = 5/time pt | US Tol: 6000 ppb (liver); 12,000 ppb (kidney, fat); 2000 ppb (muscle). EMA established MRL for all food producing species: 300 ppb (liver); 600 ppb (kidney); 100 ppb (muscle). | LC-MS | NS | Liver: 50 ppb | IM | 10 mg/kg Oxytetracycline daily | 5 | Liver | Oxy: 6 days (0.05 ppm) | Oxy: 9 days | Healthy | NS | [146] 2009 |
4-Epi †: 2 days (0.05 ppm) | 4-Epi †: 4 days | |||||||||||||
Kidney: 50 ppb | Kidney | Oxy: 9 days (0.08 ppm) | Oxy: 12 days | |||||||||||
4-Epi †: 4 days (0.05 ppm) | 4-Epi †: 6 days | |||||||||||||
Muscle: 30 ppb | Muscle | Oxy: 4 days (0.04 ppm) | Oxy: 6 days | |||||||||||
4-epi-Oxytetra-cycline | 4-Epi †: 2 days (0.04 ppm) | 4-Epi †: 4 days | ||||||||||||
Fat: 30 ppb | Fat | Oxy: 0 days (2.7 ppm) | Oxy: 2 days | |||||||||||
4-Epi †:<LOQ @ 0 days | 4-Epi †: 0 days | |||||||||||||
Inj. Site: 30 ppb | Inj. Site | Oxy: 9 days (0.04 ppm) | Oxy: 12 days | |||||||||||
4-Epi †: 2 days (0.062 ppm) | 4-Epi †: 4 days | |||||||||||||
Oxytetra-cycline | Goat; Saanen; adult; n = 8 | US Tol: Not established. EMA established MRL for all food producing species: 100 ppb (milk). | HPLC | NS | NS | IM | 20 mg/kg Oxytetracycline (long acting) | 1 | Milk | 7.5 days (60 ppb) | 8 days | Healthy | Lactating; Milked 2×/day | [157] 2000 |
Oxytetra-cycline | Goat; mixed breed; NS; n = 32 Mixed breed; adult; n = 10 | US Tol: 6000 ppb (liver); 12,000 ppb (kidney, fat); 2000 ppb (muscle); Not approved (milk). EMA established MRL for all food producing species: 300 ppb (liver); 600 ppb (kidney); 100 ppb (muscle); 100 ppb (milk). | Bioassay | 0.1 ppm | NS | IM | 20 mg/kg Oxytetracycline (long acting) | 1 | Liver | 7 days (385 ppb) | 14 days | Healthy | Lactating; Milked 2×/day | [145] 2002 |
Kidney | 7 days (376 ppb) | 14 days | ||||||||||||
Muscle | 7 days (246 ppb) | 14 days | ||||||||||||
Fat | 96 h (236 ppb) | 7 days | ||||||||||||
Inj. Site | 14 days (1129 ppb) | >14 days | ||||||||||||
HPLC | 0.15 ppm | IM | 20 mg/kg Oxytetracycline (long acting) | 1 | Milk | 178 h (0.03 ppm) | >178 h | Healthy | Lactating; Milked 2×/day | |||||
SC | 20 mg/kg Oxytetracycline (long acting) | 1 | Milk | 178 h (0.05 ppm) | >178 h | |||||||||
Oxytetra-cycline | Goat; Saanen; adult; n = 8 | US Tol: Not established. EMA established MRL for all food producing species: 100 ppb (milk). | Bioassay | 0.25 ppm | NS | IMM | 426 mg Oxytetracycline per half daily | 3 | Milk | 5 h (0.50 ppm §) | >5 h | Healthy | Lactating; Milked 2×/day | [53] 1984 |
Oxytetra-cycline | Goat; NS; adult; NS | US Tol: Not established. EMA established MRL for all food producing species: 100 ppb (milk). | HPLC | NS | NS | IM | 15 mg/kg Oxytetracycline daily | 4 | Milk | 100 h (0.46 ppm) | >100 h | Healthy | Lactating | [159] 1994 |
Oxytetra-cycline | Goat; Canary Island; adult; n = 5 | US Tol: Not established. EMA established MRL for all food producing species: 100 ppb (milk). | HPLC | NS | NS | IM | 15 mg/kg Oxytetracycline | 4 | Milk | 96 h (0.46 ppm) | >96 h | Healthy | Lactating; Milked 2×/day | [160] 1995 |
Oxytetra-cycline | Goat; Saanen; adult; n = 8 | US Tol: Not established. EMA established MRL for all food producing species: 100 ppb (milk). | LC-MS | 15 ppb | 50 ppb | IM | 20 mg/kg Oxytetracycline | 1 | Milk | 180 h (60 ppb) | 8 days | Healthy | Lactating; Milked 2×/day | [161] 2002 |
Oxytetra-cycline | Goat; Nubian, Alpine & LaMancha; adult; n = 15 | US Tol: Not established. EMA established MRL for all food producing species: 100 ppb (milk). | HPLC | NS | NS | IM | 17.6 mg/kg Oxytetracycline at 48 h interval | 2 | Milk | 96 h (87 ppb) | >96 h | Healthy | Mid-lactation; Milked 2×/day | [144] 2015 |
Oxytetra-cycline | Goat; Murciano-Granadina; adult; n = 5 | US Tol: Not established. EMA established MRL for all food producing species: 100 ppb (milk). | HPLC | NS | NS | IV | 20 mg/kg Oxytetracycline chlorhydrate | 1 | Milk | 2 days (0.25 ppm §) | >2 days | Healthy | Lactating; Milked 1×/day | [162] 2001 |
IM | 20 mg/kg Oxytetracycline chlorhydrate | 1 | Milk | 3 days (0.36 ppm §) | >3 days | |||||||||
IM | 20 mg/kg Oxytetracycline dehydrate (Long Acting) | 1 | Milk | 3 days (0.27 ppm §) | >3 days | |||||||||
Oxytetra-cycline | Goat; NS; 2–7 years; n = 10 | US Tol: Not established. EMA established MRL for all food producing species: 100 ppb (milk). | Bioassay | NS | NS | IMM | 426 mg Oxytetracycline hydrochloride per half at 12 h intervals | 3 | Milk | 96 h (0.02 ppm §) | 108 h | Healthy | Early & mid-lactation; Milked 2×/day; 1 tube/ mammary gland | [60] 1984 |
Tetra-cycline | Sheep; Awassi; Adult; n = 2 | US Tol: Not established. EMA established MRL for all food producing species: 100 ppb (milk). | Bioassay | NS | NS | IM | 20 mg/kg Tetracycline | 1 | Milk | 48 h (0.08 ppm §) | >2 days | Healthy | Lactating; Milked 2×/day | [29] 1974 |
48 h (0.04 ppm §) | >2 days | Diseased- mastitis | ||||||||||||
Radio-activity | NS | NS | IM | 20 mg/kg Tetracycline (radiolabeled) | 1 | Milk | 48 h (0.14 ppm §) | >2 days | Healthy | |||||
48 h (0.2 ppm §) | >2 days | Diseased- mastitis | ||||||||||||
Tetra-cycline | Sheep; Awassi; adult; n = 4 | US Tol: Not established. EMA established MRL for all food producing species: 100 ppb (milk). | Bioassay | NS | NS | IV | 20 mg/kg Tetracycline hydrochloride (radiolabeled), then 5 mg/kg for 2 doses at 90 min interval | 1 | Milk | 60 h (0.70 ppm §) | 4 days | Healthy | Lactating; Milked 2×/day | [24] 1973 |
Radio-activity | NS | NS | 60 h (0.12 ppm §) | 4 days | ||||||||||
Tetra-cycline | Goat; Canary Island; adult; n = 5 | US Tol: Not established. EMA established MRL for all food producing species: 100 ppb (milk). | HPLC | NS | NS | IM | 15 mg/kg Tetracycline | 4 | Milk | 96 h (0.91 ppm) | >96 h | Healthy | Lactating; Milked 2×/day | [160] 1995 |
Tetra-cycline | Goat; NS; adult; NS | US Tol: Not established. EMA established MRL for all food producing species: 100 ppb (milk). | HPLC | NS | NS | IM | 15 mg/kg Tetracycline daily | 4 | Milk | 100 h (0.91 ppm) | >100 h | Healthy | Lactating | [159] 1994 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Richards, E.D.; Martin, K.L.; Donnell, C.E.; Clapham, M.O.; Tell, L.A. Antibacterial Drug Residues in Small Ruminant Edible Tissues and Milk: A Literature Review of Commonly Used Medications in Small Ruminants. Animals 2022, 12, 2607. https://doi.org/10.3390/ani12192607
Richards ED, Martin KL, Donnell CE, Clapham MO, Tell LA. Antibacterial Drug Residues in Small Ruminant Edible Tissues and Milk: A Literature Review of Commonly Used Medications in Small Ruminants. Animals. 2022; 12(19):2607. https://doi.org/10.3390/ani12192607
Chicago/Turabian StyleRichards, Emily D., Krysta L. Martin, Catherine E. Donnell, Maaike O. Clapham, and Lisa A. Tell. 2022. "Antibacterial Drug Residues in Small Ruminant Edible Tissues and Milk: A Literature Review of Commonly Used Medications in Small Ruminants" Animals 12, no. 19: 2607. https://doi.org/10.3390/ani12192607
APA StyleRichards, E. D., Martin, K. L., Donnell, C. E., Clapham, M. O., & Tell, L. A. (2022). Antibacterial Drug Residues in Small Ruminant Edible Tissues and Milk: A Literature Review of Commonly Used Medications in Small Ruminants. Animals, 12(19), 2607. https://doi.org/10.3390/ani12192607