Efficiency of Soybean Products in Broiler Chicken Nutrition
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experiment Design
2.2. Chemical Composition Evaluation of Soybean Products (n = 3) and Muscles (n = 10)
2.3. Physical Properties Evaluation of Muscles (n = 10)
2.4. Organoleptic Properties of Muscles (n = 8)
2.5. Statistical Analysis
- Yik—value of the analysed feature,
- μ—total mean value,
- ai—effect of the experimental factor,
- eik—error.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hafez, H.M.; Attia, Y.A. Challenges to the Poultry Industry: Current Perspectives and Strategic Future After the COVID-19 Outbreak. Front. Vet. Sci. 2020, 7, 516. [Google Scholar] [CrossRef] [PubMed]
- FAO Statistics. 2022. Available online: http://fenix.fao.org/faostat/internal/en/#home (accessed on 12 January 2022).
- Brzóska, F.; Śliwa, J. Non-GM soybean—Production and possible use in animal feeding in Poland Part I. Soy in the fodder balance and its cultivation in Poland. Wiad. Zoot. 2016, 54, 98–110. [Google Scholar]
- Davison, J.; Ammann, K. New GMO regulations for old: Determining a new future for EU crop biotechnology. GM Crops Food 2017, 8, 13–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grela, E.R.; Czech, A. Alternative forage for genetically modified soybean in animal feeding. Wiad. Zoot. 2019, 57, 66–77. [Google Scholar]
- Milczarek, A.; Osek, M.; Kwiecień, M.; Pachnik, M. Influence of raw or extruded soybean seeds in broiler chicken mixtures on rearing parameters, slaughter value and liver histological image. Med. Weter. 2017, 73, 764–769. [Google Scholar] [CrossRef] [Green Version]
- Śliwa, J.; Brzóska, F. Effect of diets with non-gm soybean expeller on body weight, carcass quality and amino acid digestibility in broiler chickens. Rocz. Nauk. Zoot. 2018, 45, 59–87. [Google Scholar]
- Lehmali, I.F.; Jafari, M.A. Soybean processing effects on the performance, carcass traits, and blood metabolites of broiler chickens. Indian J. Anim. Sci. 2020, 90, 1134–1139. [Google Scholar]
- Sakkas, P.; Royer, E.; Smith, S.; Oikeh, I.; Kyriazakis, I. Combining alternative processing methods for European soybeans to be used in broiler diets. Anim. Feed Sci. Technol. 2019, 253, 45–55. [Google Scholar] [CrossRef]
- Zhang, S.; Ao, X.; Kim, I.H. Effects of non-genetically and genetically modified organism (maize-soybean) diet on growth performance, nutrient digestibility, carcass weight, and meat quality of broiler chicken. Asian-Australas. J. Anim. Sci. 2019, 32, 849–855. [Google Scholar] [CrossRef] [Green Version]
- Wu, P.; Golly, M.K.; Guo, Y.; Ma, H.; He, R.; Luo, X.; Luo, S.; Zhang, C.; Zhang, L.; Zhu, J. Effect of partial replacement of soybean meal with high-temperature fermented soybean meal in antibiotic-growth-promoter-free diets on growth performance, organ weights, serum indexes, intestinal flora and histomorphology of broiler chickens. Anim. Feed Sci. Technol. 2020, 269, 114616. [Google Scholar] [CrossRef]
- Marx, F.O.; Massuquetto, A.; Bassi, L.S.; Krabbe, E.L.; Rocha, C.; Oliveira, S.G.; Maiorka, A. Different soybean meal particle sizes on growth performance, nutrient ileal digestibility, digestible energy, and carcass yield of broiler chickens. Livest. Sci. 2021, 247, 104467. [Google Scholar] [CrossRef]
- Nikmaram, N.; Leong, S.Y.; Koubaa, M.; Zhu, Z.; Barba, F.J.; Greiner, R.; Oey, I.; Roohinejad, S. Effect of extrusion on the anti-nutritional factors of food products: An overview. Food Control 2017, 79, 62–73. [Google Scholar] [CrossRef]
- De Lima, M.F.; de Lima, C.A.R.; Dilelis, F.; da Costa Gomes, A.V.; de Freitas, L.W. Metabolizable energy and amino acid digestibility of soybean cake subjected to different dry extrusion temperatures for broilers. Rev. Bras. Zootec. 2018, 47, e20180057. [Google Scholar]
- Palliyeguru, M.W.C.D.; Rose, S.P.; Mackenzie, A.M. Effect of trypsin inhibitor activity in soya bean on growth performance, protein digestibility and incidence of sub-clinical necrotic enteritis in broiler chicken flocks. Br. Poult. Sci. 2011, 52, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Woyengo, T.A.; Beltranena, E.; Zijlstra, R.T. Effect of antinutritional factors of oilseed co-products on feed intake of pigs and poultry. Anim. Feed Sci. Technol. 2016, 233, 76–86. [Google Scholar] [CrossRef]
- Aderibigbe, A.; Cowieson, A.J.; Sorbara, J.O.; Pappenberger, G.; Adeola, O. Growth performance and amino acid digestibility responses of broiler chickens fed diets containing purified soybean trypsin inhibitor and supplemented with a monocomponent protease. Poult. Sci. 2020, 99, 5007–5017. [Google Scholar] [CrossRef]
- Subuh, A.M.H.; Motl, M.A.; Fritts, C.A.; Waldroup, P.W. Use of various rations of unextracted full fat soybean meal and dehulled solvent extracted soybean meal in broiler diets. Int. J. Poult. Sci. 2002, 1, 9–12. [Google Scholar]
- Powell, S.; Naranjo, V.D.; Lauzon, D.; Bidner, T.D.; Southern, L.L.; Parsons, C.M. Evaluation of an expeller-extruded soybean meal for broilers. J. Appl. Poult. Res. 2011, 20, 353–360. [Google Scholar] [CrossRef]
- Ruiz, N.; De Belalcázar, F.; Díaz, G.J. Quality Control Parameters for Commercial Full-Fat Soybeans Processed by Two Different Methods and Fed to Broilers. J. Appl. Poult. Res. 2004, 13, 443–450. [Google Scholar] [CrossRef]
- Mirghelenj, S.A.; Golian, A.; Kermanshahi, H.; Raji, A.R. Nutritional value of wet extruded full-fat soybean and its effects on broiler chicken performance. J. Appl. Poult. Res. 2013, 22, 410–422. [Google Scholar] [CrossRef]
- Smulikowska, S.; Rutkowski, A. (Eds.) Standards and Recommendations of Poultry Nutrition. Recommended allowances and nutritive value of feedstuffs. In Poultry Feeding Standards, 4th ed.; The Kielanowski Institute of Animal Physiology and Nutrition PAS and Polish Branch of WPSA: Jabłonna, Poland, 2005. [Google Scholar]
- Ziołecki, J.; Doruchowski, W. Slaughter Value Evaluation Methods; COBRD Own Publishing Service: Poznań, Poland, 1989. [Google Scholar]
- AOAC. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1990; Chapter 32. [Google Scholar]
- ISO 9831; Animal Feeding Stuffs, Animal Products, and Faeces or Urine—Determination of Gross Calorific Value—Bomb Calorimeter Method. International Organization for Standardization: Geneva, Switzerland, 2005.
- Smith, C.; van Megen, W.; Twaalfhoven, L.; Hitchcock, C. The determination of trypsin inhibitor levels in foodstuffs. J. Sci. Food Agric. 1980, 31, 341–350. [Google Scholar] [CrossRef] [PubMed]
- BN-90/79160-62. Colorimetric Method. In Tannin Determination; Polski Komitet Normalizacyjny: Warsaw, Poland, 1990. [Google Scholar]
- Folch, J.M.; Lees, M.; Stanley, G.H.S. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Jurczak, M.E. Towaroznawstwo Produktów Zwierzęcych; Ocena Jakości Mięsa SGGW: Warszawa, Poland, 2005; pp. 117–119. [Google Scholar]
- CIE. Draft Standard 014-4.3/E: Colorimetry—Part. 4: CIE 1976 L*a*b* Colour Space; CIE Central Bureau: Vienna, Austria, 2007; p. 8. [Google Scholar]
- Honikel, K.O. Reference methods for the assessment of physical characteristics of meat. Meat Sci. 1998, 49, 447–457. [Google Scholar] [CrossRef]
- Milczarek, A.; Osek, M. Effectiveness Evaluation of Use of Various Protein Feeds for Broiler Chicken Feeding. Ann. Anim. Sci. 2019, 19, 1063–1081. [Google Scholar] [CrossRef] [Green Version]
- Baryłko-Pikielna, N. Zarys Analizy Sensorycznej Żywności; WNT: Warszawa, Poland, 1975; pp. 183–188. [Google Scholar]
- Baryłko-Pikielna, N.; Matuszewska, I. Sensory Analysis of Food: Basics—Methods—Applications. In Wyd. II. Wyd. Nauk; PTTZ: Kraków, Poland, 2014; 375p. [Google Scholar]
- StatSoft, Inc. Statistica (Data Analysis Software System), Version 13.1; StatSoft Inc.: Tulsa, OK, USA, 2019. [Google Scholar]
- Bandegan, A.; Kiarie, E.; Payne, R.L.; Crow, G.H.; Guenter, W.; Nyachoti, C.M. Standardized ileal amino acid digestibility in dry-extruded expelled soybean meal, extruded canola seed-pea, feather meal, and poultry by-product meal for broiler chickens. Poult. Sci. 2010, 89, 2626–2633. [Google Scholar] [CrossRef] [PubMed]
- Ganzer, C.; Siegert, W.; Kluth, H.; Bennewitz, J.; Rodehutscord, M. Prececal amino acid digestibility of soybean cake in fast- and slow-growing broiler chickens. Poult. Sci. 2017, 96, 2804–2810. [Google Scholar] [CrossRef]
- Świątkiewicz, M.; Witaszek, K.; Sosin, E.; Pilarski, K.; Szymczyk, B.; Durczak, K. The Nutritional Value and Safety of Genetically Unmodified Soybeans and Soybean Feed Products in the Nutrition of Farm Animals. Agronomy 2021, 11, 1105. [Google Scholar] [CrossRef]
- Niwińska, B.; Witaszek, K.; Niedbała, G.; Pilarski, K. Seeds of n-GM Soybean Varieties Cultivated in Poland and Their Processing Products as High-Protein Feeds in Cattle Nutrition. Agriculture 2020, 10, 174. [Google Scholar] [CrossRef]
- Berger, M.; Paulais, A.; Nourbakhsh-Rey, M.; Rooryck, S.; Labalette, F.; Maury, P. Trypsin inhibitors in soybean seed: Evaluation of genotypic variability in a core collection, effect of very early sowing and reduced irrigation. OCL Oilseeds Fats Crops Lipids 2015, 22, D504. [Google Scholar] [CrossRef] [Green Version]
- Loeffler, T.; Shim, M.Y.; Beckstead, R.B.; Batal, A.B.; Pesti, G.M. Amino acid digestibility and metabolizable energy of genetically selected soybean products. Poult. Sci. 2013, 92, 1790–1798. [Google Scholar] [CrossRef]
- Jahanian, R.; Rasouli, E. Effect of extrusion processing of soybean meal on ileal amino acid digestibility and growth performance of broiler chicks. Poult. Sci. 2016, 95, 2871–2878. [Google Scholar] [CrossRef] [PubMed]
- Foltyn, M.; Rada, V.; Lichovniková, M. The effect of graded level extruded fullfat soybean in diets for broiler on apparent ileal amino acids digestibility. Mendel Net. 2012, 248–253. Available online: https://mnet.mendelu.cz/mendelnet2012/articles/33_foltyn_605.pdf (accessed on 15 October 2021).
- Zhaleh, S.; Golian, A.; Mirghelenj, S.A.; Akhavan, A.; Akbarian, A. Effects of feeding various levels of full fat soybean extruded at high temperature on performance, serum components and intestinal morphology of broiler chickens. Anim. Prod. Sci. 2014, 255, 580–586. [Google Scholar] [CrossRef]
- Pacheco, W.J.; Stark, C.R.; Ferket, P.R.; Brake, J. Effects of trypsin inhibitor and particle size of expeller-extracted soybean meal on broiler live performance and weight of gizzard and pancreas. Poult. Sci. 2014, 93, 2245–2252. [Google Scholar] [CrossRef] [PubMed]
- Zdanowska-Sąsiadek, Ż.; Michalczuk, M.; Marcinkowska-Lesiak, M.; Damiziak, K. Factors determining the sensory quality of poultry meat. Bromat. Chem. Toksykol. 2013, 46, 344–353. [Google Scholar]
- Tougan, P.U.; Dahouda, M.; Salifou, C.F.; Ahounou, S.G.; Kpodekon, M.T.; Mensah, G.A.; Thewis, A.; Karim, I.Y. Conversion of chicken muscle to meat and factors affecting chicken meat quality: A review. Int. J. Agron. Agric. Res. 2013, 3, 1–20. [Google Scholar]
- Orkusz, A. Factors affecting the quality of gallinaceous poultry meat. A review. Eng. Sci. Technol. 2015, 1, 47–60. [Google Scholar]
- Gornowicz, E.; Pietrzak, M.; Stanisławski, D.; Steppa, R.; Lewko, L.; Kryza, A. Meat quality characteristics of chickens raised organically and intensively. Rocz. Nauk. PTZ 2017, 13, 31–43. [Google Scholar] [CrossRef]
- Szkucik, K.; Pisarski, R.K.; Paszkiewicz, W.; Pijarska, I. Carcass quality, chemical composition and sensory characteristics of meat from broiler chickens fed growing/finishing feeds of lowered energy value. Med. Weter. 2009, 65, 184–187. [Google Scholar]
- Janocha, A.; Milczarek, A.; Pietrusiak, D. Impact of Milk Thistle (Silybum marianum [L.] Gaertn.) Seeds in Broiler Chicken Diets on Rearing Results, Carcass Composition, and Meat Quality. Animals 2021, 11, 1550. [Google Scholar] [CrossRef]
- Mehaffey, J.M.; Pradhan, S.P.; Meullenet, J.F.; Emmert, J.L.; McKee, S.R.; Owens, C.M. Meat Quality Evaluation of Minimally Aged Broiler Breast Fillets from Five Commercial Genetic Strains. Poult. Sci. 2006, 85, 902–908. [Google Scholar] [CrossRef]
- Le Bihan-Duval, E.; Debut, M.; Berri, C.M.; Sellier, N.; Santé-Lhoutellier, V.; Jégo, Y.; Beaumont, C. Chicken meat quality: Genetic variability and relationship with growth and muscle characteristics. BMC Genet. 2008, 9, 53. [Google Scholar] [CrossRef] [Green Version]
- Milan, R.; Klaus, D. The meaning of pH—Value for the meat quality of broilers—Influence of breed lines. Tehnol. Mesa 2010, 51, 120–123. [Google Scholar]
- Rycielska, J.; Jarosiewicz, K.; Słowiński, M. Influence of selected pre-slaughter factors on chicken meat quality. Med. Weter. 2010, 66, 770–773. [Google Scholar]
- Magdelaine, P.; Spiess, M.; Valceschini, E. Poultry meat consumption trends in Europe. World’s Poult. Sci. J. 2008, 64, 53–64. [Google Scholar] [CrossRef]
- Milan, R.; Hansgeorg, H.; Klaus, D. Meaning of the pH value for the meat quality of broilers. Fleischwirtschaft 2011, 91, 89–93. [Google Scholar]
- Augustyńska-Prejsnar, A.; Sokołowicz, Z. Factors affecting the sensory quality of broiler chicken meat. Wiad. Zoot. 2014, 52, 108–116. [Google Scholar]
- Szkucik, K.; Pisarski, R.K.; Nastaj, B.; Pijarska, L.; Malec, H. Effect of long-term antemortem factors on sensory quality of meat from gallinaceous poultry. Med. Weter. 2007, 63, 1353–1356. [Google Scholar]
Item | Soybean Meal GM | Soybean Expeller Cake Non-GM | Extruded Full-Fat Soybean Non-GM |
---|---|---|---|
Basal nutrients (g·kg−1) | |||
dry matter | 894.6 | 940.4 | 939.8 |
crude ash | 70.3 | 60.0 | 51.6 |
crude protein | 452.0 | 443.6 | 349.5 |
crude fat | 20.7 | 55.7 | 218.0 |
crude fibre | 66.0 | 59.0 | 61.8 |
N-free extractives | 285.6 | 322.1 | 258.9 |
Gross energy (kcal·kg−1) | 2868 | 4730 | 5420 |
Anti-nutritional factors (g·kg−1) | |||
trypsin inhibitors | 1.40 | 5.90 | 8.88 |
tannins | 14.9 | 2.90 | 5.08 |
Item | Starter | Grower | ||||
---|---|---|---|---|---|---|
SBM | SEC | EFS | SBM | SEC | EFS | |
Raw materials and feed additives | ||||||
Wheat | 54.78 | 55.93 | 54.00 | 59.99 | 61.24 | 57.11 |
Soybean meal | 35.00 | - | - | 29.00 | - | - |
Soybean press cake | - | 35.30 | - | - | 29.00 | - |
Extruded full-fat soybean | - | - | 41.94 | - | - | 39.00 |
Soybean oil | 6.00 | 4.50 | - | 6.80 | 5.50 | - |
Limestone | 1.05 | 1.09 | 1.26 | 1.13 | 1.16 | 1.32 |
NaCl | 0.35 | 0.37 | 0.36 | 0.37 | 0.38 | 0.375 |
2-Ca phosphate | 1.90 | 1.95 | 1.60 | 1.73 | 1.78 | 1.40 |
Premix * | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
L-lysine | 0.16 | 0.11 | 0.11 | 0.23 | 0.20 | 0.09 |
DL-methionine | 0.26 | 0.25 | 0.23 | 0.25 | 0.24 | 0.21 |
Calculated nutrients per 1 kg of rations: | ||||||
ME (MJ) | 12.5 | 12.5 | 13.1 | 12.9 | 12.9 | 13.1 |
crude protein (g) | 223 | 223 | 211 | 203 | 202 | 204 |
crude fat (g) | 76.6 | 74.2 | 100 | 84.2 | 81.6 | 94.7 |
lysine (g) | 12.4 | 12.4 | 12.5 | 11.8 | 11.8 | 11.8 |
methionine (g) | 5.64 | 5.69 | 5.65 | 5.30 | 5.31 | 5.35 |
threonine (g) | 7.67 | 7.83 | 8.00 | 6.85 | 6.95 | 7.67 |
tryptophan (g) | 2.71 | 2.70 | 2.92 | 2.43 | 2.42 | 2.81 |
Ca total (g) | 9.55 | 9.57 | 9.57 | 9.32 | 9.34 | 9.32 |
P available (g) | 4.37 | 4.40 | 4.43 | 4.05 | 4.08 | 4.08 |
Na (g) | 1.56 | 1.57 | 1.58 | 1.62 | 1.60 | 1.62 |
Item | Group | SEM | p-Value | ||
---|---|---|---|---|---|
SBM | SEC | EFS | |||
Bodyweight (g) | |||||
1 day | 42.9 | 43.0 | 43.0 | 0.096 | 0.682 |
21 day | 721 b | 760 a | 715 b | 7.42 | <0.05 |
42 day | 2294 b | 2400 a | 2361 a | 13.5 | <0.05 |
Bodyweight gain (g) | |||||
1–21 days | 678 b | 717 a | 678 b | 7.42 | <0.05 |
22–42 days | 1573 b | 1639 a | 1646 a | 12.61 | <0.05 |
1–42 days | 2251 b | 2357 a | 2318 a | 13.48 | <0.05 |
Feed conversion ratio (kg) | |||||
1–21 days | 1.59 b | 1.52 c | 1.66 a | 0.017 | <0.05 |
22–42 days | 1.75 a | 1.67 b | 1.83 a | 0.020 | <0.05 |
1–42 days | 1.69 b | 1.68 b | 1.76 a | 0.012 | <0.05 |
Item | Group | SEM | p-Value | ||
---|---|---|---|---|---|
SBM | SEC | EFS | |||
Bodyweight before slaughter (g) | 2284 b | 2399 a | 2352 a | 12.98 | <0.05 |
Cold carcass weight (g) | 1835 | 1954 | 1878 | 27.72 | 0.212 |
Dressing percentage (%) | 80.3 | 81.4 | 79.8 | 0.305 | 0.072 |
Share in cold carcass (%) | |||||
Muscles total | 48.6 a | 49.9 a | 46.4 b | 0.439 | <0.05 |
including: | |||||
breast | 29.4 a,b | 30.9 a | 28.0 b | 0.365 | <0.05 |
thigh | 11.4 | 11.2 | 10.8 | 0.165 | 0.396 |
drumstick | 7.90 | 7.90 | 7.60 | 0.104 | 0.356 |
Abdominal fat | 0.711 b | 0.712 b | 1.03 a | 0.049 | <0.05 |
Skin with subcutaneous fat | 7.96 b | 8.49 b | 9.80 a | 0.233 | <0.05 |
Share in bodyweight (%) | |||||
Giblets total | 3.34 a | 2.72 b | 3.10 a | 0.065 | <0.05 |
including: | |||||
heart | 0.421 a,b | 0.391 b | 0.452 a | 0.037 | <0.05 |
liver | 1.69 a | 1.45 b | 1.72 a | 0.192 | <0.05 |
gizzard | 1.25 a | 0.88 b | 0.93 b | 0.039 | <0.05 |
Item | Groups | SEM | p-Value | ||
---|---|---|---|---|---|
SBM | SEC | EFS | |||
Breast | |||||
dry matter | 25.08 b | 25.29 a,b | 25.68 a | 0.103 | <0.05 |
crude ash | 1.20 | 1.20 | 1.20 | 0.004 | 0.907 |
crude protein | 22.15 | 22.37 | 22.19 | 0.091 | 0.609 |
crude fat | 1.26 a,b | 1.10 b | 1.41 a | 0.042 | <0.05 |
Leg | |||||
dry matter | 25.56 | 25.41 | 25.73 | 0.141 | 0.689 |
crude ash | 1.10 | 1.06 | 1.07 | 0.010 | 0.221 |
crude protein | 19.97 | 19.83 | 19.60 | 0.111 | 0.408 |
crude fat | 4.26 a,b | 3.87 b | 4.48 a | 0.106 | <0.05 |
Fatty Acids | Groups | SEM | p-Value | ||
---|---|---|---|---|---|
SBM | SEC | EFS | |||
Breast muscles | |||||
C14:0 | 0.145 | 0.160 | 0.118 | 0.010 | 0.083 |
C16:0 | 20.9 a | 21 a | 17.1 b | 0.607 | <0.05 |
C16:1 | 2.45 a | 2.46 a | 1.52 b | 0.157 | <0.05 |
C17:0 | 0.188 a | 0.185 a | 0.155 b | 0.006 | <0.05 |
C18:0 | 5.81 a | 5.96 a | 4.98 b | 0.183 | <0.05 |
C18:1 | 34 a | 34.4 a | 32.3 b | 0.302 | <0.05 |
C18:2 n-6 | 33.5 b | 32.5 b | 40.4 a | 1.19 | <0.05 |
C18:3 n-3 | 1.67 b | 1.98 a,b | 2.28 a | 0.099 | <0.05 |
C20:0 | 0.138 a | 0.118 a | 0.020 b | 0.014 | <0.05 |
C20:1 | 0.100 | 0.115 | 0.069 | 0.012 | 0.134 |
C20:2 | 0.095 | 0.113 | 0.093 | 0.006 | 0.236 |
C20:3 n-3 | 0.060 | 0.063 | 0.073 | 0.004 | 0.412 |
C20:4 n-6 | 0.663 | 0.663 | 0.605 | 0.036 | 0.695 |
SFA | 27.22 a | 27.40 a | 22.40 b | 0.781 | <0.05 |
UFA | 72.63 b | 72.42 b | 77.42 a | 0.779 | <0.05 |
MUFA | 36.63 a | 37.15 a | 33.94 b | 0.627 | <0.05 |
PUFA | 36.00 b | 35.27 b | 43.48 a | 1.25 | <0.05 |
n-6:n-3 | 20.15 a | 16.35 b | 17.82 a,b | 0.532 | <0.05 |
DFA = (UFA + C18:0) | 78.43 b | 78.38 b | 82.40 a | 0.627 | <0.05 |
OFA = (C14:0 + C16:0) | 21.08 a | 21.13 a | 17.22 b | 0.612 | <0.05 |
Leg muscles | |||||
C14:0 | 0.150 a | 0.125 a | 0.098 b | 0.007 | <0.05 |
C16:0 | 22.4 a | 21.8 a | 16.8 b | 0.697 | <0.05 |
C16:1 | 2.61 b | 3.12 a | 1.59 c | 0.190 | <0.05 |
C17:0 | 0.165 a,b | 0.145 b | 0.210 a | 0.011 | <0.05 |
C18:0 | 5.15 a | 4.74 a | 3.98 b | 0.156 | <0.05 |
C18:1 | 36.1 a | 35.2 a | 31.5 b | 0.585 | <0.05 |
C18:2 n-6 | 31.2 b | 32.6 b | 43 a | 1.447 | <0.05 |
C18:3 n-3 | 1.35 c | 1.59 b | 2.24 a | 0.107 | <0.05 |
C20:0 | 0.115 | 0.115 | 0.113 | 0.007 | 0.988 |
C20:1 | 0.090 | 0.065 | 0.060 | 0.006 | 0.053 |
C20:2 | 0.135 a | 0.035 b | 0.030 b | 0.014 | <0.05 |
C20:3 n-3 | 0.043 a | 0.013 c | 0.030 b | 0.004 | <0.05 |
C20:4 n-6 | 0.198 | 0.163 | 0.193 | 0.011 | 0.398 |
SFA | 27.99 a | 26.89 a | 21.17 b | 0.827 | <0.05 |
UFA | 71.84 b | 72.87 b | 78.67 a | 0.832 | <0.05 |
MUFA | 38.90 a | 38.45 a | 33.21 b | 0.753 | <0.05 |
PUFA | 32.95 b | 34.42 b | 45.45 a | 1.539 | <0.05 |
n-6:n-3 | 22.64 | 20.52 | 19.20 | 0.729 | 0.095 |
DFA = (UFA + C18:0) | 76.99 b | 77.91 b | 82.64 a | 0.695 | <0.05 |
OFA = (C14:0 + C16:0) | 22.56 a | 21.97 a | 16.87 b | 0.702 | <0.05 |
Item | Groups | SEM | p-Value | ||
---|---|---|---|---|---|
SBM | SEC | EFS | |||
Breast | |||||
pH15 | 5.89 | 5.91 | 5.92 | 0.032 | 0.975 |
pH24 | 5.69 | 5.70 | 5.72 | 0.013 | 0.081 |
L* | 52.2 | 53.3 | 53.2 | 0.603 | 0.714 |
a* | 2.44 b | 4.43 a | 2.03 b | 0.350 | <0.05 |
b* | 0.71 b | 1.16 a | 0.82 b | 0.194 | <0.05 |
C* = [(a*)2 + (b*)2]0.5 | 2.63 b | 4.72 a | 2.51 b | 0.344 | <0.05 |
H = log (b*/a*) | 0.344 b | 0.320 b | 0.605 a | 0.126 | <0.05 |
WHC (%) | 13.1 a | 9.8 b | 12.0 a | 0.691 | <0.05 |
Thigh | |||||
pH15 | 5.88 | 5.90 | 5.89 | 0.019 | 0.647 |
pH24 | 5.95 a | 5.88 a,b | 5.81 b | 0.022 | <0.05 |
L* | 48.1 | 50.2 | 48.9 | 0.682 | 0.443 |
a* | 4.30 b | 4.51 b | 5.44 a | 0.376 | <0.05 |
b* | 0.696 a | 0.881 a | 0.388 b | 0.257 | <0.05 |
C* = [(a*)2 + (b*)2]0.5 | 4.72 | 4.82 | 5.73 | 0.339 | 0.420 |
H = log (b*/a*) | 0.613 a | 0.203 b | 0.179 b | 0.123 | <0.05 |
WHC (%) | 8.97 a | 5.67 b | 9.63 a | 0.566 | <0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janocha, A.; Milczarek, A.; Pietrusiak, D.; Łaski, K.; Saleh, M. Efficiency of Soybean Products in Broiler Chicken Nutrition. Animals 2022, 12, 294. https://doi.org/10.3390/ani12030294
Janocha A, Milczarek A, Pietrusiak D, Łaski K, Saleh M. Efficiency of Soybean Products in Broiler Chicken Nutrition. Animals. 2022; 12(3):294. https://doi.org/10.3390/ani12030294
Chicago/Turabian StyleJanocha, Alina, Anna Milczarek, Daria Pietrusiak, Kamil Łaski, and Mohamed Saleh. 2022. "Efficiency of Soybean Products in Broiler Chicken Nutrition" Animals 12, no. 3: 294. https://doi.org/10.3390/ani12030294
APA StyleJanocha, A., Milczarek, A., Pietrusiak, D., Łaski, K., & Saleh, M. (2022). Efficiency of Soybean Products in Broiler Chicken Nutrition. Animals, 12(3), 294. https://doi.org/10.3390/ani12030294