The Effect of Gut Microbiota and Probiotics on Metabolism in Fish and Shrimp
Abstract
:Simple Summary
Abstract
1. Introduction
2. Gut Microbiota and Lipid Metabolism
3. Gut Microbiota and Carbohydrate Metabolism
4. Gut Microbiota and Protein and Amino Acid Metabolism
Protein/AA Metabolites in the Development of Gastrointestinal Diseases
5. Probiotics and Metabolism
6. Conclusions and Further Directions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ringø, E.; Olsen, R.E.; Mayhew, T.M.; Myklebust, R. Electron microscopy of the intestinal microflora of fish. Aquaculture 2003, 227, 395–415. [Google Scholar] [CrossRef]
- Rawls, J.F.; Samuel, B.S.; Gordon, J.I. Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. Proc. Natl. Acad. Sci. USA 2004, 101, 4596–4601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, A.R.; Ran, C.; Ringø, E.; Zhou, Z.G. Progress in fish gastrointestinal microbiota research. Rev. Aquac. 2018, 10, 626–640. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Ringø, E.; Hoseinifar, S.H.; Lauzon, H.; Birkbeck, H.; Yang, D. Adherence and colonisation of microorganisms in the fish gastrointestinal tract. Rev. Aquac. 2019, 11, 603–618. [Google Scholar] [CrossRef]
- Clément, K. Bariatric surgery, adipose tissue and gut microbiota. Int. J. Obes. 2011, 35, S7–S15. [Google Scholar] [CrossRef] [Green Version]
- Lindsay, E.C.; Metcalfe, N.B.; Llewellyn, M.S. The potential role of the gut microbiota in shaping host energetics and metabolic rate. J. Anim. Ecol. 2020, 89, 2415–2426. [Google Scholar] [CrossRef]
- Rowland, I.; Gibson, G.; Heinken, A.; Scott, K.; Swann, J.; Thiele, I.; Tuohy, K. Gut microbiota functions: Metabolism of nutrient and other food components. Eur. J. Nutr. 2018, 57, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Chase, C.C.L. Enteric immunity happy gut, healthy animal. Vet. Clin. N. Am. Food Anim. Pract. 2018, 34, 1–18. [Google Scholar] [CrossRef]
- Cho, Y.A.; Kim, J. Effect of probiotics on blood lipid concentrations. Medicine 2013, 94, e1714. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, H. The effects of probiotics on lipid metabolism. In Lipid Metabolism; Baez, R.V., Ed.; InTech: Rijeka, Croatia, 2013; pp. 443–460. [Google Scholar]
- Falcinelli, S.; Picchietti, S.; Rodiles, A.; Cossignani, L.; Merrifield, D.L.; Taddei, A.R.; Maradonna, F.; Olivotto, I.; Gioacchini, G.; Carnevali, O. Lactobacillus rhamnosus lowers zebrafish lipid content by changing gut microbiota and host transcription of genes involved in lipid metabolism. Sci. Rep. 2015, 5, 9336. [Google Scholar] [CrossRef]
- Kim, Y.; Keogh, J.B.; Clifton, P.M. Probiotics, prebiotics, synbiotics and insulin sensitivity. Nutr. Res. Rev. 2018, 31, 35–51. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, L.E.; Casa, D.J.; Belval, L.N. Metabolism, bioenergetics and thermal physiology: Influences of the human intestinal microbiota. Nutr. Res. Rev. 2019, 32, 205–217. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.; Anishetty, S. A meta-metabolome network of carbohydrate metabolism: Interactions between gut microbiota and host. Biochem. Biophys Res. Comm. 2012, 428, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Shen, Q.; Chen, Y.A.; Tuohy, K.M. A comparative in vitro investigation into the effects of cooked meats on the human faecal microbiota. Anaerobe 2010, 16, 572–577. [Google Scholar] [CrossRef]
- Rist, V.T.; Weiss, E.; Eklund, M.; Mosenthin, R. Impact of dietary protein on microbiota composition and activity in the gastrointestinal tract of piglets in relation to gut health: A review. Anim. Int. J. Anim. Biosci. 2013, 7, 1067–1078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vital, M.; Howe, A.C.; Tiedje, J.M. Revealing the bacterial butyrate synthesis pathways by analyzing (meta) genomic data. mBio 2014, 5, e00889-17. [Google Scholar] [CrossRef] [Green Version]
- Turnbaugh, P.J.; Ley, R.E.; Hamady, M.; Fraser-Liggett, C.; Knight, R.; Gordon, J.I. The human microbiome project: Exploring the microbial part of ourselves in a changing world. Nature 2007, 449, 804–810. [Google Scholar] [CrossRef] [Green Version]
- Belkaid, Y.; Hand, T. Role of the microbiota in immunity and inflammation. Cell 2014, 157, 121–141. [Google Scholar] [CrossRef] [Green Version]
- Spiljar, M.; Merkler, D.; Trajkovski, M. The immune system bridges the gut microbiota with systemic energy homeostasis: Focus on TLRs, mucosal barrier, and SCFAs. Front. Immunol. 2017, 8, 1353. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, C.D.H.; Amoroso, G.; Ventura, T.; Elizur, A. Assessing the pyloric caeca and distal microbiota correlation with flesh color in Atlantic salmon (Salmo salar L., 1758). Microorganisms 2020, 8, 1244. [Google Scholar] [CrossRef]
- Semova, I.; Carten, J.D.; Stombaugh, J.; Mackey, L.C.; Knight, R.; Farber, S.A.; Rawls, J.F. Microbiota regulate intestinal absorption and metabolism of fatty acids in zebrafish. Cell Host Microbe 2012, 12, 277–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sullam, K.E.; Essinger, S.D.; Lozupone, C.A.; O´Connor, M.P.; Rosen, G.L.; Knight, R.; Kilham, S.S.; Russell, J.A. Environmental and ecological factors that shape the gut bacterial communities of fish: A meta-analysis. Mol. Ecol. 2012, 21, 3363–3378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ni, J.; Yan, Q.; Yu, Y.; Zhang, T. Factors influencing the grass carp microbiome and its effect on metabolism. FEMS Microbiol. Ecol. 2014, 87, 704–714. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Y.; Ren, H.; Limbu, S.M.; Sun, Y.; Qiao, F.; Zhai, W.; Du, Z.-Y.; Zhang, M. The presence or absence of intestinal microbiota affects lipid deposition and related genes expression in zebrafish (Dania rerio). Front. Microbiol. 2018, 9, 1124. [Google Scholar] [CrossRef]
- Hao, Y.T.; Wu, S.G.; Xiong, F.; Tran, N.T.; Jakovlic, I.; Zou, H.; Li, W.X.; Wang, G.T. Succession and fermentation products of grass carp (Ctenopharyngodon idellus) hindgut microbiota in response to an extreme dietary shift. Front. Microbiol. 2017, 8, 1585. [Google Scholar] [CrossRef] [Green Version]
- Navari-Izzo, F.; Quartacci, M.F.; Sgherri, C. Lipoic acid: A unique antioxidant in detoxification of activated oxygen species. Plant Physiol. Biochem. 2002, 40, 463–470. [Google Scholar] [CrossRef]
- Xu, F.; Xu, C.; Xiao, S.; Lu, M.; Limbu, S.M.; Wang, X.; Du, Z.Y.; Qin, J.G.; Chen, L.Q. Effects of α-lipoic acid on growth performance, body composition, antioxidant profile and lipid metabolism of the GIFT tilapia (Oreochromis niloticus) fed high-fat diets. Aquac. Nutr. 2019, 25, 585–596. [Google Scholar] [CrossRef]
- Qiao, Y.; Sun, J.; Ding, Y.; Le, G.; Shi, Y. Alterations of the gut microbiota in high-fat diet mice is strongly linked to oxidative stress. Appl. Microbiol. Biotechnol. 2013, 97, 1689–1697. [Google Scholar] [CrossRef]
- Ramirez, C.; Romero, J. The microbiome of Seriola lalandi of wild and aquaculture origin reveals difference in composition and potential function. Front. Microbiol. 2017, 8, 1844. [Google Scholar] [CrossRef] [Green Version]
- Salas-Leiva, J.; Mazón-Suástegui, J.M.; Teles, A.; Tovar-Ramírez, D. Structure and predictive metabolic contribution of intestinal microbiota of Longfin yellowtail (Seriola rivoliana) juveniles in aquaculture systems. Mol. Biol. Rep. 2020, 47, 9627–9636. [Google Scholar] [CrossRef]
- Yildirimer, C.C.; Brown, K.H. Intestinal microbiota lipid metabolism varies across rainbow trout (Oncorhynchus mykiss) phylogeographic divide. J. Appl. Microbiol. 2018, 125, 1614–1625. [Google Scholar] [CrossRef] [PubMed]
- Arias-Jayo, N.; Abecia, L.; Lavín, J.L.; Tueros, I.; Arranz, S.; Ramírez-García, A.; Pardo, M.A. Host-microbiome interactions in response to a high-saturated fat diet and fish-oil supplementation in zebrafish adult. J. Funct. Foods 2019, 60, 103416. [Google Scholar] [CrossRef]
- Meng, X.-L.; Li, S.; Qin, C.-B.; Zhu, Z.-X.; Hu, W.-P.; Yang, L.-P.; Lu, R.-H.; Li, W.-J.; Nie, G.-X. Intestinal microbiota and lipid metabolism responses in the common carp (Cyprinus carpio L.) following copper exposure. Ecotoxicol. Environ. Saf. 2018, 160, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Zhang, Q.; Lin, Y.; Hao, J.; Wang, S.; Zhang, J.; Li, A. Taxonomy and functional characteristice of the gill and gastrointestinal microbiota and its correlation with intestinal metabolites in new GIFT strain of farmed adult Nile tilapia (Oreochromis niloticus). Microorganisms 2021, 9, 617. [Google Scholar] [CrossRef] [PubMed]
- Firmino, J.P.; Valljos-Vidal, E.; Balebona, M.C.; Ramayo-Caldas, Y.; Cerezo, I.M.; Salomon, R.; Tort, L.; Estevez, A.; Morinigo, M.A.; Reyes-Lopez, F.E.; et al. Diet, immunity, and microbiota interactions: An integrative analysis of the intestine transscriptional response and microbiota modulation in gilthead seabream (Sparus aurata) fed an essential oils-based functional diet. Front. Immunol. 2021, 12, 625297. [Google Scholar] [CrossRef]
- Zhou, J.S.; Chen, H.J.; Shi, X.C.; Li, X.X.; Chen, L.Q.; Du, Z.Y.; Yu, H. Effect of dietary bile acids on growth, body composition, lipid metabolism and microbiota in grass carp (Ctenopharyngodon idella). Aquac. Nutr. 2017, 24, 802–813. [Google Scholar] [CrossRef]
- Xiong, F.; Wu, S.G.; Zhang, J.; Jakovlic, I.; Li, W.X.; Zou, H.; Li, M.; Wang, G.T. Dietary bile salts types influence the biliary bile acids and gut microbiota in grass cap. Front. Microbiol. 2018, 9, 2209. [Google Scholar] [CrossRef] [Green Version]
- Joyce, S.A.; MacSharry, J.; Casey, P.G.; Kinsella, M.; Murphy, E.F.; Shanahan, F.; Hill, C.; Gahan, C.G.G. Regulation of host weight gain and lipid metabolism by bacterial bile acid modification in the gut. Proc. Natl. Acad. Sci. USA 2015, 111, 7421–7426. [Google Scholar] [CrossRef] [Green Version]
- Liao, Z.B.; Sun, B.; Zhang, Q.G.; Jia, L.; Wei, Y.L.; Liang, M.Q.; Xu, H.G. Dietary bile acids regulate the hepatic lipid homeostasis in tiger puffer fed normal or high-lipid diets. Aquaculture 2020, 519, 734935. [Google Scholar] [CrossRef]
- Jiang, M.; Wen, H.; Gou, G.W.; Liu, T.L.; Lu, X.; Deng, D.F. Preliminary study to evaluate the effects of dietary bile acids on growth performance and lipid metabolism of juvenile genetically improved farmed tilapia (Oreochromis niloticus) fed plant ingredient-based diets. Aquac. Nutr. 2018, 24, 1175–1183. [Google Scholar] [CrossRef]
- de Aguiar Vallim, T.Q.; Tarling, E.J.; Edwards, P.A. Pleiotropic roles of bile acids in metabolism. Cell Metab. 2013, 17, 657–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krogdahl, Å.; Hemre, G.I.; Mommsen, T.P. Carbohydrates in fish nutrition: Digestion and absorption in post larval stages. Aquac. Nutr. 2005, 11, 103–122. [Google Scholar] [CrossRef]
- Serra, C.R.; Almeida, E.M.; Guerreiro, I.; Santos, R.; Merrifield, D.L.; Tavares, F.; Oliva-Teles, A.; Enes, P. Selection of carbohydrate-active probiotics from the gut of carnivorous fish fed plant-based diets. Sci. Rep. 2019, 9, 6384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stefanaki, C.; Peppa, M.; Mastorakos, G.; Chrousos, G.P. Examining the gut microbiome, virome, and mycobiome in glucose metabolism disorders: Are we on the tight tract? Metabolism 2017, 73, 52–66. [Google Scholar] [CrossRef] [PubMed]
- Geurden, I.; Mennigen, J.; Plagnes-Juan, E.; Veron, V.; Cerezo, T.; Mazurais, D.; Zambonino-Infante, J.; Gatesoupe, J.; Skiba-Cassy, S.; Panserat, S. High or low dietary carbohydrate: Protein ratios during first-feeding affect glucose metabolism and intestinal microbiota in juvenile rainbow trout. J. Exp. Biol. 2014, 217, 3396–3406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, Z.L.; Wu, G.; Zhu, W.Y. Amino acid metabolism in intestinal bacteria: Links between gut ecology and host health. Front. Biosci. (Landmark Ed) 2011, 16, 1768–1786. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Liao, S.F. Physiological effects of dietary amino acids on gut health and functions of swine. Front. Vet. Sci. 2019, 6, 169. [Google Scholar] [CrossRef]
- Macfarlane, G.T.; Macfarlane, S. Bacteria, colonic fermentation, and gastrointestinal health. J. AOAC Int. 2012, 95, 50–60. [Google Scholar] [CrossRef]
- Metges, C.C. Contribution of microbial amino acids to amino acid homeostasis of the host. J. Nutr. 2000, 130, 1857S–1864S. [Google Scholar] [CrossRef] [Green Version]
- Stoll, B.; Henry, J.; Reeds, P.J.; Yu, H.; Jahoor, F.; Burrin, D.G. Catabolism dominates the first-pass intestinal metabolism of dietary essential amino acids in milk protein-fed piglets. J. Nutr. 1998, 128, 606–614. [Google Scholar] [CrossRef]
- Wu, G. Intestinal mucosal amino acid catabolism. J. Nutr. 1998, 128, 1249–1252. [Google Scholar] [CrossRef] [Green Version]
- Gottschalk, G. Bacterial Metabolism; Springer Series in Microbiology; Springer: Berlin/Heidelberg, Germany, 1979. [Google Scholar]
- Davila, A.M.; Blachier, F.; Gotteland, M.; Andriamihaja, M.; Benetti, P.H.; Sanz, Y.; Tomé, D. Intestinal luminal nitrogen metabolism: Role of the gut microbiota and consequences for the host. Pharmacol. Res. 2013, 68, 95–107. [Google Scholar] [CrossRef] [PubMed]
- Elson, C.O.; Cong, Y. Host-microbiota interactions in inflammatory bowel disease. Gut Microb. 2012, 3, 332–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huttenhower, C.; Gevers, D.; Knight, R.J.; Badger, H.H.; Fitzgerald, M.G.; Abubucker, S.; Chinwalla, A.T.; Creasy, H.H.; Earl, A.M.; Fulton, R.S.; et al. The human microbiome project (HMP) consortium. Structure, function and diversity of the healthy human microbiome. Nature 2012, 486, 207–214. [Google Scholar] [CrossRef] [Green Version]
- Caruso, R.; Lo, B.C.; Núnez, G. Host-microbiota interactions in inflammatory bowel disease. Nat. Rev. Immunol. 2020, 20, 411–426. [Google Scholar] [CrossRef]
- Arumugam, M.; Raes, J.; Pelletier, E.; Le Paslier, D.; Yamada, T.; Mende, D.R.; Fernandes, G.R.; Tap, J.; Bruls, T.; Batto, J.M.; et al. Enterotypes of the human gut microbiome. Nature 2011, 473, 174–180. [Google Scholar] [CrossRef] [Green Version]
- Marchesi, J.R.; Adams, D.H.; Fava, F.; Hermes, G.D.; Hirschfield, G.M.; Hold, G.; Quraishi, M.N.; Kinross, J.; Smidt, H.; Tuohy, K.M.; et al. The gut microbiota and host health: A new clinical frontier. Gut 2016, 65, 330–339. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Blouin, J.M.; Santacruz, A.; Lan, A.; Andriamihaja, M.; Wilkanowicz, S.; Benetti, P.H.; Tomé, D.; Sanz, Y.; Blachier, F.; et al. High-protein diet modifies colonic microbiota and luminal environment but not colonocyte metabolism in the rat model: The increased luminal bulk connection. Am. J. Physiol. Gastrointest. Liver Physiol. 2014, 307, 459–470. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Zhao, D.; Song, S.; Zhang, M.; Li, C. High-meat-protein high-fat diet induced dysbiosis of gut microbiota and tryptophan metabolism in wistar rats. J. Agric. Food Chem. 2020, 68, 6333–6346. [Google Scholar] [CrossRef]
- Liu, M.; Tang, L.; Hu, C.; Huang, Z.; Sun, B.; Lam, J.C.W.; Lam, P.K.S.; Chen, L. Antagonistic interaction between perfluorobutanesulfonate and probiotic on lipid and glucose metabolisms in the liver of zebrafish. Aquat. Toxicol. 2021, 237, 105897. [Google Scholar] [CrossRef]
- Falcinelli, S.; Rodiles, A.; Hatef, A.; Picchietti, S.; Cossignani, L.; Merrifield, D.L.; Unniappan, S.; Carnevali, O. Influence of probiotics administration on gut microbiota core. A review on the effects on appetite control, glucose, and lipid metabolism. J. Clin. Gastroenterol. 2018, 52, S50–S56. [Google Scholar] [CrossRef]
- Tremaroli, V.; Bäckhed, F. Functional interactions between the gut microbiota and host metabolism. Nature 2012, 489, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.S.; Saputra, F.; Chen, Y.C.; Hu, S.Y. Dietary administration of Bacillus amyloliquefaciens R8 reduces hepatic oxidative stress and enhances nutrient metabolism and immunity against Aeromonas hydrophila and Streptococcus agalactiae in zebrafish (Danio rerio). Fish Shellfish Immunol. 2019, 86, 410–419. [Google Scholar] [CrossRef] [PubMed]
- Valcarce, D.G.; Riesco, M.F.; Martínez-Vázquez, J.M.; Robles, V. Diet supplemented with antioxidant and anti-inflammatory probiotics improves sperm quality after only one spermatogenic cycle in zebrafish model. Nutrients 2019, 1311, 843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yi, C.C.; Liu, C.H.; Chuang, K.P.; Chang, Y.T.; Hu, S.Y. A potential probiotic Chromobacterium aquaticum with bacteriocin-like activity enhances the expression of indicator genes associated with nutrient metabolism, growth performance and innate immunity against pathogen infections in zebrafish (Danio rerio). Fish Shellfish Immunol. 2019, 93, 124–134. [Google Scholar] [CrossRef]
- Salari, A.; Mahdavi-Roshan, M.; Kheirkhah, J.; Ghorbani, Z. Probiotics supplementation and cardiometabolic risk factors: A new insight into recent advances, potential mechanisms, and clinical implications. Pharma Nutr. 2021, 16, 100261. [Google Scholar] [CrossRef]
- Lye, H.-S.; Rahmat-Ali, G.R.; Liong, M.T. Mechanisms of cholesterol removal by lactobacilli under conditions that mimic the human gastrointestinal tract. Int. Dairy J. 2010, 20, 169–175. [Google Scholar] [CrossRef]
- Falcinelli, S.; Rodiles, A.; Hatef, A.; Picchietti, S.; Cossignani, L.; Merrifield, D.L.; Unniappan, S.; Carnevali, O. Dietary lipid content reorganizes gut microbiota and probiotic L. rhamnosus attenuates obesity and enhances catabolic hormonal milieu in zebrafish. Sci. Rep. 2017, 7, 5512. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Lam, J.C.W.; Tang, L.; Hu, C.; Liu, M.; Lam, P.K.S.; Zhou, B. Probiotic modulation of lipid metabolism disorders caused by perfluorobutanesulfonate pollution in zebrafish. Environ. Sci. Technol. 2020, 54, 7494–7503. [Google Scholar] [CrossRef]
- Bootorabi, F.; Saadat, F.; Falak, R.; Manouchehri, H.; Changizi, R.; Mohammadi, H.; Safavifar, F.; Khorramizadeh, M.R. Gut microbiota alteration by Lactobacillus rhamnosus reduces pro-inflammatory cytokines and glucose level in the adult model of zebrafish. BMC Res. Notes 2021, 14, 302. [Google Scholar] [CrossRef]
- Santos, K.O.; Costa-Filho, J.; Spagnol, K.L.; Nornberg, B.F.; Lopes, F.M.; Tesser, M.B.; Marins, L.F. The inclusion of a transgenic probiotic expressing recombinant phytase in a diet with a high content of vegetable matter markedly improves growth performance and the expression of growth-related genes and other selected genes in zebrafish. Aquaculture 2020, 519, 734878. [Google Scholar] [CrossRef]
- Ohira, H.; Tsutsui, W.; Fujioka, Y. Are short chain fatty acids in gut microbiota defensive players for inflammation and atherosclerosis? J. Atheroscler. Thromb. 2017, 24, 660–672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, T.L.; Chun, W.K.; Kim, A.; Kim, N.; Roh, H.J.; Lee, Y.; Yi, M.; Kim, S.; Park, C.I.; Kim, D.H. Dietary probiotic effect of Lactococcus lactis WFLU12 on low-molecular-weight metabolites and growth of olive flounder (Paralichythys olivaceus). Front. Microbiol. 2018, 9, 2059. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.-D.; Wang, K.; Li, F.-D.; Sun, Y.-Z. Single or combined effects of fructo- and mannan oligosaccharide supplements and Bacillus clausii on the growth, feed utilization, body composition, digestive enzyme activity, innate immune response and lipid metabolism of Japanese flounder Paralichthys olivaceus. Aquac. Nutr. 2011, 17, e902–e911. [Google Scholar] [CrossRef]
- Cámara-Ruiz, M.; Balebona, M.C.; Moriñigo, M.Á.; Esteban, M.Á. Probiotic Shewanella putrefaciens (SpPdp11) as a fish health modulator: A review. Microorganisms 2020, 8, 1990. [Google Scholar] [CrossRef] [PubMed]
- García de La Banda, I.; Lobo, C.; Le´on-Rubio, J.M.; Tapia-Paniagua, S.; Balebona, M.C.; Mori˜nigo, M.A.; Moreno-Ventas, X.; Lucas, L.M.; Linares, F.; Arce, F.; et al. Influence of two closely related probiotics on juvenile Senegalese sole (Solea senegalensis, Kaup 1858) performance and protection against Photobacterium damselae subsp. piscicida. Aquaculture 2010, 306, 281–288. [Google Scholar] [CrossRef]
- Hossain, M.K.; Ishak, S.D.; Iehata, S.; Noordin, N.D.M.; Kader, M.A.; Abol-Munafi, A.B. Effect of two strains of intestinal autochthonous Enterococcus faecalis on Malaysian mahseer (Tor tambroides) on growth performance, gut morphology and protection against Aeromonas hydrophila. Intern. Aquatic Res. 2022, 14, 1–12. [Google Scholar] [CrossRef]
- Tocher, D.R. Metabolism and functions of lipids and fatty acids in teleost fish. Rev. Fish. Sci. 2003, 11, 107–184. [Google Scholar] [CrossRef]
- Jurado, J.; Villasanta-González, A.; Tapia-Paniagua, S.T.; Balebona, M.C.; García de la Banda, I.; Moríñigo, M.Á.; Prieto-Álamo, M.J. Dietary administration of the probiotic Shewanella putrefaciens Pdp11 promotes transcriptional changes of genes involved in growth and immunity in Solea senegalensis larvae. Fish Shellfish Immunol. 2018, 77, 350–363. [Google Scholar] [CrossRef]
- Hosseini, M.; Kolangi, M.H.; Shabani, A.; Hoseinifar, S.H.; Yarahmadi, P. Dietary Lactobacillus acidophilus modulated skin mucus protein profile, immune and appetite genes expression in gold fish (Carassius auratus gibelio). Fish Shellfish Immunol. 2016, 59, 149–154. [Google Scholar] [CrossRef]
- Schaeck, M.; Reyes-López, F.E.; Vallejos-Vidal, E.; Van Cleemput, J.; Duchateau, L.; Van den Broeck, W.; Tort, L.; Decostere, A. Cellular and transcriptomic response to treatment with the probiotic candidate Vibrio lentus in gnotobiotic sea bass (Dicentrarchus labrax) larvae. Fish Shellfish Immunol. 2017, 63, 147–156. [Google Scholar] [CrossRef]
- Tang, L.; Huang, K.; Xie, J.; Yu, D.; Sun, L.; Huang, Q.; Bi, Y. 1-Deoxynojirimycin from Bacillus subtilis improves antioxidant and antibacterial activities of juvenile Yoshitomi tilapia. Electron. J. Biotechnol. 2017, 30, 39–47. [Google Scholar] [CrossRef]
- Chien, C.C.; Lin, T.Y.; Chi, C.C.; Liu, C.H. Probiotic, Bacillus subtilis E20 alters the immunity of white shrimp, Litopenaeus vannamei via glutamine metabolism and hexosamine biosynthetic pathway. Fish Shellfish Immunol. 2020, 98, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Feng, J.; Liu, S.; Cai, Z.; Song, D.; Yang, L.; Nie, G. The probiotic properties of different preparations using Lactococcus lactis Z-2 on intestinal tract, blood and hepatopancreas in Cyprinus carpio. Aquaculture 2021, 543, 736911. [Google Scholar] [CrossRef]
- Dutta, D.; Ghosh, K. Improvement of growth, nutrient utilization and haemato-immunological parameters in rohu, Labeo rohita (Hamilton) using Bacillus tequilensis (KF623287) through diets or as water additive. Aquac. Nutr. 2021, 27, 29–47. [Google Scholar] [CrossRef]
- Wu, P.S.; Liu, C.H.; Hu, S.Y. Probiotic Bacillus safensis NPUST1 Administration improves growth performance, gut microbiota, and innate immunity against Streptococcus iniae in Nile tilapia (Oreochromis niloticus). Microorganisms 2021, 9, 2494. [Google Scholar] [CrossRef]
- Pirarat, N.; Kobayashi, T.; Katagiri, T.; Maita, M.; Endo, M. Protective effects and mechanisms of a probiotic bacterium Lactobacillus rhamnosus against experimental Edwardsiella tarda infection in tilapia (Oreochromis niloticus). Vet. Immunol. Immunopathol. 2006, 113, 339–347. [Google Scholar] [CrossRef]
- Salam, M.A.; Islam, M.A.; Paul, S.I.; Rahman, M.M.; Rahman, M.L.; Islam, F.; Rahman, A.; Shaha, D.C.; Alam, M.S.; Islam, T. Gut probiotic bacteria of Barbonymus gonionotus improve growth, hematological parameters and reproductive performances of the host. Sci. Rep. 2021, 11, 10692. [Google Scholar] [CrossRef]
- Xu, R.; Li, M.; Wang, T.; Zhao, Y.-W.; Shan, C.-J.; Qiao, F.; Chen, L.-Q.; Zhang, W.-B.; Du, Z.-Y.; Zhang, M.-L. Bacillus amyloliquefaciens ameliorates high carbohydrate diet-induced metabolic phenotypes by restoration of intestinal acetate-producing bacteria in Nile tilapia. Br. J. Nutr. 2022, 127, 653–665. [Google Scholar] [CrossRef]
- Ramírez, C.; Coronado, J.; Silva, A.; Romero, J. Cetobacterium is a major component of the microbiome of Giant Amazonian fish (Arapaima gigas) in Ecuador. Animals 2018, 8, 189. [Google Scholar] [CrossRef]
- Yang, Y.; Jian, S.Q.; Cao, H.; Wen, C.; Hu, B.; Peng, M.; Peng, L.; Yuan, J.; Liang, L. Changes in microbiota along the intestine of grass carp (Ctenopharyngodon idella): Community, interspecific interactions, and functions. Aquaculture 2019, 498, 151–161. [Google Scholar] [CrossRef]
- Xie, M.; Zhou, W.; Xie, Y.; Li, Y.; Zhang, Z.; Yang, Y.; Olsen, R.E.; Ran, C.; Zhou, Z. Effects of Cetobacterium somerae fermentation product on gut and liver health of common carp (Cyprinus carpio) fed diets supplemented with ultra-micro ground mixed plant proteins. Aquaculture 2021, 543, 736943. [Google Scholar] [CrossRef]
- Xie, M.; Hao, Q.; Olsen, R.E.; Ringø, E.; Yang, Y.; Zhang, Z.; Ran, C.; Zhou, Z. Growth performance, hepatic enzymes, and gut health status of common carp (Cyprinus carpio) in response to dietary Cetobacterium somerae fermentation product. Aquac. Rep. 2022, 23, 101046. [Google Scholar] [CrossRef]
- Ganguly, S.; Prasad, A. Microflora in fish digestive tract plays significant role in digestion and metabolism. Rev. Fish Biol. Fish. 2012, 22, 11–16. [Google Scholar] [CrossRef]
- Pintaric, M.; Lagerhole, T. Probiotc methanisms affecting glucose homeostasis: A scoping review. Life 2022, 12, 1197. [Google Scholar] [CrossRef] [PubMed]
- Ray, A.K.; Ringø, E. The gastrointestinal tract of fish. In Aquaculture Nutrition: Gut Health, Probiotics and Prebiotics; Merrifield, D., Ringø, E., Eds.; Wiley-Blackwell Publishing: Oxford, UK, 2014; pp. 1–13. [Google Scholar]
Finfish Species | Bacteria Species | Effects | References |
---|---|---|---|
Senegalese sole (Solea senegalensis) (J) | Lyophilized cells of Shewanella putrefaciens | ↑linolenic acid (18:3 n-3) and linoleic acid (18:2 n-6) in liver | [78] |
Japanese flounder (Paralichthys olivaceus) | Bacillus clausii + fructo- and/ or mannan oligosaccharide | ↓body lipid deposition, triglyceride, low-density lipoprotein, cholesterol | [76] |
Nile tilapia, (Oreochromis niloticus) | Lactobacillus rhamnosus | ↑growth, length of intestinal microvilli | [89] |
Zebrafish (Danio rerio) | Intestinal microbiota | ↑Uptake of fatty acid and lipid droplet formation in the gut epithelium and liver | [22] |
Zebrafish larvae | Lb. rhamnosus | ↑short-chain fatty acids; ↓triglycerides and cholesterol; ↑length of microvilli, height of enterocytes | [11] |
Goldfish (Carassius auratus gibelio) | Lactobacillus acidophilus | ↑immune-genes expression (TNF-1α and TNF-2α); ↓appetite related gene expression | [82] |
Zebrafish (A) | Lb. rhamnosus + different lipid levels | ↓transcription of genes in cholesterol- and triglyceride metabolism | [70] |
Gnotobiotic European sea bass (Dicentrarchus labrax) larvae | Vibrio lentus | ↑expression of genes for cell proliferation, cell death, metabolism, iron transport, cell adhesion, and immune genes | [83] |
Yoshitomi tilapia (J) | Bacillus subtilis | ↑anti-inflammatory and antioxidant properties, serum lysozyme, alkaline phosphatase, superoxide dismutase, and catalase activities ↓serum aspartate aminotransferase, alanine aminotransferase, malondialdehyde, and C3 complement | [84] |
Olive flounder (Paralichthys olivaceus) | Lactococcus lactis WFLU12 | ↑citrulline, tricarboxylic acid cycle intermediates, SCFAs, vitamins, and taurine | [75] |
Senegalese sole larvae | S. putrefaciens | ↑expression of genes (carboxypeptidase A1, trypsinogen, cathepsin Z, and proteasome 26S non-ATPase subunit 3) | [81] |
Zebrafish | Bacillus amyloliquefaciens R8 | ↑expressions of glycolytic genes (hexokinase, glucokinase, glucose-6-phosphatase, and pyruvate kinase), enzyme activities for fatty acid β-oxidation (3-hydroxyacyl-coenzyme A dehydrogenase and citrate synthase) | [65] |
Zebrafish | Chromobacterium aquaticum | ↑mRNA expression glucokinase, hexokinase, glucose-6-phosphatase, and pyruvate kinase | [67] |
Zebrafish | Transgenic phytase-expressing probiotic, Bacillus subtilis | ↑expression of genes for appetite, peptide transport, somatic growth, and bone metabolism (bglap) | [73] |
Gilthead seabream (Sparus aurata) and Senegalese sole | Shewanella putrefaciens (known as Pdp11 or more recently as SpPdp11) | ↑carboxypeptidase A1 (cpa1), trypsinogen (tryp1), cathepsin Z (ctsz) and proteasome 26S non-ATPase subunit3 (pmsd3) | [77] |
Zebrafish (A) | Lb. rhamnosus + perfluorobutanesulfonate (PFBS) | ↑Fatty acid synthesis and β-oxidation (♀) and accumulation of triglyceride in the liver (♂) | [71] |
Zebrafish (A) | PFBS and probiotic bacteria, Lb. rhamnosus | ↑hepatic hypertrophy, blood glucose, ATP production (♂), and insulin level | [62] |
Common carp (Cyprinus carpio) | Lc. lactis Z-2 | ↑expression of nutrient transporters (Sglt1, Glut2, Pept1, rBAT), immunity and antioxidant status | [86] |
Rohu (Labeo rohita) fingerlings | Bacillus tequilensis | ↑growth, nutrient utilization, and non-specific immunity | [87] |
Nile tilapia | Bacillus safensis NPUST1 | ↑hepatic mRNA expressions for glucose metabolism and growth-related genes (viz., GK, G6Pase, GHR, and IGF-1), phagocytosis, respiratory burst, superoxide dismutase activity (head kidney), serum lysozyme, and expression of immune- genes (head kidney and spleen) | [88] |
Silver barb (Barbonymus gonionotus) | Enterococcus xiangfangensis, Pseudomonas stutzeri, B. subtilis and a consortium of five gut bacteria | ↑ growth, length of intestinal villi | [90] |
Zebrafish (A) Type 2 diabetes mellitus induced (♂) | Lb. rhamnosus | ↓ blood glucose, and pro-inflammatory cytokines | [72] |
Malaysian mahseer (Tor tambroides) | Enterococcus faecalis FC11682 | ↑linolenic acid and linoleic acid | [79] |
Nile tilapia | B. amyloliquefaciens | ↓mesenteric fat index, lipid deposition (liver), ↑SCFAs (intestine) | [91] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ringø, E.; Harikrishnan, R.; Soltani, M.; Ghosh, K. The Effect of Gut Microbiota and Probiotics on Metabolism in Fish and Shrimp. Animals 2022, 12, 3016. https://doi.org/10.3390/ani12213016
Ringø E, Harikrishnan R, Soltani M, Ghosh K. The Effect of Gut Microbiota and Probiotics on Metabolism in Fish and Shrimp. Animals. 2022; 12(21):3016. https://doi.org/10.3390/ani12213016
Chicago/Turabian StyleRingø, Einar, Ramasamy Harikrishnan, Mehdi Soltani, and Koushik Ghosh. 2022. "The Effect of Gut Microbiota and Probiotics on Metabolism in Fish and Shrimp" Animals 12, no. 21: 3016. https://doi.org/10.3390/ani12213016
APA StyleRingø, E., Harikrishnan, R., Soltani, M., & Ghosh, K. (2022). The Effect of Gut Microbiota and Probiotics on Metabolism in Fish and Shrimp. Animals, 12(21), 3016. https://doi.org/10.3390/ani12213016