Effect of Grape Marc Added Diet on Live Weight Gain, Blood Parameters, Nitrogen Excretion, and Behaviour of Sheep
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site and Feeds
2.2. Animals, Diets, and Experimental Design
2.3. Feed Intake, Liveweight, and Body Condition Score Measurements
2.4. Urine and Blood Sampling and Preparation
2.5. Urine and Blood Sample Analysis
2.6. Total Faecal Output Analysis
2.7. Animal Behaviour
2.8. Nutritive Value and Chemical Composition of Feeds
2.9. Statistical Analysis
3. Results
3.1. Nutritive Value and Chemical Composition of Feed
3.2. Intake, Body Condition Score, and Liveweight
3.3. Faecal Output, Composition, and Egg Count
3.4. Nitrogen Balance and Purine Derivatives
3.5. Animal Behaviour
4. Discussion
4.1. Nutritive and Chemical Composition of Feedstuffs and Diets
4.2. Dry Matter Intake, Body Condition Score, and Liveweight
4.3. Faecal Output, Composition, and Egg Count
4.4. Nitrogen Balance and Purine Derivatives
4.5. Animal Behaviour
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moate, P.; Williams, S.; Torok, V.; Hannah, M.; Ribaux, B.; Tavendale, M.; Eckard, R.; Jacobs, J.; Auldist, M.; Wales, W. Grape marc reduces methane emissions when fed to dairy cows. J. Dairy Sci. 2014, 97, 5073–5087. [Google Scholar] [CrossRef] [PubMed]
- Baumgärtel, T.; Kluth, H.; Epperlein, K.; Rodehutscord, M. A note on digestibility and energy value for sheep of different grape pomace. J. Small Rumin. Res. 2007, 67, 302–306. [Google Scholar] [CrossRef]
- Bhatta, R.; Krishnamoorthy, U.; Mohammed, F. Effect of feeding tamarind (Tamarindus indica) seed husk as a source of tannin on dry matter intake, digestibility of nutrients and production performance of crossbred dairy cows in mid-lactation. J. Anim. Feed Sci. Technol. 2000, 83, 67–74. [Google Scholar] [CrossRef]
- Zhang, N.; Hoadley, A.; Patel, J.; Lim, S.; Li, C.e. Sustainable options for the utilization of solid residues from wine production. J. Waste Manag. 2017, 60, 173–183. [Google Scholar] [CrossRef]
- Caetano, M.; Wilkes, M.J.; Pitchford, W.S.; Lee, S.J.; Hynd, P.I. Effect of ensiled crimped grape marc on energy intake, performance and gas emissions of beef cattle. Anim. Feed Sci. Technol. 2019, 247, 166–172. [Google Scholar] [CrossRef]
- Spanghero, M.; Salem, A.; Robinson, P. Chemical composition, including secondary metabolites, and rumen fermentability of seeds and pulp of Californian (USA) and Italian grape pomaces. J. Anim. Feed Sci. Technol. 2009, 152, 243–255. [Google Scholar] [CrossRef]
- Chikwanha, O.C.; Moelich, E.; Gouws, P.; Muchenje, V.; Nolte, J.V.E.; Dugan, M.E.; Mapiye, C. Effects of feeding increasing levels of grape (Vitis vinifera cv. Pinotage) pomace on lamb shelf-life and eating quality. J. Meat Sci. 2019, 157, 107887. [Google Scholar] [CrossRef]
- Tayengwa, T.; Chikwanha, O.C.; Dugan, M.E.; Mutsvangwa, T.; Mapiye, C. Influence of feeding fruit by-products as alternative dietary fibre sources to wheat bran on beef production and quality of Angus steers. J. Meat Sci. 2020, 161, 107969. [Google Scholar] [CrossRef]
- Rugoho, I.; Gourley, C.J.; Hannah, M.C. Nutritive characteristics, mineral concentrations and dietary cation–anion difference of feeds used within grazing-based dairy farms in Australia. J. Anim. Prod. Sci. 2017, 57, 858–876. [Google Scholar] [CrossRef]
- Molina-Alcaide, E.; Moumen, A.; Martín-García, A.I. By-products from viticulture and the wine industry: Potential as sources of nutrients for ruminants. J. Sci. Food Agric. 2008, 88, 597–604. [Google Scholar] [CrossRef]
- Li, M.; Loo, Y.; Cheng, L.; Howell, K.; Zhang, P. Impacts of Supplementation of Probiotics on the Prevalence of Grape Marc Derived Polyphenols in Colonic Digesta Using in vitro Digestion Model. In IOP Conference Series: Earth and Environmental Science; IOP Publishing Ltd.: Bristol, UK, 2019; p. 012075. [Google Scholar]
- Barry, T.; McNabb, W. The implications of condensed tannins on the nutritive value of temperate forages fed to ruminants. Br. J. Nutr. 1999, 81, 263–272. [Google Scholar] [CrossRef] [Green Version]
- Greenwood, S.; Edwards, G.; Harrison, R. Supplementing grape marc to cows fed a pasture-based diet as a method to alter nitrogen partitioning and excretion. J. Dairy Sci. 2012, 95, 755–758. [Google Scholar] [CrossRef] [PubMed]
- Whitehead, D.C. Grassland Nitrogen; CAB International: Wallingford, UK, 1995. [Google Scholar]
- Selby-Pham, S.N.; Cottrell, J.J.; Dunshea, F.R.; Ng, K.; Bennett, L.E.; Howell, K.S. Dietary phytochemicals promote health by enhancing antioxidant defence in a pig model. J. Nutr. 2017, 9, 758. [Google Scholar] [CrossRef] [Green Version]
- Chedea, V.S.; Pelmus, R.S.; Lazar, C.; Pistol, G.C.; Calin, L.G.; Toma, S.M.; Dragomir, C.; Taranu, I. Effects of a diet containing dried grape pomace on blood metabolites and milk composition of dairy cows. J. Sci. Food Agric. 2017, 97, 2516–2523. [Google Scholar] [CrossRef] [PubMed]
- Eleonora, N.; Dobrei, A.; Alina, D.; Bampidis, V.; Valeria, C. Grape pomace in sheep and dairy cows feeding. J. Hortic. For. Biotechnol. 2014, 18, 146–150. [Google Scholar]
- Rattray, P.V.; Brooks, I.; Nicol, A.M. Pasture and Supplements for Grazing Animals; New Zealand Society of Animal Production: New Zealand, 2007. [Google Scholar]
- AFIA. Laboratory Methods Manual: A Reference Manual of Standard Methods for the Analysis of Fodder; AFIA: Arlington, VA, USA, 2011. [Google Scholar]
- Chen, X.B.; Gomes, M. Estimation of Microbial Protein Supply to Sheep and Cattle Based on Urinary Excretion of Purine Derivatives: An Overview of the Technical Details; Rowett Research Institute: Aberdeen, UK, 1992; p. 22. [Google Scholar]
- Faichney, G.; Welch, R.; Brown, G. Prediction of the excretion of allantoin and total purine derivatives by sheep from the ‘creatinine coefficient’. J. Agric. Sci. 1995, 125, 425–428. [Google Scholar] [CrossRef]
- Kohn, R.; Dinneen, M.; Russek-Cohen, E. Using blood urea nitrogen to predict nitrogen excretion and efficiency of nitrogen utilization in cattle, sheep, goats, horses, pigs, and rats. J. Anim. Sci. 2005, 83, 879–889. [Google Scholar] [CrossRef] [Green Version]
- AOAC. Official Methods of Analysis of AOAC International. Volume I, Agricultural Chemicals, Contaminants, Drugs; Horwitz, W., Ed.; AOAC: Rockville, ML, USA, 2010. [Google Scholar]
- Abarghuei, M.; Rouzbehan, Y.; Alipour, D. The influence of the grape pomace on the ruminal parameters of sheep. J. Livest. Sci. 2010, 132, 73–79. [Google Scholar] [CrossRef]
- Economides, S.; Georghiades, E. Grape Marc as a Substitute for Barley Grain in Diets of Fattening Lambs; Technical Bulletin; Agricultural Research Institute: Aglantzia, Cyprus, April 1980. [Google Scholar]
- Bahrami, Y.; Foroozandeh, A.-D.; Zamani, F.; Modarresi, M.; Eghbal-Saeid, S.; Chekani-Azar, S. Effect of diet with varying levels of dried grape pomace on dry matter digestibility and growth performance of male lambs. J. Anim. Plant Sci. 2010, 6, 605–610. [Google Scholar]
- Calderón-Cortés, J.F.; González-Vizcarra, V.-M.; Pétriz-Celaya, Y.; Pujol, L.C.; Barreras, A.; Plascencia, A. Energy value of unfermented dried grape pomace as substitute of alfalfa hay in diets for growing lambs. Aust. J. Vet. Sci. 2018, 50, 59–63. [Google Scholar] [CrossRef] [Green Version]
- Blaxter, K.L.; Graham, N.M.; Wainman, F. Some observations on the digestibility of food by sheep, and on related problems. Br. J. Nutr. 1956, 10, 69–91. [Google Scholar] [CrossRef] [PubMed]
- Niezen, J.; Waghorn, T.; Charleston, W.; Waghorn, G. Growth and gastrointestinal nematode parasitism in lambs grazing either lucerne (Medicago sativa) or sulla (Hedysarum coronarium) which contains condensed tannins. J. Agric. Sci. 1995, 125, 281–289. [Google Scholar] [CrossRef]
- Max, R.; Wakelin, D.; Dawson, J.; Kimambo, A.; Kassuku, A.; Mtenga, L.; Craigon, J.; Buttery, P. Effect of quebracho tannin on faecal egg counts and worm burdens of temperate sheep with challenge nematode infections. J. Agric. Sci. 2005, 143, 519–527. [Google Scholar] [CrossRef]
- Blaxter, K.L.; Mitchell, H. The factorization of the protein requirements of ruminants and of the protein values of feeds, with particular reference to the significance of the metabolic fecal nitrogen. J. Anim. Sci. 1948, 7, 351–372. [Google Scholar] [CrossRef]
- Kebreab, E.; France, J.; Mills, J.; Allison, R.; Dijkstra, J. A dynamic model of N metabolism in the lactating dairy cow and an assessment of impact of N excretion on the environment. J. Anim. Sci. 2002, 80, 248–259. [Google Scholar] [CrossRef] [PubMed]
- Clifford, H.A. Ensiled Grape Marc and the Impact on Ruminal Function and Digestion in Sheep; The University of Adelaide: Adelaide, Australia, 2015. [Google Scholar]
- De Klein, C.; Eckard, R. Targeted technologies for nitrous oxide abatement from animal agriculture. Aust. J. Exp. Agric. 2008, 48, 14–20. [Google Scholar] [CrossRef]
- Varel, V.H.; Nienaber, J.A.; Freetly, H.C. Conservation of nitrogen in cattle feedlot waste with urease inhibitors. J. Anim. Sci. 1999, 77, 1162–1168. [Google Scholar] [CrossRef]
- Hagerman, A.E.; Robbins, C.T.; Weerasuriya, Y.; Wilson, T.C.; McArthur, C. Tannin chemistry in relation to digestion. J. Range Manag. Arch. 1992, 45, 57–62. [Google Scholar] [CrossRef]
- Owens, F.; Bergen, W. Nitrogen metabolism of ruminant animals: Historical perspective, current understanding and future implications. J. Anim. Sci. 1983, 57, 498–518. [Google Scholar]
- Cheng, L.; Judson, H.; Bryant, R.; Mowat, H.; Guinot, L.; Hague, H.; Taylor, S.; Edwards, G. The effects of feeding cut plantain and perennial ryegrass-white clover pasture on dairy heifer feed and water intake, apparent nutrient digestibility and nitrogen excretion in urine. J. Anim. Feed Sci. Technol. 2017, 229, 43–46. [Google Scholar] [CrossRef]
- Yáñez-Ruiz, D.R.; Molina-Alcaide, E. A comparative study of the effect of two-stage olive cake added to alfalfa on digestion and nitrogen losses in sheep and goats. Animal 2007, 1, 227–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Correia, B.R.; de Carvalho, G.G.P.; Oliveira, R.L.; Pires, A.J.V.; Ribeiro, O.L.; Silva, R.R.; Leão, A.G.; Rodrigues, C.S. Feeding behavior of feedlot-finished young bulls fed diets containing peanut cake. J. Trop. Anim. Health 2015, 47, 1075–1081. [Google Scholar] [CrossRef] [PubMed]
- Dellow, D.; Barry, T. The efficiency of chewing during eating and ruminating in goats and sheep. Br. J. Nutr. 1991, 65, 355–363. [Google Scholar]
Control | Total Diet | Treatment | Total Diet | ||||||
---|---|---|---|---|---|---|---|---|---|
Items | Wheat Grain | Faba Bean | Lucerne Hay | Wheat Grain | Faba Bean | Lucerne Hay | Grape Marc | ||
DM% | 95.6 ± 0.71 | 96.8 ± 0.13 | 97.5 ± 0.69 | 96.7 | 95.4 ± 1.44 | 96.3 ± 1.14 | 97.1 ± 0.60 | 34.2 ± 1.05 | 84.0 |
DOM% | 98.0 ± 0.20 | 96.4 ± 0.38 | 92.3 ± 0.41 | 94.8 | 98.0 ± 0.11 | 96.6 ± 0.09 | 92.6 ± 0.50 | 90.2 ± 0.55 | 94.0 |
Ash% | 2.0 ± 0.20 | 3.6 ± 0.38 | 7.7 ± 0.41 | 5.2 | 2.0 ± 0.11 | 3.5 ± 0.09 | 7.4 ± 0.50 | 9.8 ± 0.55 | 6.0 |
CP% | 13.6 ± 0.51 | 24.7 ± 0.44 | 11.6 ± 0.84 | 13.0 | 13.4 ± 0.44 | 25.6 ± 0.84 | 11.2 ± 1.66 | 15.1 ± 1.68 | 13.2 |
Pepsin-Cellulase Digestibility | |||||||||
DMD% | 94.8 ± 0.20 | 89.4 ± 1.20 | 44.8 ± 3.31 | 67.0 | 94.9 ± 0.23 | 89.2 ± 0.99 | 48.2 ± 3.43 | 36.3 ± 1.65 | 62.4 |
OMD% | 91.9 ± 4.25 | 86.1 ± 4.23 | 38.9 ± 6.31 | 62.4 | 93.9 ± 0.88 | 86.9 ± 2.30 | 41.0 ± 5.33 | 29.5 ± 1.53 | 57.5 |
DOMD% | 92.1 ± 0.98 | 83.0 ± 3.89 | 35.9 ± 5.75 | 60.7 | 92.1 ± 0.79 | 83.9 ± 2.18 | 38.0 ± 5.03 | 26.6 ± 2.18 | 51.7 |
Antioxidant Compounds | |||||||||
TPC1 | 0.4 ± 0.01 | 1.9 ± 0.11 | 0.5 ± 0.01 | 0.5 | 0.6 ± 0.03 | 2.3 ± 0.11 | 0.5 ± 0.02 | 16.0 ± 0.46 | 3.7 |
TFC2 | 2.0 ± 0.09 | 6.1 ± 0.12 | 1.9 ± 0.08 | 2.1 | 1.6 ± 0.17 | 14.9 ± 0.48 | 1.7 ± 0.02 | 14.9 ± 0.45 | 4.9 |
TTC3 | 3.2 ± 3.1 | 6.0 ± 5.9 | 1.1 ± 1.1 | 2.2 | 8.2 ± 1.03 | 5.0 ± 0.12 | 1.0 ± 0.08 | 22.1 ± 4.7 | 24.8 |
DPPH4 | 0.1 ± 0.00 | 2.3 ± 0.04 | 0.2 ± 0.00 | 0.2 | 0.1 ± 0.00 | 2.2 ± 0.19 | 0.1 ± 0.00 | 21.7 ± 0.81 | 4.5 |
FRAP4 | 0.1 ± 0.05 | 0.3 ± 0.24 | 0.0 ± 0.01 | 0.1 | 0.0 ± 0.01 | 0.3 ± 0.08 | 0.0 ± 0.01 | 1.0 ± 0.48 | 0.2 |
Parameters | Control | Treatment | SED | p-Value |
---|---|---|---|---|
Fresh matter intake, kg/head/d | 1.14 | 1.79 | 0.24 | 0.025 |
Dry matter intake, kg/head/d | 1.11 | 1.30 | 0.02 | < 0.001 |
Water intake, kg/head/d | 3.00 | 2.72 | 0.11 | 0.030 |
Liveweight gain, g/head/d | 33.0 | 5.0 | 22.5 | 0.248 |
BCS change, unit/head p/d | 0.02 | 0.02 | 0.01 | 0.719 |
Feed conversion efficiency, g/kg | 30.0 | 3.5 | 18.0 | 0.181 |
Parameters | Control | Treatment | SED | p-Value |
---|---|---|---|---|
Fresh faecal output, kg/sheep/d | 0.8 | 0.9 | 0.10 | 0.232 |
Dry faecal output, kg/sheep/d | 0.3 | 0.4 | 0.04 | 0.075 |
Faecal dry matter, % | 35.9 | 39.7 | 1.63 | 0.052 |
Faecal organic matter, % | 91.4 | 92.0 | 0.37 | 0.132 |
Faecal nitrogen content, % | 2.3 | 2.5 | 0.10 | 0.174 |
Faecal egg count | ||||
Strongyle, epg | 16 | 8 | 17.9 | 0.667 |
Nematodirus, epg | 0 | 16 | 16.0 | 0.347 |
Tapeworm | - | - | - | - |
Coccidia | + | + | - | - |
Parameters | Control | Treatment | SED | p-Value |
---|---|---|---|---|
Nitrogen intake, g/sheep/d | 23.1 | 27.2 | 0.50 | <0.001 |
Faecal nitrogen output, g/sheep/d | 6.3 | 8.7 | 1.00 | 0.047 |
Urinary nitrogen output, g/sheep/d | 8.2 | 7.3 | 0.59 | 0.138 |
Retained nitrogen, g/sheep/d | 8.6 | 11.2 | 1.33 | 0.091 |
Retained/nitrogen intake, g/g | 0.4 | 0.4 | 0.05 | 0.509 |
Faecal nitrogen/urinary nitrogen, g/g | 0.8 | 1.2 | 0.14 | 0.024 |
Plasma urea nitrogen, g/L | 0.2 | 0.2 | 0.01 | 0.146 |
Plasma glucose, mmol/L | 4.1 | 4.5 | 0.43 | 0.424 |
Urinary creatinine, mmol/L | 10.3 | 7.1 | 1.22 | 0.033 |
Urinary allantoin, mmol/L | 14.0 | 10.0 | 1.72 | 0.046 |
Uric acid, mmol/L | 1.6 | 1.0 | 0.32 | 0.088 |
Purine derivatives, mmol/L | 15.6 | 10.9 | 1.82 | 0.034 |
Purine derivatives excretion, mmol/sheep/d | 11.0 | 11.0 | 0.86 | 0.939 |
Purine derivatives excretion: dry matter intake, mmol/g | 9.96 | 8.43 | 0.73 | 0.069 |
Parameter | Control | Treatment | SED | p-Value |
---|---|---|---|---|
Eating, min/3.5 hr/group | 59.5 | 79.5 | 9.15 | 0.060 |
Rumination, min/3.5 hr/group | 17.0 | 17.0 | 6.09 | 1.000 |
Idling, min/3.5 hr/group | 133.5 | 113.5 | 12.70 | 0.154 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.; Zhang, P.; Zhang, F.; Shishir, M.S.R.; Chauhan, S.S.; Rugoho, I.; Suleria, H.; Zhao, G.; Cullen, B.; Cheng, L. Effect of Grape Marc Added Diet on Live Weight Gain, Blood Parameters, Nitrogen Excretion, and Behaviour of Sheep. Animals 2022, 12, 225. https://doi.org/10.3390/ani12030225
Wu H, Zhang P, Zhang F, Shishir MSR, Chauhan SS, Rugoho I, Suleria H, Zhao G, Cullen B, Cheng L. Effect of Grape Marc Added Diet on Live Weight Gain, Blood Parameters, Nitrogen Excretion, and Behaviour of Sheep. Animals. 2022; 12(3):225. https://doi.org/10.3390/ani12030225
Chicago/Turabian StyleWu, Huichu, Pangzhen Zhang, Fan Zhang, Md Safiqur Rahaman Shishir, Surinder S. Chauhan, Innocent Rugoho, Hafiz Suleria, Guangyong Zhao, Brendan Cullen, and Long Cheng. 2022. "Effect of Grape Marc Added Diet on Live Weight Gain, Blood Parameters, Nitrogen Excretion, and Behaviour of Sheep" Animals 12, no. 3: 225. https://doi.org/10.3390/ani12030225
APA StyleWu, H., Zhang, P., Zhang, F., Shishir, M. S. R., Chauhan, S. S., Rugoho, I., Suleria, H., Zhao, G., Cullen, B., & Cheng, L. (2022). Effect of Grape Marc Added Diet on Live Weight Gain, Blood Parameters, Nitrogen Excretion, and Behaviour of Sheep. Animals, 12(3), 225. https://doi.org/10.3390/ani12030225