Production Efficiency and Utility Features of Broiler Ducks Fed with Feed Thinned with Wheat Grain
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Analytical Composition of Feeds
2.3. Growth Performance and Production Efficiency
2.4. Carcass Features and Meat Quality
2.5. Statistical Calculation
3. Results
3.1. Analytical Composition of Feeds
3.2. Growth Performance and Production Efficiency
3.3. Carcass Features and Meat Quality
4. Discussion
4.1. Feed Composition, Growth, and Production Efficiency
4.2. Carcass Features and Meat Quality
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- AVEC. Annual Report. 2022. Available online: https://www.avec-poultry.eu/ (accessed on 20 October 2022).
- Ravindran, V. Advances and Future Directions in Poultry Nutrition: An Review. Korean J. Poult. Sci. 2012, 39, 53–62. [Google Scholar] [CrossRef] [Green Version]
- Alhotan, R.A. Commercial poultry feed formulation: Current status, challenges, and future expectations. World’s Poult. Sci. J. 2021, 77, 279–299. [Google Scholar] [CrossRef]
- Thirumalaisamy, G.; Muralidharan, J.; Senthilkumar, S.; Sayee, R.H.; Priyadharsini, M. Cost-effective feeding of poultry. Int. J. Environ. 2016, 5, 3997–4005. [Google Scholar]
- Yegani, M.; Korver, D.R. Review: Prediction of variation in energetic value of wheat for poultry. Can. J. Anim. Sci. 2012, 92, 261–273. [Google Scholar] [CrossRef]
- Swain, B. Low cost feed formulation for rural poultry production. In ICAR—Short Course on Empowering Farmwomen through Livestock and Poultry Intervention; Regional Centre, ICAR-Centre Avian Research Institute: Bhubaneswar, India, 2016; pp. 186–194. [Google Scholar]
- Pogosyan, D.; Zemnyakov, V.; Zueva, E.; Varlamova, E. Use of unconventional feed for broiler chickens. Sci. Pap. Series D Anim. Sci. Int. Sess. Sci. Commun. Fac. Anim. Sci. 2020, 63, 124–128. [Google Scholar]
- Chadd, S. Future trends and developments in poultry nutrition. In Proceedings of the Poultry in the 21st Century: Avian Influenza and Beyond, International Poultry Conference, Bangkok, Thailand, 5–7 November 2007. [Google Scholar]
- Kokoszyński, D.; Saleh, M.; Bernacki, Z.; Topoliński, T.; Andryszczyk, M.; Wirwicki, M. Growth performance, carcass composition, leg bones, and digestive system characteristics in Pekin duck broilers fed a diet diluted with whole wheat grain. Can. J. Anim. Sci. 2019, 99, 781–791. [Google Scholar] [CrossRef]
- Arroyo, J.; Lavigne, F.; Fortun-Lamothe, L. The influence of whole-corn feeding method during the finishing stage on the performance of overfed mule ducks. Poult. Sci. 2017, 96, 3146–3154. [Google Scholar] [CrossRef] [PubMed]
- Arroyo, J.; Lavigne, F.; Molette, C.; Bijja, M.; Dubois, J.P.; Fortun-Lamothe, L. Effect of sequential feeding using whole cereal grains during finishing period in male mule ducks (Carina moschata × Anas platyrinchos). J. Appl. Poult. Res. 2016, 25, 379–388. [Google Scholar] [CrossRef]
- Kokoszyński, D.; Wasilewski, R.; Stęczny, K.; Kotowicz, M.; Hrnčar, C.; Arpášová, H. Carcass composition and quality of meat from Pekin ducks finished on diets with varying levels of whole wheat grain. Anim. Prod. Sci. 2017, 57, 2117–2124. [Google Scholar] [CrossRef]
- Gheorghe, A.; Habeanu, M.; Lefter, N.A.; Turcu, R.P. Alterations in meat nutrient composition in response to a partial replacement of corn with triticale in the broiler diets. Arch. Zootech. 2022, 25, 24–36. [Google Scholar] [CrossRef]
- Osek, M.; Milczarek, A.; Janocha, A.; Świnarska, R. Effect of triticale as a partial or complete wheat and maize substitute in broiler chicken diets on growth performance, slaughter value and meat quality. Ann. Anim. Sci. 2010, 10, 275–283. [Google Scholar]
- Kliševičiūtė, V.; Gružauskas, R.; Racevičiūtė-Stupelienė, A.; Daukšienė, A.; Švirmickas, G.J.; Mieželienė, A.; Alenčikienė, A. Influence of different amount of whole triticale on productivity and meat quality of broiler chickens. Vet. Med. Zoot. 2014, 66, 20–27. [Google Scholar]
- Özek, K.; Konca, Y.; Çatli, A.U.; Wellmann, K.T. The effects of free choice feeding based on whole triticale on growth, meat quality, carcass characteristics and gastrointestinal traits in broilers. Rev. Med. Vet. 2012, 163, 621–627. [Google Scholar]
- Gornowicz, E.; Lewko, L.; Zwierzyński, R. Goose meat texture analysis. Wiadomości Zootech. 2018, LVI, 42–52. [Google Scholar]
- Lee, Y.S.; Owens, C.M.; Meullent, J.F. The meullenet-owens razor shear (mors) for predicting poultry meat tenderness: Its applications and optimization. J. Texture Stud. 2008, 39, 655–672. [Google Scholar] [CrossRef]
- Kiss, K.; Ruszkai, C.; Takacs-Gyorgy, K. Examination of Short Supply Chains Based on Circular Economy and Sustainability Aspects. Resources 2019, 8, 161. [Google Scholar] [CrossRef]
- Collective Authorship. Cereal grain and by-products of the grain and milling industry. In Animal Nutrition and Fodder Science, 2nd ed.; Jamroz, D., Ed.; PWN Scientific Publishing House: Warsaw, Polan, 2015; Volume 3, pp. 191–199. [Google Scholar]
- ISO 12099; Animal Feeding Stuffs, Cereals and Milled Cereal Products—Guidelines for the Application of Near Infrared Spectrometry. International Organization for Standardization: Geneva, Switzerland, 2017.
- Banaszak, M.; Biesek, J.; Adamski, M. Wheat litter and feed with aluminosilicates for improved growth and meat quality in broiler chickens. PeerJ 2019, 9, 11918. [Google Scholar] [CrossRef]
- Banaszak, M.; Kuźniacka, J.; Biesek, J.; Maiorano, G.; Adamski, M. Meat quality traits and fatty acid composition of pectoral muscles from ducks fed with yellow lupin. Animal 2020, 14, 1969–1975. [Google Scholar] [CrossRef] [Green Version]
- Guzman, A.P.; Trocino, A.; Susta, L.; Barbut, S. Comparing three textural measurements of chicken pectoral fillets affected by severe wooden pectoral and spaghetti meat. Ital. J. Anim. Sci. 2021, 20, 465–471. [Google Scholar] [CrossRef]
- Kierończyk, B.; Rawski, M.; Mikołajczak, Z.; Wachowiak, R.; Homska, N.; Józefiak, D. A Preliminary Study of Chemically Preserved and High-Moisture Whole Maize (Zea mays L.) Usage in Pekin Duck Nutrition: Effect on Growth Performance and Selected Internal Organ Traits. Animals 2021, 11, 1018. [Google Scholar] [CrossRef]
- Mandal, A.B. Feeding and Nutrient Requirements of Ducks. In Duck Production and Management Strategies; Jalaludeen, A., Churchil, R.R., Baéza, E., Eds.; Springer: Singapore, 2022; pp. 303–337. [Google Scholar] [CrossRef]
- Xie, M.; Jiang, Y.; Tang, J.; Wen, Z.G.; Zhang, Q.; Huang, W.; Hou, S.S. Effects of low-protein diets on growth performance and carcass yield of growing White Pekin ducks. Poult. Sci. 2017, 96, 1370–1375. [Google Scholar] [CrossRef] [PubMed]
- Baeza, E.; Leclercq, B. Use of industrial amino acids to allow low protein concentrations in finishing diets for growing Muscovy ducks. Brit. Poult. Sci. 1998, 39, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Wen, Z.G.; Rasolofomanana, T.J.; Tang, J.; Jiang, Y.; Xie, M.; Yang, P.L.; Hou, S.S. Effects of dietary energy and lysine levels on growth performance and carcass yields of Pekin ducks from hatch to 21 days of age. Poult. Sci. 2017, 96, 3361–3366. [Google Scholar] [CrossRef] [PubMed]
- Adamski, M.; Rutkowski, A. Recommendations for feeding ducks. In Nutritional Recommendations and Nutritional Value of Poultry Feed, 5th ed.; Smulikowska, S., Rutkowski, A., Eds.; APRA Publishing House: Osielsko, Poland, 2018; pp. 66–74. [Google Scholar]
- Mohanty, S.R.; Babu, L.K.; Sahoo, S.K.; Pradhan, C.R.; Panigrahi, B.; Joshi, S.K. Effect of feeding different levels of proteins on growth, feed consumption and mortality in growing khaki Campbell duck. Sch. J. Agric. Vet. Sci. 2016, 3, 58–61. [Google Scholar]
- Korver, D.R.; Zuidhof, M.J.; Lawes, K.R. Performance characteristics and economic comparison of broiler chickens fed wheat- and triticale-based diets. Poult. Sci. 2004, 83, 716–725. [Google Scholar] [CrossRef]
- Wu, K.; Pan, C.; Zhou, S.; Long, G.; Wu, B. Farming ducks in a maize field: A new and potential crop-livestock system from China. Agron. Sustain. Dev. 2021, 41, 76. [Google Scholar] [CrossRef]
- Kowalczyk, A.; Łukaszewicz, E.; Adamski, M.; Kuźniacka, J. Carcass composition and meat characteristics of Pekin ducks in relation to age at slaughter and level of maize distiller’s dried grains with solubles in diets. J. Anim. Feed Sci. 2012, 21, 157–167. [Google Scholar] [CrossRef]
- Diarra, S.S.; Sandakabatu, D.; Perera, D.; Tabuaciri, P.; Mohammed, U. Growth performance and carcass yield of broiler chickens fed commercial finisher and cassava copra meal-based diets. J. Appl. Anim. Res. 2015, 43, 352–356. [Google Scholar] [CrossRef] [Green Version]
- Babatunde, B.B. Effect of Feeding Cassava Wastes on the Performance and Meat Quality of Broiler Chickens. Malays. J. Anim. Sci. 2013, 16, 63–73. [Google Scholar]
- Santoso, S.I.; Setiadi, A. Profitable utilization of giant salvinia, Salvinia molesta, as local duck feed. Int. J. Poult. Sci. 2016, 15, 121–125. [Google Scholar] [CrossRef] [Green Version]
- Cobanoglu, P.; Kucukylimaz, K.; Cinar, M.; Bozkurt, M.; Catli, A.U.; Bintas, E. Comparing the Profitability of Organic and Conventional Broiler Production. Braz. J. Poult. Sci. 2014, 16, 89–96. [Google Scholar] [CrossRef] [Green Version]
- Beg, M.A.H.; Baqui, M.A.; Sarker, N.R.; Hossain, M.M. Effect of Stocking Density and Feeding Regime on Performance of Broiler Chicken in Summer Season. Int. J. Poult. Sci. 2011, 10, 365–375. [Google Scholar] [CrossRef] [Green Version]
- Hassan, H.M.A.; Youssef, A.W.; Ali, H.M.; Mohamed, M.A. Adding Phytogenic Material and/or Organic Acids to Broiler Diets: Effect on Performance, Nutrient Digestibility and Net Profile. Asian J. Poult. Sci. 2015, 9, 97–105. [Google Scholar] [CrossRef] [Green Version]
- Lilburn, M.S.; Griffin, J.R.; Wick, M. From muscle to food: Oxidative challenges and developmental anomalies in poultry pectoral muscle. Poult. Sci. 2019, 98, 4255–4260. [Google Scholar] [CrossRef]
- Qamar, S.H.; Zeng, Q.; Ding, X.; Bai, S.; Wang, J.; Xuan, Y.; Zhou, Q.; Su, Z.; Zhang, K. Effect of Oil Supplementation on Growth Performance, Meat Quality and Antioxidative Ability in Meat Ducks Fed a Diet Containing Aging Corn. Int. J. Agric. Biol. 2021, 21, 201–208. [Google Scholar]
- Lebret, B.; Čandek-Potokar, M. Review: Pork quality attributes from farm to fork. Part I. Carcass and fresh meat. Animal 2022, 16, 100402. [Google Scholar] [CrossRef]
- Mir, N.A.; Rafiq, A.; Kumar, F.; Singh, V.; Shukla, V. Determinants of broiler chicken meat quality and factors affecting them: A review. J. Food Sci. Technol. 2017, 54, 2997–3009. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, D.; Xu, X.; Xu, W. Comparative proteomic analysis of proteins associated with water holding capacity in goose muscles. Food Res. Int. 2019, 116, 354–361. [Google Scholar] [CrossRef]
- Petracci, M.; Mudalal, S.; Soglia, F.; Cavani, C. Meat quality in fast-growing broiler chickens. World’s Poult. Sci. J. 2015, 71, 363–374. [Google Scholar] [CrossRef]
- Kuźniacka, J.; Biesek, J.; Banaszak, M.; Rutkowski, A.; Kaczmarek, S.; Adamski, M.; Hejdysz, M. Effect of Dietary Protein Sources Substituting Soybean Meal on Growth Performance and Meat Quality in Ducks. Animals 2020, 10, 133. [Google Scholar] [CrossRef] [Green Version]
- Laudadio, V.; Tufarelli, V. Growth performance and carcass and meat quality of broiler chickens fed diets containing micronized-dehulled peas (Pisum sativum cv. Spirale) as a substitute of soybean meal. Poult. Sci. 2010, 89, 1537–1543. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Yang, H.; Liu, F.; Pang, Q.; Shan, A.; Feng, X. Effect of Dietary Curcumin Supplementation on Duck Growth Perofrmance, Antioxidant Capacity and Pectoral Meat Quality. Foods 2021, 10, 2981. [Google Scholar] [CrossRef] [PubMed]
- Hocquette, J.F.; Gondret, F.; Baeza, E.; Medale, F.; Jurie, C.; Pethick, D.W. Intramuscular fat content in meat-producing animals: Development, genetic and nutritional control, and identification of putative markers. Animal 2010, 4, 303–319. [Google Scholar] [CrossRef] [Green Version]
- Infante-Rodríguez, F.; Salinas-Chavira, J.; Montaño-Gómez, M.F.; Manríquez-Nuñez, O.M.; González-Vizcarra, V.M.; Guevara-Florentino, O.F.; De León, J.A.R. Effect of diets with different energy concentrations on growth performance, carcass characteristics and meat chemical composition of broiler chickens in dry tropics. SpringerPlus 2016, 5, 1937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wati, A.K.; Hadi, R.F. Effect of different vegetable oils in rations on chemical quality of local duck meat. IOP Conf. Ser. Earth Environ. Sci. 2021, 637, 012082. [Google Scholar] [CrossRef]
- Witak, B. Tissue composition of carcass, meat quality and fatty acid content of ducks of a commercial breeding line at different age. Arch. Anim. Breed. 2008, 51, 266–275. [Google Scholar] [CrossRef]
- Wang, D.; Dong, H.; Zhang, M.; Liu, F.; Bian, H.; Zhu, Y.; Xu, W. Changes in actomyosin dissociation and endogenous enzyme activities during heating and their relationship with duck meat tenderness. Food Chem. 2013, 141, 675–679. [Google Scholar] [CrossRef]
- Larzul, C.; Imbert, B.; Bernadet, M.D.; Guy, G.; Remingnon, H. Meat quality in an intergeneric factorial crossbreeding between muscovy (Cairina moschata) and Pekin (Anas platyrhynchos) ducks. Anim. Res. 2006, 55, 219–229. [Google Scholar] [CrossRef]
- Park, J.H.; Kang, S.N.; Shin, D.; Shim, K.S. Antioxidant Enzyme Activity and Meat Quality of Meat Type Ducks Fed with Dried Oregano (Origanum vulgare L.) Powder. Australas. J. Anim. Sci. 2015, 28, 79–85. [Google Scholar] [CrossRef]
- Feye, K.; Dittoe, D.; Jendza, J.; Caldas-Cueva, J.; Mallmann, B.; Booher, B.; Tellez-Isaias, G.; Owens, C.; Kidd, M.; Ricke, S. A comparison of formic acid or monoglycerides to formaldehyde on production efficiency, nutrient absorption, and meat yield and quality of Cobb 700 broilers. Poult. Sci. 2021, 100, 101476. [Google Scholar] [CrossRef]
- Chatterjee, D.; Zhuang, H.; Bowker, B.C.; Rincon, A.M.; Sanchez-Brambila, G. Instrumental texture characteristics of broiler pectoralis major with the wooden pectoral condition. Poult. Sci. 2016, 95, 2449–2454. [Google Scholar] [CrossRef] [PubMed]
Item | Grower Feed and Feeds with Wheat Grains 1 | SEM 3 | p-Value 4 | Starter Feed for All Groups 2b | |||
---|---|---|---|---|---|---|---|
C 2a | W10 | W20 | W40 | ||||
Dry matter (%) | 87.24 ± 0.13 | 87.17 ± 0.09 | 87.24 ± 0.05 | 87.39 ± 0.93 | 0.07 | 0.760 | 87.44 ± 0.12 |
Crude ash (%) | 4.76 a ± 0.02 | 4.75 a ± 0.03 | 4.69 b ± 0.04 | 4.68 b ± 0.03 | 0.01 | <0.001 | 5.01 ± 0.11 |
Crude protein (%) | 17.22 a ± 0.15 | 17.28 a ± 0.13 | 16.71 b ± 0.15 | 16.29 c ± 0.14 | 0.07 | <0.001 | 19.01 ± 0.09 |
Crude fat (%) | 3.53 a ± 0.08 | 3.39 b ± 0.10 | 3.33 b ± 0.09 | 3.00 c ± 0.07 | 0.03 | <0.001 | 3.63 ± 0.12 |
Crude fiber (%) | 3.92 a ± 0.10 | 3.58 b ± 0.09 | 3.54 b ± 0.14 | 3.15 c ± 0.09 | 0.05 | <0.001 | 3.94 ± 0.08 |
Starch (%) | 42.37 d ± 0.38 | 43.64 c ± 0.34 | 44.91 b ± 0.51 | 46.72 a ± 0.38 | 0.27 | <0.001 | 39.36 ± 0.29 |
Item 2 | Group 1 | SEM 3 | p-Value 4 | |||
---|---|---|---|---|---|---|
C | W10 | W20 | W40 | |||
BW (g) | ||||||
1st day | 49.40 ± 1.01 | 49.38 ± 0.85 | 49.96 ± 0.97 | 49.76 ± 1.12 | 0.21 | 0.750 |
28th day | 1993.31 ± 100.56 | 1970.81 ± 117.93 | 1939.91 ± 198.14 | 1999.56 ± 156.39 | 30.86 | 0.918 |
49th day | 3462.03 ± 276.97 | 3365.51 ± 214.57 | 3340.57 ± 151.33 | 3459.99 ± 168.70 | 44.61 | 0.715 |
BWG (g) | ||||||
1–28 days | 1943.91 ± 101.47 | 1921.43 ± 117.89 | 1889.95 ± 198.33 | 1949.80 ± 155.83 | 30.88 | 0.917 |
29–49 days | 1468.72 ± 237.07 | 1394.70 ± 168.79 | 1400.66 ± 106.81 | 1460.43 ± 53.71 | 33.19 | 0.821 |
1–49 days | 3412.63 ± 277.67 | 3316.13 ± 215.17 | 3290.61 ± 151.34 | 3410.23 ± 168.44 | 44.68 | 0.715 |
ADFI (g) | ||||||
1–28 days | 144.19 ± 7.59 | 137.19 ± 5.77 | 137.51 ± 5.42 | 137.92 ± 5.39 | 1.42 | 0.254 |
29–49 days | 370.44 ± 23.99 | 344.78 ± 15.08 | 345.14 ± 16.71 | 351.36 ± 19.77 | 4.61 | 0.159 |
1–49 days | 242.87 ± 13.48 | 226.16 ± 9.69 | 226.50 ± 10.22 | 231.10 ± 12.41 | 2.83 | 0.118 |
FCR (kg/kg) | ||||||
1–28 days | 2.08 ± 0.13 | 2.01 ± 0.15 | 2.05 ± 0.22 | 2.00 ± 0.24 | 0.04 | 0.877 |
29–49 days | 5.42 ± 0.57 | 5.26 ± 0.52 | 5.19 ± 0.46 | 5.06 ± 0.37 | 0.14 | 0.856 |
1–49 days | 3.51 ± 1.01 | 3.36 ± 0.75 | 3.38 ± 0.35 | 3.33 ± 0.30 | 0.07 | 0.806 |
Growth rate (%) every week | ||||||
wk 1 | 120.61 ± 8.33 | 121.13 ± 3.30 | 120.43 ± 1.29 | 122.06 ± 2.89 | 0.99 | 0.948 |
wk 2 | 105.97 ± 3.34 | 104.24 ± 2.89 | 104.74 ± 1.32 | 104.81 ± 1.66 | 0.52 | 0.722 |
wk 3 | 65.65 ± 5.51 | 67.25 ± 1.02 | 67.50 ± 2.56 | 63.62 ± 6.05 | 0.95 | 0.482 |
wk 4 | 42.78 ± 3.20 | 41.82 ± 3.70 | 39.06 ± 9.88 | 44.09 ± 2.93 | 1.24 | 0.567 |
wk 5 | 18.20 ± 7.25 | 21.37 ± 8.08 | 20.46 ± 6.12 | 21.33 ± 4.47 | 1.40 | 0.860 |
wk 6 | 26.30 ± 4.95 | 22.64 ± 8.32 | 22.12 ± 2.08 | 23.26 ± 2.83 | 1.12 | 0.588 |
wk 7 | 10.30 ± 3.55 | 9.22 ± 3.88 | 11.91 ± 3.59 | 10.19 ± 1.52 | 0.71 | 0.638 |
Item 2 | Group 1 | SEM 3 | p-Value 4 | |||
---|---|---|---|---|---|---|
C | W10 | W20 | W40 | |||
Efficiency of broiler duck production | ||||||
Viability (%) | 90.00 ± 7.07 | 98.00 ± 4.47 | 98.00 ± 4.47 | 96.00 ± 5.48 | 1.35 | 0.107 |
EPEF | 183.24 ± 46.86 | 200.48 ± 35.81 | 195.59 ± 19.99 | 203.71 ± 37.53 | 9.67 | 0.818 |
EBI | 185.86 ± 47.31 | 203.44 ± 42.15 | 198.55 ± 23.99 | 206.68 ± 37.99 | 7.75 | 0.821 |
Feed costs per duck (PLN, gross) | ||||||
1–28 days | 8.32 ± 0.44 | 7.91 ± 0.33 | 7.93 ± 0.31 | 7.96 ± 0.31 | 0.08 | 0.255 |
29–49 days | 15.40 a ± 0.99 | 14.07 ab ± 0.61 | 13.81 b ± 0.67 | 13.51 b ± 0.76 | 0.23 | 0.007 |
1–49 days | 23.72 a ± 1.36 | 21.98 ab ± 0.94 | 21.74 b ± 0.98 | 21.47 b ± 0.94 | 0.30 | 0.018 |
Feed costs: kg of live weight (PLN, gross) | 6.99 ± 0.75 | 6.66 ± 0.63 | 6.61 ± 0.32 | 6.32 ± 0.58 | 0.13 | 0.380 |
Experimental feed costs: control feeding (%) | 100.00 a ± 0.00 | 92.79 ab ± 3.86 | 91.90 ab ± 6.34 | 90.76 b ± 6.93 | 1.33 | 0.044 |
Profit per 1 kg of carcass (PLN, gross) | 13.46 b ± 2.18 | 15.13 ab ± 2.48 | 15.00 ab ± 1.90 | 16.80 a ± 2.88 | 0.41 | 0.033 |
Profit per flock (group, PLN, gross) | 1501.41 | 1834.36 | 1800.23 | 2057.32 | - | - |
Item | Group 1 | SEM 2 | p-Value 3 | |||
---|---|---|---|---|---|---|
C | W10 | W20 | W40 | |||
Preslaughter body weight (g) | 3522.70 ± 264.91 | 3442.70 ± 235.48 | 3433.10 ± 169.38 | 3585.10 ± 220.49 | 35.63 | 0.397 |
Carcass weight (g) | 2478.80 ± 145.41 | 2474.28 ± 165.35 | 2449.29 ± 126.85 | 2551.26 ± 192.29 | 24.96 | 0.525 |
Dressing percentage (%) | 70.46 ± 1.96 | 71.89 ± 1.50 | 71.34 ± 0.81 | 71.15 ± 2.93 | 0.31 | 0.3056 |
Neck (g) | 190.48 ± 28.52 | 190.88 ± 28.63 | 185.25 ± 20.56 | 187.54 ± 36.54 | 4.44 | 0.969 |
Neck (%) | 7.71 ± 1.25 | 7.30 ± 1.11 | 7.59 ± 0.98 | 7.41 ± 1.59 | 0.19 | 0.937 |
Wings (g) | 299.91 ± 20.22 | 298.37 ± 19.40 | 297.75 ± 26.39 | 305.99 ± 21.07 | 3.37 | 0.829 |
Wings (%) | 12.12 ± 0.83 | 12.08 ± 0.70 | 12.16 ± 0.85 | 12.03 ± 0.79 | 0.12 | 0.985 |
Carcass remains (g) | 638.45 ± 74.58 | 636.12 ± 151.88 | 621.68 ± 56.54 | 687.07 ± 135.27 | 17.46 | 0.590 |
Carcass remains (%) | 25.74 ± 2.54 | 25.70 ± 6.24 | 25.41 ± 2.31 | 26.84 ± 4.04 | 0.63 | 0.871 |
Pectoral muscle (g) | 539.77 ± 31.14 | 532.12 ± 41.16 | 536.99 ± 51.46 | 513.59 ± 57.99 | 7.26 | 0.594 |
Pectoral muscle (%) | 21.80 ab ± 1.12 | 21.51 ab ± 1.01 | 21.91 a ± 1.60 | 20.14 b ± 1.80 | 0.24 | 0.031 |
Leg muscle (g) | 307.65 ± 36.24 | 317.73 ± 44.15 | 309.88 ± 47.51 | 294.04 ± 51.21 | 6.99 | 0.700 |
Leg muscle (%) | 12.42 ± 1.31 | 12.85 ± 1.66 | 12.65 ± 1.86 | 11.58 ± 2.06 | 0.28 | 0.389 |
Total muscle (g) | 847.42 ± 63.35 | 849.85 ± 67.01 | 846.87 ± 82.86 | 807.63 ± 99.33 | 12.39 | 0.588 |
Total muscle | 34.22 ± 2.21 | 34.36 ± 1.79 | 34.56 ± 2.75 | 31.72 ± 3.60 | 0.45 | 0.074 |
Skin with subcutaneous fat (incl. neck skin) (g) | 481.30 ± 102.35 | 478.61 ± 129.98 | 475.58 ± 73.58 | 540.88 ± 98.07 | 16.23 | 0.439 |
Skin with subcutaneous fat (incl. neck skin) (%) | 19.35 ± 3.53 | 19.31 ± 5.39 | 19.38 ± 2.49 | 21.14 ± 3.07 | 0.59 | 0.643 |
Abdominal fat (g) | 21.24 ± 7.25 | 20.45 ± 10.20 | 22.16 ± 6.98 | 22.15 ± 8.18 | 1.26 | 0.960 |
Abdominal fat (%) | 0.85 ± 0.27 | 0.81 ± 0.37 | 0.90 ± 0.25 | 0.86 ± 0.30 | 0.05 | 0.940 |
Total fat (g) | 502.54 ± 107.83 | 499.06 ± 134.22 | 497.74 ± 76.61 | 563.03 ± 103.75 | 16.92 | 0.467 |
Total fat (%) | 20.20 ± 3.72 | 20.13 ± 5.50 | 20.28 ± 2.56 | 22.01 ± 3.28 | 0.61 | 0.664 |
Item 2 | Group 1 | SEM 3 | p-Value 4 | ||||
---|---|---|---|---|---|---|---|
C | W10 | W20 | W40 | ||||
Pectoral muscle | |||||||
pH 45 min | 5.92 b ± 0.11 | 5.94 ab ± 0.06 | 6.04 a ± 0.09 | 6.00 ab ± 0.09 | 0.02 | 0.025 | |
pH 24 h | 5.73 ± 0.11 | 5.51 ± 0.28 | 5.65 ± 0.18 | 5.75 ± 0.19 | 0.03 | 0.051 | |
Color | |||||||
L* | 36.11 ± 3.33 | 36.12 ± 3.23 | 36.80 ± 1.85 | 35.79 ± 1.78 | 0.41 | 0.854 | |
a* | 16.56 ± 2.64 | 16.68 ± 2.21 | 16.96 ± 1.76 | 17.21 ± 1.46 | 0.32 | 0.897 | |
b* | 2.62 ± 1.34 | 3.18 ± 1.25 | 3.28 ± 0.77 | 2.16 ± 0.93 | 0.18 | 0.095 | |
Drip loss (%) | 1.70 ± 0.57 | 2.00 ± 1.02 | 2.43 ± 1.14 | 1.77 ± 0.90 | 0.15 | 0.305 | |
WHC (%) | 31.19 c ± 1.36 | 34.96 b ± 1.76 | 36.68 ab ± 2.69 | 39.31 a ± 2.68 | 0.58 | <0.001 | |
Protein (%) | 20.91 d ± 0.05 | 21.46 a ± 0.06 | 21.16 c ± 0.05 | 21.33 b ± 0.05 | 0.03 | <0.001 | |
Collagen (%) | 1.17 ± 0.13 | 1.23 ± 0.08 | 0.95 ± 0.38 | 1.12 ± 0.18 | 0.04 | 0.184 | |
Intramuscular fat (%) | 2.23 c ± 0.02 | 2.30 bc ± 0.02 | 2.71 a ± 0.03 | 2.33 ab ± 0.04 | 0.03 | <0.001 | |
Water (%) | 76.90 a ± 0.13 | 76.52 bc ± 0.06 | 76.48 c ± 0.04 | 76.66 ab ± 0.12 | 0.03 | <0.001 | |
The texture of the pectoral muscle | |||||||
Flat knife (Warner–Bratzler test) | |||||||
Raw | Firmness (N) | 40.57 ± 16.78 | 39.38 ± 12.52 | 40.74 ± 13.22 | 41.78 ± 8.27 | 1.99 | 0.982 |
Toughness (N × s) | 276.41 ± 90.55 | 268.13 ± 82.52 | 262.59 ± 72.18 | 284.77 ± 48.44 | 11.49 | 0.918 | |
Cooked | Firmness (N) | 33.81 ab ± 12.12 | 38.57 a ± 9.71 | 25.83 b ± 8.88 | 28.24 ab ± 9.59 | 1.73 | 0.036 |
Toughness (N × s) | 213.69 ab ± 66.48 | 254.64 a ± 56.37 | 178.65 b ± 51.54 | 197.34 ab ± 44.90 | 9.54 | 0.028 | |
Volodkevich jaw grips (cooked meat) | |||||||
Firmness (N) | 9.60 ± 4.69 | 10.16 ± 3.48 | 10.22 ± 4.03 | 9.06 ± 3.69 | 0.61 | 0.909 | |
Meullenet–Owens razor shear (MORS) (raw meat) | |||||||
Shear force (N) | 4.15 b ± 0.99 | 5.96 a ± 1.58 | 6.64 a ± 2.14 | 4.85 b ± 1.42 | 0.15 | <0.001 | |
Leg muscle | |||||||
Color | |||||||
L* | 35.35 ± 2.72 | 34.96 ± 2.97 | 34.65 ± 2.54 | 34.06 ± 2.59 | 0.43 | 0.768 | |
a* | 15.10 ± 1.91 | 15.74 ± 3.88 | 13.80 ± 2.56 | 14.70 ± 2.55 | 0.44 | 0.488 | |
b* | 2.48 ± 0.99 | 3.55 ± 1.34 | 2.88 ± 0.94 | 2.38 ± 1.19 | 0.19 | 0.102 | |
WHC (%) | 42.02 a ± 8.13 | 37.45 ab ± 5.13 | 38.48 ab ± 3.55 | 34.00 b ± 2.59 | 0.92 | 0.017 | |
Protein (%) | 18.64 bc ± 0.05 | 18.80 ab ± 0.02 | 18.99 a ± 0.08 | 18.36 c ± 0.05 | 0.04 | <0.001 | |
Collagen (%) | 1.42 b ± 0.14 | 1.53 ab ± 0.09 | 1.68 a ± 0.19 | 1.50 b ± 0.17 | 0.03 | 0.004 | |
Intramuscular fat (%) | 5.34 bc ± 0.01 | 5.84 ab ± 0.04 | 4.67 c ± 0.07 | 6.56 a ± 0.04 | 0.11 | <0.001 | |
Water (%) | 74.88 ab ± 0.04 | 74.23 bc ± 0.05 | 75.96 a ± 0.28 | 73.92 c ± 0.16 | 0.13 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biesek, J.; Banaszak, M.; Grabowicz, M.; Wlaźlak, S.; Adamski, M. Production Efficiency and Utility Features of Broiler Ducks Fed with Feed Thinned with Wheat Grain. Animals 2022, 12, 3427. https://doi.org/10.3390/ani12233427
Biesek J, Banaszak M, Grabowicz M, Wlaźlak S, Adamski M. Production Efficiency and Utility Features of Broiler Ducks Fed with Feed Thinned with Wheat Grain. Animals. 2022; 12(23):3427. https://doi.org/10.3390/ani12233427
Chicago/Turabian StyleBiesek, Jakub, Mirosław Banaszak, Małgorzata Grabowicz, Sebastian Wlaźlak, and Marek Adamski. 2022. "Production Efficiency and Utility Features of Broiler Ducks Fed with Feed Thinned with Wheat Grain" Animals 12, no. 23: 3427. https://doi.org/10.3390/ani12233427
APA StyleBiesek, J., Banaszak, M., Grabowicz, M., Wlaźlak, S., & Adamski, M. (2022). Production Efficiency and Utility Features of Broiler Ducks Fed with Feed Thinned with Wheat Grain. Animals, 12(23), 3427. https://doi.org/10.3390/ani12233427