Is the Weight of the Newborn Puppy Related to Its Thermal Balance?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Facilities
2.2. Study Population
2.3. Infrared Thermography
2.4. Statistical Analysis
- Within subjects’ factor: 7 levels or times: (1) Wet; (2) Dry; (3) Colostrum; (4) 30 min; (5) 1 h; (6) 4 h; (7) 24 h.
- Between subjects’ factor: quartiles (4 levels): (1) Quartile 1 (Q1): 126–226 g n = 73; (2) Quartile 2 (Q2): 227–330 g n = 72; (3) Quartile 3 (Q3): 331–387 g n = 74; (4) Quartile 4 (Q4): 388–452 g n = 70.
- Interaction between factors: groups.
2.5. Ethical Statement
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tortora, G.; Derrickson, B. Principios de anatomía y fisiología. In Principios de Anatomía y Fisiología; Tortora, G., Derrickson, B., Eds.; Médica Panamericana: Madrid, Spain, 2013; pp. 1048–1051. [Google Scholar]
- Arfuso, F.; Acri, G.; Piccione, G.; Sansotta, C.; Fazio, F.; Giudice, E.; Giannetto, C. Eye surface infrared thermography usefulness as a noninvasive method of measuring stress response in sheep during shearing: Correlations with serum cortisol and rectal temperature values. Physiol. Behav. 2022, 250, 113781. [Google Scholar] [CrossRef] [PubMed]
- Gianesella, M.; Arfuso, F.; Fiore, E.; Giambelluca, S.; Giudice, E.; Armato, L.; Piccione, G. Infrared thermography as a rapid and non-invasive diagnostic tool to detect inflammatory foot diseases in dairy cows. Pol. J. Vet. Sci. 2018, 21, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Arfuso, F.; Rizzo, M.; Giannetto, C.; Giudice, E.; Fazio, F.; Piccione, G. Age-related changes of serum mitochondrial uncoupling 1, rumen and rectal temperature in goats. J. Therm. Biol. 2016, 59, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, M.; Arfuso, F.; Alberghina, D.; Giudice, E.; Gianesella, M.; Piccione, G. Monitoring changes in body surface temperature associated with treadmill exercise in dogs by use of infrared methodology. J. Therm. Biol. 2017, 69, 64–68. [Google Scholar] [CrossRef]
- Lezama-García, K.; Mota-Rojas, D.; Pereira, A.M.F.; Martínez-Burnes, J.; Ghezzi, M.; Domínguez, A.; Gómez, J.; de Mira Geraldo, A.; Lendez, P.; Hernández-Ávalos, I.; et al. Transient receptor potential (TRP) and thermoregulation in animals: Structural biology and neurophysiological aspects. Animals 2022, 12, 106. [Google Scholar] [CrossRef]
- Bertoni, A.; Mota-Rojas, D.; Álvarez-Macias, A.; Mora-Medina, P.; Guerrero-Legarreta, I.; Morales-Canela, A.; Gómez-Prado, J.; José-Pérez, N.; Martínez-Burnes, J. Scientific findings related to changes in vascular microcirculation using infrared thermography in the river buffalo. J. Anim. Behav. Biometeorol. 2020, 8, 288–297. [Google Scholar] [CrossRef]
- Andrade, D.V. Thermal windows and heat exchange. Temperature 2015, 2, 451. [Google Scholar] [CrossRef]
- Villanueva-García, D.; Mota-Rojas, D.; Martínez-Burnes, J.; Olmos-Hernández, A.; Mora-Medina, P.; Salmerón, C.; Gómez, J.; Boscato, L.; Gutiérrez-Pérez, O.; Cruz, V.; et al. Hypothermia in newly born piglets: Mechanisms of thermoregulation and pathophysiology of death. J. Anim. Behav. Biometeorol. 2021, 9, 2101. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; López, A.; Martínez-Burnes, J.; Muns, R.; Villanueva-García, D.; Mora-Medina, P.; González-Lozano, M.; Olmos-Hernández, A.; Ramírez-Necoechea, R. Is vitality assessment important in neonatal animals? CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2018, 13, 1–13. [Google Scholar] [CrossRef]
- Uchanska, O.; Ochota, M.; Eberhardt, M.; Nizanski, W. Dead or Alive? A review of perinatal factors that determine canine neonatal viability. Animals 2022, 12, 1402. [Google Scholar] [CrossRef]
- Houška, L.; Wolfová, M.; Nagy, I.; Csörnyei, Z.; Komlósi, I. Economic values for traits of pigs in Hungary. Czech J. Anim. Sci. 2010, 55, 139–148. [Google Scholar] [CrossRef] [Green Version]
- Veronesi, M.C. Assessment of canine neonatal viability-the Apgar score. Reprod. Domest. Anim. 2016, 51, 46–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veronesi, M.C.; Panzani, S.; Faustini, M.; Rota, A. An Apgar scoring system for routine assessment of newborn puppy viability and short-term survival prognosis. Theriogenology 2009, 72, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Chastant-Maillard, S.; Guillemot, C.; Feugier, A.; Mariani, C.; Grellet, A.; Mila, H. Reproductive performance and pre-weaning mortality: Preliminary analysis of 27,221 purebred female dogs and 204,537 puppies in France. Reprod. Domest. Anim. 2017, 52, 158–162. [Google Scholar] [CrossRef] [PubMed]
- Mota-Rojas, D.; Pereira, A.M.F.; Wang, D.; Martínez-Burnes, J.; Ghezzi, M.; Hernández-Avalos, I.; Lendez, P.; Mora-Medina, P.; Casas, A.; Olmos-Hernández, A.; et al. Clinical applications and factors involved in validating thermal windows used in infrared thermography in cattle and river buffalo to assess health and productivity. Animals 2021, 11, 2247. [Google Scholar] [CrossRef]
- Martínez-Burnes, J.; Muns, R.; Barrios-García, H.; Villanueva-García, D.; Domínguez-Oliva, A.; Mota-Rojas, D. Parturition in mammals: Animal models, pain and distress. Animals 2021, 11, 2960. [Google Scholar] [CrossRef]
- Hillman, N.H.; Kallapur, S.G.; Jobe, A.H. Physiology of transition from intrauterine to extrauterine life. Clin. Perinatol. 2012, 39, 769–783. [Google Scholar] [CrossRef] [Green Version]
- Lawler, D.F. Neonatal and pediatric care of the puppy and kitten. Theriogenology 2008, 70, 384–392. [Google Scholar] [CrossRef]
- Lezama-García, K.; Mota-Rojas, D.; Martínez-Burnes, J.; Villanueva-García, D.; Domínguez-Oliva, A.; Gómez-Prado, J.; Mora-Medina, P.; Casas-Alvarado, A.; Olmos-Hernández, A.; Soto, P.; et al. Strategies for hypothermia compensation in altricial and precocial newborn mammals and their monitoring by infrared thermography. Vet. Sci. 2022, 9, 246. [Google Scholar] [CrossRef]
- Münnich, A.; Küchenmeister, U. Causes, diagnosis and therapy of common diseases in neonatal puppies in the first days of life: Cornerstones of practical approach. Reprod. Domest. Anim. 2014, 49, 64–74. [Google Scholar] [CrossRef]
- Fix, J.S. Relationship of Piglet Birth Weight with Growth, Efficiency, Composition, and Mortality. Ph.D. Thesis, North Carolina State University, Raleigh, NC, USA, 2010. [Google Scholar]
- Mota-Rojas, D.; Wang, D.; Titto, C.G.; Martínez-Burnes, J.; Villanueva-García, D.; Lezama-García, K.; Domínguez, A.; Hernández-Avalos, I.; Mora-Medina, P.; Verduzco, A.; et al. Neonatal infrared thermography images in the hypothermic ruminant model: Anatomical-morphological physiological aspects and mechanisms for thermoregulation. Front. Vet. Sci. 2022, 9, 963205. [Google Scholar] [CrossRef] [PubMed]
- Groppetti, D.; Ravasio, G.; Bronzo, V.; Pecile, A. The role of birth weight on litter size and mortality within 24 h of life in purebred dogs: What aspects are involved? Anim. Reprod. Sci. 2015, 163, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Mila, H.; Grellet, A.; Feugier, A.; Chastant-Maillard, S. Differential impact of birth weight and early growth on neonatal mortality in puppies. J. Anim. Sci. 2015, 93, 4436–4442. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Sotelo, B.; Mota-Rojas, D.; Mora-Medina, P.; Ogi, A.; Mariti, C.; Olmos-Hernández, A.; Martínez-Burnes, J.; Hernández-Ávalos, I.; Sánchez-Millán, J.; Gazzano, A. Blood biomarker profile alterations in newborn canines: Effect of the mother′s weight. Animals 2021, 11, 2307. [Google Scholar] [CrossRef] [PubMed]
- Plavec, T.; Knific, T.; Slapšak, A.; Raspor, S.; Lukanc, B.; Pipan, M.Z. Canine neonatal assessment by vitality score, amniotic fluid, urine, and umbilical cord blood analysis of glucose, lactate, and cortisol: Possible influence of parturition type? Animals 2022, 12, 1247. [Google Scholar] [CrossRef] [PubMed]
- Mota-Rojas, D.; Titto, C.G.; Orihuela, A.; Martínez-Burnes, J.; Gómez-Prado, J.; Torres-Bernal, F.; Flores-Padilla, K.; Carvajal-de la Fuente, V.; Wang, D. Physiological and behavioral mechanisms of thermoregulation in mammals. Animals 2021, 11, 1733. [Google Scholar] [CrossRef]
- Casas-Alvarado, A.; Martínez-Burnes, J.; Mora-Medina, P.; Hernández-Avalos, I.; Domínguez-Oliva, A.; Lezama-García, K.; Gómez-Prado, J.; Mota-Rojas, D. Thermal and circulatory changes in diverse body regions in dogs and cats evaluated by infrared thermography. Animals 2022, 12, 789. [Google Scholar] [CrossRef]
- Reyes-Sotelo, B.; Mota-Rojas, D.; Martínez-Burnes, J.; Olmos-Hernández, A.; Hernández-Ávalos, I.; José, N.; Casas-Alvarado, A.; Gómez, J.; Mora-Medina, P. Thermal homeostasis in the newborn puppy: Behavioral and physiological responses. J. Anim. Behav. Biometeorol. 2021, 9, 2112. [Google Scholar] [CrossRef]
- Travain, T.; Colombo, E.S.; Grandi, L.C.; Heinzl, E.; Pelosi, A.; Prato Previde, E.; Valsecchi, P. How good is this food? A study on dogs’ emotional responses to a potentially pleasant event using infrared thermography. Physiol. Behav. 2016, 159, 80–87. [Google Scholar] [CrossRef]
- Mugnier, A.; Mila, H.; Guiraud, F.; Brévaux, J.; Lecarpentier, M.; Martinez, C.; Mariani, C.; Adib-Lesaux, A.; Chastant-Maillard, S.; Saegerman, C.; et al. Birth weight as a risk factor for neonatal mortality: Breed-specific approach to identify at-risk puppies. Prev. Vet. Med. 2019, 171, 104746. [Google Scholar] [CrossRef]
- Tesi, M.; Miragliotta, V.; Scala, L.; Aronica, E.; Lazzarini, G.; Fanelli, D.; Abramo, F.; Rota, A. Relationship between placental characteristics and puppies’ birth weight in toy and small sized dog breeds. Theriogenology 2020, 141, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Boyko, A.R.; Quignon, P.; Li, L.; Schoenebeck, J.J.; Degenhardt, J.D.; Lohmueller, K.E.; Zhao, K.; Brisbin, A.; Parker, H.G.; VonHoldt, B.M.; et al. A Simple genetic architecture underlies morphological variation in dogs. PLoS Biol. 2012, 8, e1000451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lezama-García, K.; Martínez-Burnes, J.; Villanueva-García, D.; Pérez-Jiménez, J.C.; Domínguez-Oliva, A.; Mora-Medina, P.; Hernández-Ávalos, I.; Olmos-Hernández, A.; Mota-Rojas, D. Relation between the dam’s weight on vascular microcirculation and in the temperature of her puppies at different stages post-partum. Vet. Sci. 2022, 9, 673. [Google Scholar] [CrossRef]
- Sherwin, C.M.; Christiansen, S.B.; Duncan, I.J.; Erhard, H.W.; Lay, D.C.; Mench, J.A.; O’Connor, C.E.; Carol Petherick, J. Guidelines for the ethical use of animals in applied ethology studies. Appl. Anim. Behav. Sci. 2003, 81, 291–305. [Google Scholar] [CrossRef]
- Harri, M.; Mononen, J.; Haapanen, K.; Korhonen, H. Postnatal changes in hypothermic response in farm born blue foxes and raccoon dogs. J. Therm. Biol. 1991, 16, 71–76. [Google Scholar] [CrossRef]
- Gómez-Prado, J.; Pereira, A.M.F.; Villanueva-García, D.; Wang, D.; Domínguez-Oliva, A.; Mora-Medina, P.; Hernández-Avalos, I.; Martínez-Burnes, J.; Casas-Alvarado, A.; Olmos-Hernández, A.; et al. Thermoregulation mechanisms and perspectives for validating thermal windows in pigs with hypothermia and hyperthermia: An overview. Front. Vet. Sci. 2022, in press. [Google Scholar] [CrossRef]
- Piccione, G.; Fazio, F.; Giudice, E.; Refinetti, R. Body size and the daily rhythm of body temperature in dogs. J. Therm. Biol. 2009, 34, 171–175. [Google Scholar] [CrossRef]
- Jordan, M.; Bauer, A.; Stella, J.; Croney, C. Temperature Requirements for Dogs. 2022. Available online: https://www.extension.purdue.edu/extmedia/va/va-16-w.pdf (accessed on 1 May 2022).
- Schrank, M.; Mollo, A.; Contiero, B.; Romagnoli, S. Bodyweight at birth and growth rate during the neonatal period in three canine breeds. Animals 2019, 10, 8. [Google Scholar] [CrossRef] [Green Version]
- Rigotti, C.F.; Jolliffe, C.T.; Leece, E.A. Effect of prewarming on the body temperature of small dogs undergoing inhalation anesthesia. J. Am. Vet. Med. Assoc. 2015, 247, 765–770. [Google Scholar] [CrossRef]
- Ewart, S. Homeostasis. In Fisiología Veterinaria; Klein, B.G., Ed.; Elsevier: Barcelona, Spain, 2009; pp. 596–607. [Google Scholar]
- Asakura, H. Fetal and neonatal thermoregulation. J. Nippon Med. Sch. 2004, 71, 360–370. [Google Scholar] [CrossRef]
- Mallet, M.L. Pathophysiology of accidental hypothermia. QJM 2002, 95, 775–785. [Google Scholar] [CrossRef] [PubMed]
- Oncken, A.; Kirby, R.; Rudloff, E. Hypotherma in critically ill dogs and cats. Compend. Contin. Educ. Pract. Vet. 2001, 23, 506–520. [Google Scholar]
- Casas-Alvarado, A.; Mota-Rojas, D.; Hernández-Ávalos, I.; Mora-Medina, P.; Olmos-Hernández, A.; Verduzco-Mendoza, A.; Reyes-Sotelo, B.; Martínez-Burnes, J. Advances in infrared thermography: Surgical aspects, vascular changes, and pain monitoring in veterinary medicine. J. Therm. Biol. 2020, 92, 102664. [Google Scholar] [CrossRef] [PubMed]
- Mota-Rojas, D.; Martínez-Burnes, J.; Casas-Alvarado, A.; Gómez-Prado, J.; Hernández-Avalos, I.; Domínguez-Oliva, A.; Lezama-García, K.; Jacome-Romero, J.; Rodríguez-González, D.; Pereira, A.M.F. Clinical usefulness of infrared thermography to detect sick animals: Frequent and current cases. CABI Rev. 2022, 22, 1–27. [Google Scholar] [CrossRef]
- Pineda, M.; Dooley, M. McDonald’s Veterinary Endocrinology and Reproduction; Wiley-Blackwell: Hoboken, NJ, USA, 2008; p. 618. [Google Scholar]
- Ogi, A.; Mariti, C.; Pirrone, F.; Baragli, P.; Gazzano, A. The influence of oxytocin on maternal care in lactating dogs. Animals 2021, 11, 1130. [Google Scholar] [CrossRef]
Time | Q1 n = 73 | Q2 n = 72 | Q3 n = 74 | Q4 n = 70 | ||||
---|---|---|---|---|---|---|---|---|
Wet | 30.800 ± | 0.065 b,5 | 30.830 ± | 0.066 b,5 | 30.836 ± | 0.065 a,b,5 | 31.083 ± | 0.067 a,5 |
Dry | 31.621 ± | 0.083 b,4 | 31.637 ± | 0.084 b,4 | 31.740 ± | 0.082 a,b,4 | 32.015 ± | 0.085 a,4 |
Colostrum | 31.964 ± | 0.072 b,3 | 32.073 ± | 0.073 b,3 | 32.186 ± | 0.072 a,b,3 | 32.401 ± | 0.074 a,3 |
30 min AB | 32.929 ± | 0.052 b,2 | 32.905 ± | 0.053 a,b,2 | 33.158 ± | 0.052 a.2 | 33.264 ± | 0.053 a,2 |
1 h AB | 32.901 ± | 0.039 c,2 | 32.958 ± | 0.039 b,c,2 | 33.092 ± | 0.038 b,2 | 33.322 ± | 0.039 a,2 |
4 h AB | 33.025 ± | 0.078 b,2 | 33.065 ± | 0.079 a,b,2 | 33.330 ± | 0.078 a,2 | 33.436 ± | 0.080 a,2 |
24 h AB | 33.600 ± | 0.051 b,1 | 33.723 ± | 0.051 b,1 | 33.923 ± | 0.050 a,1 | 34.066 ± | 0.052 a,1 |
Time | Q1 n = 73 | Q2 n = 72 | Q3 n = 74 | Q4 n = 70 | ||||
---|---|---|---|---|---|---|---|---|
Wet | 28.187 ± | 0.064 c,4 | 28.649 ± | 0.064 b,4 | 28.711 ± | 0.063 b,3 | 29.127 ± | 0.065 a,3 |
Dry | 29.757 ± | 0.059 c,1,2,3 | 30.002 ± | 0.060 b,1,3 | 30.331 ± | 0.059 a,1 | 30.431 ± | 0.060 a,1,2 |
Colostrum | 29.445 ± | 0.076 c,2 | 29.860 ± | 0.077 a,b,2,3 | 30.036 ± | 0.076 a,2 | 30.293 ± | 0.078 a,1,2 |
30 min AB | 29.385 ± | 0.084 b,2 | 29.645 ± | 0.085 a,b,2 | 29.924 ± | 0.084 a,2 | 30.167 ± | 0.086 a,1,2 |
1 h AB | 29.494 ± | 0.144 b,1,2 | 29.619 ± | 0.145 a,b,2 | 29.994 ± | 0.143 a,1,2 | 30.224 ± | 0.148 a,1 |
4 h AB | 29.366 ± | 0.146 b,2 | 29.697 ± | 0.147 a,b,3 | 30.080 ± | 0.145 a,1,2 | 30.377 ± | 0.149 a,1 |
24 h AB | 29.977 ± | 0.107 b,c,1 | 30.281 ± | 0.108 a,1,3 | 30.453 ± | 0.107 a,1 | 30.671 ± | 0.110 a,1 |
Time | Q1 n = 73 | Q2 n = 72 | Q3 n = 74 | Q4 n = 70 | ||||
---|---|---|---|---|---|---|---|---|
Wet | 27.024 ± | 0.062 c,6 | 27.222 ± | 0.062 c,5 | 27.482 ± | 0.061 b,6 | 27.743 ± | 0.063 a,5 |
Dry | 29.858 ± | 0.066 c,3,5 | 30.155 ± | 0.066 b,2,4 | 30.281 ± | 0.065 a,b,2,5 | 30.446 ± | 0.067 a,3 |
Colostrum | 29.028 ± | 0.038 c,4 | 29.255 ± | 0.038 b,3 | 29.344 ± | 0.037 b,4 | 29.742 ± | 0.038 a,4 |
30 min AB | 29.582 ± | 0.081 b,3 | 29.536 ± | 0.082 b,3 | 29.886 ± | 0.081 a,3 | 30.186 ± | 0.083 a,3 |
1 h AB | 30.294 ± | 0.057 b,c,2 | 30.452 ± | 0.057 b,2 | 30.644 ± | 0.056 b,2 | 30.940 ± | 0.058 a,2 |
4 h AB | 30.239 ± | 0.196 b,1,2 | 30.430 ± | 0.197 b,1,2 | 30.664 ± | 0.194 a,b,1,2 | 31.177 ± | 0.200 a,1,2 |
24 h AB | 30.778 ± | 0.086 b,1 | 30.971 ± | 0.086 a,b,1 | 31.271 ± | 0.085 a,1 | 31.543 ± | 0.088 a,1 |
Time | Q1 n = 73 | Q2 n = 72 | Q3 n = 74 | Q4 n = 70 | ||||
---|---|---|---|---|---|---|---|---|
Wet | 28.884 ± | 0.160 a,6 | 28.861 ± | 0.161 a,7 | 29.089 ± | 0.159 a,5 | 29.194 ± | 0.163 a,6 |
Dry | 31.525 ± | 0.042 c,5 | 31.657 ± | 0.042 b,c,6 | 31.806 ± | 0.042 a,b,4 | 31.902 ± | 0.043 a,5 |
Colostrum | 31.718 ± | 0.056 c,4 | 31.904 ± | 0.057 b,c,5 | 31.982 ± | 0.056 a,b,4 | 32.119 ± | 0.057 a,4 |
30 min AB | 32.067 ± | 0.040 c,3 | 32.176 ± | 0.040 c,4 | 32.358 ± | 0.040 b,3 | 32.520 ± | 0.041 a,3 |
1 h AB | 32.218 ± | 0.050 c,3 | 32.380 ± | 0.050 b,c,3 | 32.453 ± | 0.049 a,b,3 | 32.601 ± | 0.051 a,3 |
4 h AB | 32.504 ± | 0.058 c,2 | 32.666 ± | 0.059 b,c,2 | 32.734 ± | 0.058 a,b.2 | 32.910 ± | 0.059 a,2 |
24 h AB | 33.251 ± | 0.048 c,1 | 33.451 ± | 0.048 b,1 | 33.596 ± | 0.048 a,b,1 | 33.705 ± | 0.049 a,1 |
Time | Q1 n = 73 | Q2 n = 72 | Q3 n = 74 | Q4 n = 70 | ||||
---|---|---|---|---|---|---|---|---|
Wet | 29.664 ± | 0.100 a,5 | 29.739 ± | 0.101 a,5 | 29.800 ± | 0.099 a,5 | 29.939 ± | 0.102 a,5 |
Dry | 32.353 ± | 0.039 c,4 | 32.494 ± | 0.039 b,c,4 | 32.608 ± | 0.038 b,4 | 32.764 ± | 0.039 a,4 |
Colostrum | 32.501 ± | 0.063 b,4 | 32.696 ± | 0.063 a,b,4 | 32.708 ± | 0.062 a,b,4 | 32.862 ± | 0.064 a,4 |
30 min AB | 32.836 ± | 0.062 b,3 | 33.007 ± | 0.063 a,b,3 | 33.059 ± | 0.062 a,b,3 | 33.191 ± | 0.064 a,3 |
1 h AB | 32.941 ± | 0.069 b,3 | 33.094 ± | 0.069 a,b,3 | 33.112 ± | 0.068 a,b,3 | 33.337 ± | 0.070 a,3 |
4 h AB | 33.322 ± | 0.071 b,2 | 33.432 ± | 0.072 a,b,2 | 33.438 ± | 0.071 a,b,2 | 33.642 ± | 0.073 a,2 |
24 h AB | 33.788 ± | 0.055 c,1 | 33.995 ± | 0.055 b,1 | 34.087 ± | 0.055 a,b,1 | 34.234 ± | 0.056 a,1 |
Time | Q1 n = 73 | Q2 n = 72 | Q3 n = 74 | Q4 n = 70 | ||||
---|---|---|---|---|---|---|---|---|
Wet | 27.654 ± | 0.055 c,5 | 27.979 ± | 0.055 b,5 | 28.001 ± | 0.055 b,5 | 28.348 ± | 0.056 a,5 |
Dry | 28.670 ± | 0.111 b,3 | 28.826 ± | 0.112 a,b,3,4 | 29.072 ± | 0.111 a,b,3,4 | 29.116 ± | 0.114 a,3 |
Colostrum | 28.020 ± | 0.062 c,4 | 28.280 ± | 0.063 b,4 | 28.515 ± | 0.062 a,4 | 28.714 ± | 0.064 a,4 |
30 min AB | 28.363 ± | 0.097 b,3,4 | 28.535 ± | 0.098 a,b,4 | 28.611 ± | 0.097 a,b,4 | 28.846 ± | 0.099 a,3,4 |
1 h AB | 28.732 ± | 0.081 b,3 | 29.072 ± | 0.081 a,3 | 29.137 ± | 0.080 a,3 | 29.366 ± | 0.082 a,3 |
4 h AB | 29.815 ± | 0.070 b,2 | 30.068 ± | 0.071 a,b,2 | 30.226 ± | 0.070 a,2 | 30.434 ± | 0.072 a,2 |
24 h AB | 30.825 ± | 0.089 b,1 | 31.163 ± | 0.090 a,1 | 31.186 ± | 0.088 a,1 | 31.483 ± | 0.091 a,1 |
Time | Q1 n = 73 | Q2 n = 72 | Q3 n = 74 | Q4 n = 70 | ||||
---|---|---|---|---|---|---|---|---|
Wet | 27.534 ± | 0.051 c,6 | 27.840 ± | 0.051 b,5 | 27.883 ± | 0.050 b,5 | 28.344 ± | 0.052 a,5 |
Dry | 28.439 ± | 0.114 b,3,4 | 28.615 ± | 0.115 a,b,3 | 28.948 ± | 0.113 a,3 | 29.043 ± | 0.116 a,3 |
Colostrum | 27.884 ± | 0.053 d,5 | 28.127 ± | 0.053 c,4 | 28.440 ± | 0.052 b,4 | 28.693 ± | 0.054 a,3,4 |
30 min AB | 28.206 ± | 0.088 c,4 | 28.399 ± | 0.088 b,c,3,4 | 28.543 ± | 0.087 a,b,4 | 28.839 ± | 0.089 a,3,4 |
1 h AB | 28.630 ± | 0.078 c,3 | 28.988 ± | 0.079 b,3 | 29.111 ± | 0.078 b,3 | 29.421 ± | 0.080 a,3 |
4 h AB | 29.567 ± | 0.090 c,2 | 29.876 ± | 0.091 b,c,2 | 30.149 ± | 0.090 a,b,2 | 30.329 ± | 0.092 a,2 |
24 h AB | 30.712 ± | 0.080 c,1 | 31.023 ± | 0.081 b,1 | 31.024 ± | 0.080 b,1 | 31.500 ± | 0.082 a,1 |
Time | Q1 n = 73 | Q2 n = 72 | Q3 n = 74 | Q4 n = 70 | ||||
---|---|---|---|---|---|---|---|---|
Wet | 27.141 ± | 0.049 d,7 | 27.355 ± | 0.049 c,7 | 27.675 ± | 0.049 b,5 | 28.005 ± | 0.050 a,5 |
Dry | 30.798 ± | 0.062 b,6 | 30.993 ± | 0.062 b,6 | 31.341 ± | 0.062 a,4 | 31.351 ± | 0.063 a,3 |
Colostrum | 30.365 ± | 0.066 b,5 | 30.535 ± | 0.067 b,5 | 30.787 ± | 0.066 a,3 | 30.851 ± | 0.068 a,4 |
30 min AB | 31.095 ± | 0.069 c,4 | 31.272 ± | 0.069 b,c,4 | 31.450 ± | 0.068 a,b,4 | 31.565 ± | 0.070 a,2,3 |
1 h AB | 30.093 ± | 0.061 c,3 | 30.239 ± | 0.062 c,3 | 30.540 ± | 0.061 b,3 | 30.895 ± | 0.062 a,2,4 |
4 h AB | 32.149 ± | 0.069 b,2 | 32.415 ± | 0.070 a,2 | 32.615 ± | 0.069 a,2 | 32.485 ± | 0.071 a,1 |
24 h AB | 32.848 ± | 0.081 a,b,1 | 33.094 ± | 0.082 b,1 | 33.012 ± | 0.081 b,1 | 32.594 ± | 0.083 a,1 |
Variables | Correlation Coefficient (r) | p-Value |
---|---|---|
Wet | 0.190 | 0.001 |
Dry | 0.189 | 0.001 |
Colostrum | 0.248 | <0.001 |
30 min AB | 0.379 | <0.001 |
1 h AB | 0.444 | <0.001 |
4 h AB | 0.292 | <0.001 |
24 h AB | 0.364 | <0.001 |
Variables | Correlation Coefficient (r) | p-Value |
---|---|---|
Wet | 0.542 | <0.001 |
Dry | 0.510 | <0.001 |
Colostrum | 0.423 | <0.001 |
30 min AB | 0.365 | <0.001 |
1 h AB | 0.226 | <0.001 |
4 h AB | 0.353 | <0.001 |
24 h AB | 0.331 | <0.001 |
Variables | Correlation Coefficient (r) | p-Value |
---|---|---|
Wet | 0.551 | <0.001 |
Dry | 0.372 | <0.001 |
Colostrum | 0.632 | <0.001 |
30 min AB | 0.315 | <0.001 |
1 h AB | 0.469 | <0.001 |
4 h AB | 0.452 | <0.001 |
24 h AB | 0.353 | <0.001 |
Variables | Correlation Coefficient (r) | p-Value |
---|---|---|
Wet | 0.182 | 0.002 |
Dry | 0.409 | <0.001 |
Colostrum | 0.307 | <0.001 |
30 min AB | 0.449 | <0.001 |
1 h AB | 0.337 | <0.001 |
4 h AB | 0.328 | <0.001 |
24 h AB | 0.441 | <0.001 |
Variables | Correlation Coefficient (r) | p-Value |
---|---|---|
Wet | 0.146 | 0.013 |
Dry | 0.419 | <0.001 |
Colostrum | 0.258 | <0.001 |
30 min AB | 0.252 | <0.001 |
1 h AB | 0.273 | <0.001 |
4 h AB | 0.205 | <0.001 |
24 h AB | 0.376 | <0.001 |
Variables | Correlation Coefficient (r) | p-Value |
---|---|---|
Wet | 0.429 | <0.001 |
Dry | 0.415 | <0.001 |
Colostrum | 0.494 | <0.001 |
30 min AB | 0.224 | <0.001 |
1 h AB | 0.338 | <0.001 |
4 h AB | 0.365 | <0.001 |
24 h AB | 0.292 | <0.001 |
Variables | Correlation Coefficient (r) | p-Value |
---|---|---|
Wet | 0.520 | <0.001 |
Dry | 0.444 | <0.001 |
Colostrum | 0.624 | <0.001 |
30 min AB | 0.311 | <0.001 |
1 h AB | 0.397 | <0.001 |
4 h AB | 0.406 | <0.001 |
24 h AB | 0.360 | <0.001 |
Variables | Correlation Coefficient (r) | p-Value |
---|---|---|
Wet | 0.651 | <0.001 |
Dry | 0.391 | <0.001 |
Colostrum | 0.429 | <0.001 |
30 min AB | 0.400 | <0.001 |
1 h AB | 0.525 | <0.001 |
4 h AB | 0.259 | <0.001 |
24 h AB | −0.024 | 0.679 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lezama-García, K.; Martínez-Burnes, J.; Marcet-Rius, M.; Gazzano, A.; Olmos-Hernández, A.; Mora-Medina, P.; Domínguez-Oliva, A.; Pereira, A.M.F.; Hernández-Ávalos, I.; Baqueiro-Espinosa, U.; et al. Is the Weight of the Newborn Puppy Related to Its Thermal Balance? Animals 2022, 12, 3536. https://doi.org/10.3390/ani12243536
Lezama-García K, Martínez-Burnes J, Marcet-Rius M, Gazzano A, Olmos-Hernández A, Mora-Medina P, Domínguez-Oliva A, Pereira AMF, Hernández-Ávalos I, Baqueiro-Espinosa U, et al. Is the Weight of the Newborn Puppy Related to Its Thermal Balance? Animals. 2022; 12(24):3536. https://doi.org/10.3390/ani12243536
Chicago/Turabian StyleLezama-García, Karina, Julio Martínez-Burnes, Míriam Marcet-Rius, Angelo Gazzano, Adriana Olmos-Hernández, Patricia Mora-Medina, Adriana Domínguez-Oliva, Alfredo M. F. Pereira, Ismael Hernández-Ávalos, Uri Baqueiro-Espinosa, and et al. 2022. "Is the Weight of the Newborn Puppy Related to Its Thermal Balance?" Animals 12, no. 24: 3536. https://doi.org/10.3390/ani12243536
APA StyleLezama-García, K., Martínez-Burnes, J., Marcet-Rius, M., Gazzano, A., Olmos-Hernández, A., Mora-Medina, P., Domínguez-Oliva, A., Pereira, A. M. F., Hernández-Ávalos, I., Baqueiro-Espinosa, U., Geraldo, A. d. M., Casas-Alvarado, A., & Mota-Rojas, D. (2022). Is the Weight of the Newborn Puppy Related to Its Thermal Balance? Animals, 12(24), 3536. https://doi.org/10.3390/ani12243536