Camelina (Camelina sativa (L.) Crantz) as Feedstuffs in Meat Type Poultry Diet: A Source of Protein and n-3 Fatty Acids
Abstract
:Simple Summary
Abstract
1. Introduction
2. Camelina Chemical Composition
2.1. Amino Acid Composition in Camelina
2.2. Camelina Fatty Acid Composition
2.3. Camelina Vitamins, Macroelements and Microelements
2.4. Antioxidant Content in Camelina
2.5. Antinutritive Compounds in Camelina
3. Influence of Camelina on Growth Performance
4. Influence of Camelina on Anatomical Dissection Data
5. Influence of Camelina on Chemical Composition of Breast Muscle
6. Influence of Camelina on Blood Plasma Parameters in Broiler Chicken
7. Influence of Camelina on SFA and MUFA Composition in Breast, Leg Muscles and Liver
8. Influence of Camelina on PUFA Composition in Breast, Leg Muscles and Liver
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- European Commission. 2020. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions A Farm to Fork Strategy for a Fair, Healthy and Environmentally-Friendly Food System. COM(2020) 381 Final. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0381 (accessed on 12 October 2021).
- Denanot, J.P. REPORT on a European Strategy for the Promotion of Protein Crops—Encouraging the Production of Protein and Leguminous Plants in the European Agriculture Sector (2017/2116(INI)). Committee on Agriculture and Rural Development. European Parliament 2014–2019. 2018. Available online: https://www.europarl.europa.eu/doceo/document/A-8-2018-0121_EN.html (accessed on 2 December 2020).
- Mozaffarian, D.; Ascherio, A.; Hu, F.B.; Stampfer, M.J.; Willett, W.C.; Siscovick, M.D.; Rimm, E.B. Interplay Between Different Polyunsaturated Fatty Acids and Risk of Coronary Heart Disease in Men. Circulation 2005, 111, 157–164. [Google Scholar] [CrossRef] [Green Version]
- Thiebaut, A.C.M.; Chaje‘s, V.; Gerber, M.; Boutron-Ruault, M.-C.; Joulin, V.; Lenoir, G.; Berrino, F.; Riboli, E.; Benichou, J.; Clavel-Chapelon, F. Dietary intakes of x-6 and x-3 polyunsaturated fatty acids and the risk of breast cancer. Int. J. Cancer 2009, 124, 924–931. [Google Scholar] [CrossRef]
- El-Bahr, S.M.; Shousha, S.; Alfattah, M.A.; Al-Sultan, S.; Khattab, W.; Sabeq, I.I.; Ahmed-Farid, O.; El-Garhy, O.; Albusadah, K.A.; Alhojaily, S.; et al. Enrichment of Broiler Chickens’ Meat with Dietary Linseed Oil and Lysine Mixtures: Influence on Nutritional Value, Carcass Characteristics and Oxidative Stress Biomarkers. Foods 2021, 10, 618. [Google Scholar] [CrossRef]
- Konieczka, P.; Czauderna, M.; Smulikowska, S. The enrichment of chicken meat with omega-3 fatty acids by dietary fish oil or its mixture with rapeseed or flaxseed—Effect of feeding duration Dietary fish oil, flaxseed, and rapeseed and n-3 enriched broiler meat. Anim. Feed Sci. Technol. 2017, 223, 42–52. [Google Scholar] [CrossRef]
- Aziza, A.E.; Quezada, N.; Cherian, G. Feeding Camelina sativa meal to meat-type chickens: Effect on production performance and tissue fatty acid composition. J. App. Poult. Res. 2010, 19, 157–168. [Google Scholar] [CrossRef]
- Ryhänen, E.-L.; Pertilä, S.; Tupasela, T.; Valaja, J.; Eriksson, C.; Larkka, K. Effect of Camelina sativa expeller cake on performance and meat quality of broilers. J. Sci. Food Agric. 2007, 87, 1489–1494. [Google Scholar] [CrossRef]
- Lolli, S.; Grilli, G.; Ferrari, L.; Battelli, G.; Pozzo, S.; Galasso, I.; Russo, R.; Brasca, M.; Reggiani, R.; Ferrante, V. Effect of Different Percentage of Camelina sativa Cake in Laying Hens Diet: Performance, Welfare, and Eggshell Quality. Animals 2020, 10, 1396. [Google Scholar] [CrossRef]
- Dӧnmez, E.O.; Belli, O. Urartian plant cultivation at Yoncatepe (Van), eastern Turkey. Econ. Bot. 2007, 61, 290–298. [Google Scholar] [CrossRef]
- Hovsepyan, R.; Willcox, G. The earliest finds of cultivated plants in Armenia: Evidence from charred remains and crop processing residues in pisé from the Neolithic settlements of Aratashen and Aknashen. Veg. Hist. Archaeobot. 2008, 17 (Suppl. 1), 63–71. [Google Scholar] [CrossRef]
- Kroll, H. Agriculture and arboriculture in mainland Greece at the beginning of the first millenium B.C. Pallas 2000, 52, 61–68. [Google Scholar]
- Van Zeist, W.A. Plant remains from Iron Age Noordbarge, province of Drenthe, the Netherlands. Palaeohistoria 1981, 23, 169–193. [Google Scholar]
- Matthäus, B.; Zubr, J. Variability of specific components in Camelina sativa oilseed cakes. Ind. Crops Prod. 2000, 12, 9–18. [Google Scholar] [CrossRef]
- Ciurescu, G.; Ropota, M.; Toncea, I.; Habeanu, M. Camelia (Camelia sativa L. Crantz Variety) Oil and Seeds as n-3 Fatty Acids Rich Products in Broiler Diets and Its Effects on Performance, Meat Fatty Acid Composition, Immune Tissue Weights, and Plasma Metabolic Profile. J. Agr. Sci. Tech. 2016, 18, 315–326. [Google Scholar]
- Hunsaker, D.J.; French, A.N.; Clarke, T.R.; El-Shikha, D.M. Water use, crop coefficients, and irrigation management criteria for camelina production in arid regions. Irrig. Sci. 2011, 29, 27–43. [Google Scholar] [CrossRef]
- Putnam, D.H.; Budin, J.T.; Filed, L.A.; Breene, W.M. Camelina: A Promising Low-input Oil Seed. In New Crops; Janick, J., Simon, J.E., Eds.; Wiley: New York, NY, USA, 1993; pp. 314–322. [Google Scholar]
- Wittkop, B.; Snowdon, R.; Friedt, W. Status and perspectives of breeding for enhanced yield and quality of oilseed crops for Europe. Euphytica 2009, 170, 131–140. [Google Scholar] [CrossRef]
- Mohammed, Y.A.; Chen, C.; Afshar, R.K. Nutrient requirements of Camelina for biodiesel feedstock in Central Montana. Agron. J. 2017, 109, 309–316. [Google Scholar] [CrossRef] [Green Version]
- Moser, B.R.; Vaughn, S.F. Evaluation of alkyl esters from Camelina sativa oil as biodiesel and as blend components in ultra low-sulfur diesel fuel. Bioresour. Technol. 2010, 101, 646–653. [Google Scholar] [CrossRef]
- Bacenetti, J.; Restuccia, A.; Schillaci, G.; Failla, S. Biodiesel production from unconventional oilseed crops (Linum usitatissimum L. and Camelina sativa L.) in Mediterranean conditions: Environmental sustainability assessment. Renew. Energy 2017, 112, 444–456. [Google Scholar] [CrossRef]
- Seguin-Swartz, G.; Eynck, C.; Gugel, R.K.; Strelkov, S.E.; Olivier, C.Y.; Li, J.L.; Klein-Gebbinck, H.; Borhan, H.; Caldwell, C.D.; Falk, K.C. Diseases of Camelina sativa (false flax). Can. J. Plant Pathol. 2009, 31, 375–386. [Google Scholar] [CrossRef]
- Zubr, J. Oil-seed crop: Camelina sativa. Ind. Crops Prod. 1997, 6, 113–119. [Google Scholar] [CrossRef]
- Konkova, N.G.; Shelenga, T.V.; Gridnev, G.A.; Dubovskaya, A.G.; Malyshev, L.L. Stability and Variability of Camelina sativa (L.) Crantz Economically Valuable Traits in Various Eco-Geographical Conditions of the Russian Federation. Agronomy 2021, 11, 332. [Google Scholar] [CrossRef]
- Agricultural Information and Rural Business Center of the Republic of Lithuania. Available online: https://www.vic.lt/ppis/statistine-informacija/ (accessed on 7 January 2022).
- Zanetti, F.; Eynck, C.; Christou, M.; Krzyżaniak, M.; Righini, D.; Alexopoulou, E.; Stolarski, M.J.; Van Loo, E.N.; Puttick, D.; Monti, A. Agronomic performance and seed quality attributes of Camelina (Camelina sativa L. Crantz) in multi-environment trials across Europe and Canada. Ind. Crops Prod. 2017, 107, 602–608. [Google Scholar] [CrossRef] [Green Version]
- Statistics Lithuania. Crops Yields. 2022; In Lithuanian. Available online: https://osp.stat.gov.lt/statistiniu-rodikliu-analize#/ (accessed on 10 January 2022).
- Mohammad, B.T.; Al-Shannag, M.; Alnaief, M.; Singh, L.; Singsaas, E.; Alkasrawi, M. Production of multiple biofuels from whole camelina material: A renewable energy crop. BioResources 2018, 13, 4870–4883. [Google Scholar] [CrossRef]
- Neupane, D.; Solomon, J.K.Q.; Mclennon, E.; Davison, J.; Lawry, T. Sowing date and sowing method influence on camelina cultivars grain yield, oil concentration, and biodiesel production. Food Energy Secur. 2019, 8, e00166. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Caldwell, C.; Corscadden, K.; He, Q.; Li, J. An evaluation of biodiesel production from Camelina sativa grown in Nova Scotia. Ind. Crops Prod. 2016, 81, 162–168. [Google Scholar] [CrossRef]
- Commission Regulation (EU) No 68/2013 of 16 January 2013 on the Catalogue of Feed Materials. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32013R0068&from=EN (accessed on 21 September 2021).
- Hilbrands, A.M.; Johnston, L.J.; Cox, R.B.; Forcella, F.; Gesch, R.; Li, Y.Z. Effects of increasing dietary inclusion of camelina cake on growth performance of growing-finishing pigs. Transl. Anim. Sci. 2021, 5, 1–10. [Google Scholar] [CrossRef]
- Pekel, A.Y.; Kim, J.L.; Chapple, C.; Adeola, O. Nutritional characteristics of camelina meal for 3 week-old broiler chickens. Poult. Sci. 2015, 94, 371–378. [Google Scholar] [CrossRef]
- Bulbul, T.; Rahmann, A.; Ozdemir, V. Effect of False Flax Meal on Certain Growth Serum and Meat Parameters of Japanese Quails. J. Anim. Plant Sci. 2015, 25, 1245–1250. [Google Scholar]
- Oryschak, M.A.; Christianson, C.B.; Beltranena, E. Camelina sativa cake for broiler chickens: Effects of increasing dietary inclusion on clinical signs of toxicity, feed disappearance, and nutrient digestibility. Transl. Anim. Sci. 2020, 4, 1263–1277. [Google Scholar] [CrossRef]
- Woyengo, T.A.; Beltranena, E.; Zijlstra, R.T. Effect of anti-nutritional factors of oilseed co-product on feed intake of pigs and poultry. Anim. Feed Sci. Technol. 2017, 233, 76–86. [Google Scholar] [CrossRef]
- Jaśkiewicz, T.; Sagan, A.; Puzio, I. Effect of the Camelina sativa oil on the performance, essential fatty acid level in tissues and fat—Soluble vitamins content in the livers of broiler chickens. Livest. Sci. 2014, 165, 74–79. [Google Scholar] [CrossRef]
- Pilgeram, A.L.; Sands, D.S.; Boss, D.; Dale, N.; Wichman, D.; Lamb, P.; Lu, C.; Barrows, R.; Kirkpatrick, M.; Thompson, B.; et al. Camelina sativa, a Montana omega-3 and fuel crop. In Issues in New Crops and New Uses; Janick, J., Whipkey, A., Eds.; ASHS Press: Alexandria, Egypt, 2007; pp. 129–131. [Google Scholar]
- Banaszkiewicz, T. Nutritional Value of Soybean Meal. In Soybean and Nutrition; El-Shemy, H., Ed.; IntechOpen: 2011; pp. 1–20. Available online: https://www.intechopen.com/books/soybean-and-nutrition/nutritional-value-of-soybean-meal (accessed on 18 May 2021).
- Daszykowski, M.; Wrobel, M.S.; Czarnik-Matusewicz, H.; Walczak, B. Near-infrared reflectance spectroscopy and multivariate calibration techniques applied to modelling the crude protein, fiber and fat content in rapeseed meal. Analyst 2008, 133, 1523–1531. [Google Scholar] [CrossRef] [PubMed]
- Feng, D.; Zuo, J. Nutritional and anti-nutritional composition of rapeseed meal and its utilization as a feed ingredient for animal. In Feed and Industrial Raw Material: Feed. Available online: https://www.gcirc.org/fileadmin/documents/Proceedings/IRCWuhan2007%20vol5/Pages_de_vol-5-37.pdf (accessed on 21 September 2021).
- Kaczmarek, P.; Korniewicz, D.; Lipiński, K.; Mazur, M. Chemical Composition of Rapeseed Products and their use in Pig Nutrition. Polish J. Nat. Sci. 2016, 31, 545–562. [Google Scholar]
- Maison, T. Evaluation of the Nutritional Value of Canola Meal, 00-Rapeseed Meal, and 00-Rapeseed Expellers Fed to Pigs. Ph. D. Thesis, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA, 2013. [Google Scholar]
- Zubr, J. Carbohydrates, vitamins and minerals of Camelina sativa seed. Nutr. Food Sci. 2010, 40, 523–531. [Google Scholar] [CrossRef]
- Barbary, O.M.; Al-Sohainy, S.A.; El-Saadani, M.A.; Zeitoun, A.M.A. Extraction, Composition and Physicochemical Properties of Flaxseed Mucilage. J. Adv. Agric. Res. 2009, 14, 605–622. [Google Scholar]
- Thacker, P.; Widyaratne, G. Effects of expeller pressed camelina meal and/or canola meal on digestibility, performance and fatty acid composition of broiler chickens fed wheat-soybean meal-based diets. Arch. Anim. Nutr. 2012, 66, 402–415. [Google Scholar] [CrossRef]
- Almeida, F.N.; Htoo, J.K.; Thompson, J.; Stein, H.H. Amino acid digestibility in camelina products fed to growing pigs. Can. J. Anim. Sci. 2013, 93, 335–343. [Google Scholar] [CrossRef]
- Canola Council of Canada. 2015. Canola Meal Feeding Guide. Feed Industry Guide. Available online: https://www.canolacouncil.org/media/516716/2015_canola_meal_feed_industry_guide.pdf (accessed on 18 May 2020).
- Chen, C.C.; Shih, Y.C.; Chiou, P.W.S.; Yu, B. Evaluating Nutritional Quality of Single Stage—And Two Stage-fermented Soybean Meal. Asian-Aus. J. Anim. Sci. 2010, 23, 598–606. [Google Scholar] [CrossRef]
- Stein, H.H. Amino acid digestibility in four sources of canola meal and soybean meal fed to growing pigs. Available online: https://nutrition.ansci.illinois.edu/node/653 (accessed on 18 May 2020).
- Bailoni, L.; Bortolozzo, A.; Mantovani, R.; Simonetto, A.; Schiavon, S.; Bittante, G. Feeding dairy cows with full fat extruded or toasted soybean seeds as replacement of soybean meal and effects on milk yield, fatty acid profile and CLA content. Ital. J. Anim. Sci. 2004, 3, 243–258. [Google Scholar] [CrossRef] [Green Version]
- Juodka, R.; Juska, R.; Juskiene, V.; Leikus, R.; Stankeviciene, D.; Nainiene, R. The effect of feeding with hemp and Camelina cakes on the fatty acid profile of duck muscles. Arch. Anim. Breed. 2018, 61, 293–303. [Google Scholar] [CrossRef]
- Anca, G.; Habeanu, M.; Lefter, N.A.; Ropota, M. Performance Parameters Plasma Lipid Status, and Lymphoid Tissue Fatty Acid Profile of Broiler Chicks Fed Camelina Cake. Rev. Bras. Cienc. Avic. 2019, 21, 001–008. [Google Scholar] [CrossRef] [Green Version]
- Narducci, V.; Finotti, E.; Galli, V.; Carcea, M. Lipids and Fatty Acids in Italian Durum Wheat (Triticum durum Desf.) Cultivars. Foods 2019, 8, 223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Opapeju, F.O.; Nyachoti, C.M.; House, J.D.; Weiler, H.; Sapirstein, H.D. Growth performance and carcass characteristics of pigs fed short-season corn hybrids. J. Anim. Sci. 2006, 84, 2779–2786. [Google Scholar] [CrossRef] [PubMed]
- Akkaya, M.R. Fatty acid compositions of sunflowers (Helianthus annuus L.) grown in east Mediterranean region. Riv. Ital. Delle Sostanze Grasse 2018, XCV, 239–247. [Google Scholar]
- Abu-Ghazaleh, A.A.; Schingoethe, D.J.; Hippen, A.R. Conjugated Linoleic Acid and Other Beneficial Fatty Acids in Milk Fat from Cows Fed Soybean Meal, Fish Meal, or Both. J. Dairy Sci. 2001, 84, 1845–1850. [Google Scholar] [CrossRef]
- Abramovič, H.; Abram, V. Physico-Chemical Properties, Composition and Oxidative Stability of Camelina sativa Oil. Food Technol. Biotechnol. 2005, 43, 63–70. [Google Scholar]
- Baltrukoniene, G.; Uchockis, V.; Švirmickas, G.J. The influence of compound feed enrichment with rapeseed and linseed cake on the meat characteristics and fatty acids composition of beef bulls. Zemdirbyste-Agriculture 2015, 102, 319–324. [Google Scholar] [CrossRef] [Green Version]
- Halle, I.; Schöne, F. Influence of rapeseed cake, linseed cake and hemp seed cake on laying performance of hens and fatty acid composition of egg yolk. JCF 2013, 8, 185–193. [Google Scholar] [CrossRef]
- Lee, J.W.; Kil, D.Y.; Keever, B.D.; Killefer, J.; McKeith, F.K.; Sulabo, R.C.; Stein, H.H. Carcass fat quality of pigs is not improved by adding corn germ, beef tallow, palm kernel oil, or glycerol to finishing diets containing distillers dried grains with solubles. J. Anim. Sci. 2013, 91, 2426–2437. [Google Scholar] [CrossRef] [Green Version]
- Mierlita, D. Effects of diets containing hemp seeds or hemp cake on fatty acid composition and oxidative stability of sheep milk. S. Afr. J. Anim. Sci. 2018, 48, 504–515. [Google Scholar] [CrossRef]
- Abramovič, H.; Butinar, B.; Nikolič, V. Changes occurring in phenolic content, tocopherol composition and oxidative stability of Camelina sativa oil during storage. Food Chem. 2007, 104, 903–909. [Google Scholar] [CrossRef]
- Zubr, J.; Matthaus, B. Effects of growth conditions on fatty acids and tocopherols in Camelina sativa oil. Ind. Crops Prod. 2002, 15, 155–162. [Google Scholar] [CrossRef]
- Kurasiak-Popowska, D.; Ryńska, B.; Stuper-Szablewska, K. Analysis of Distribution of Selected Bioactive Compounds in Camelina sativa from Seeds to Pomace and Oil. Agronomy 2019, 9, 168. [Google Scholar] [CrossRef] [Green Version]
- Kurasiak-Popowska, D.; Stuper-Szablewska, K. The phytochemical quality of Camelina sativa seed and oil. Acta Agric Scand B Soil Plant Sci 2020, 70, 39–47. [Google Scholar] [CrossRef]
- Mithen, R. Glucosinolates—Biochemistry, genetics and biological activity. Plant Growth Regul. 2001, 34, 91–103. [Google Scholar] [CrossRef]
- Tripathi, M.K.; Mishra, A.S. Glucosinolates in animal nutrition: A review. Anim. Feed Sci. Technol. 2007, 132, 1–27. [Google Scholar] [CrossRef]
- European Food Safety Authority. Opinion of the Scientific Panel on Contaminants in the Food Chain on a request from the European Commission on glucosinolates as undesirable substances in animal feed. EFSA J. 2008, 590, 1–76. [Google Scholar]
- Burel, C.; Boujard, T.; Kaushik, S.J.; Boeuf, G.; Mol, K.A.; Van der Geyten, S.; Darras, V.M.; Kühn, E.R.; Pradet-Balade, B.; Querat, B.; et al. Effects of rapeseed meal-glucosinolates on thyroid metabolism and feed utilization in rainbow trout. Gen. Comp. Endocrinol. 2001, 124, 343–358. [Google Scholar] [CrossRef] [Green Version]
- Schuster, A.; Friedt, W. Glucosinolate content and composition as parameters of quality of camelina seed. Ind. Crops Prod. 1998, 7, 297–302. [Google Scholar] [CrossRef]
- Russo, R.; Reggiani, R. Antinutritive Compounds in Twelve Camelina sativa Genotypes. Am. J. Plant Sci. 2012, 3, 1408–1412. [Google Scholar] [CrossRef] [Green Version]
- Colombini, S.; Broderick, G.A.; Galasso, I.; Martinelli, T.; Rapetti, L.; Russo, R.; Reggiani, R. Evaluation of Camelina sativa (L.) Meal as an Alternative Protein Source in Ruminant Rations. J. Sci. Food Agric. 2014, 94, 736–743. [Google Scholar] [CrossRef] [PubMed]
- Russo, R.; Reggiani, R. Glucosinolates and Sinapine in camelina meal. Food Sci. Nutr. 2017, 8, 1063–1073. [Google Scholar] [CrossRef] [Green Version]
- Yuan, D.; Shim, Y.Y.; Shen, J.; Jadhav, P.D.; Meda, V.; Reaney, M.J.T. Distribution of glucosinolates in camelina seed fractions by HPLC-ESI-MS/MS. Eur. J. Lipid Sci. Technol. 2017, 119, 1600040. [Google Scholar] [CrossRef]
- Matthäus, B.; Angelini, L.G. Anti-Nutritive Constituents in Oilseed Crops from Italy. Ind. Crops Prod. 2005, 21, 89–99. [Google Scholar] [CrossRef]
- Daxenbichler, M.E.; Spencer, G.F.; Carlson, D.G.; Rose, G.B.; Brinker, A.M.; Powell, R.G. Glucosinolate composition of seeds from 297 species of wild plants. Phytochemistry 1991, 30, 2623–2638. [Google Scholar] [CrossRef]
- Schumann, W.; Stölken, B. Glucosinolate content and type of Camelina sativa seed. VDLUFA-Schriftenr. Kongr. Trier 1996, 44, 233–236. [Google Scholar]
- Go, Y. Lineage-specific expansions and contractions of the bitter taste receptor gene repertoire in vertebrates. Mol. Biol. Evol. 2006, 23, 964–972. [Google Scholar] [CrossRef] [Green Version]
- Qiao, H.; Classen, H.L. Nutritional and physiological effects of rapeseed meal sinapine in broiler chickens and its metabolism in the digestive tract. J. Sci. Food Agric. 2003, 83, 1430–1438. [Google Scholar] [CrossRef]
- Matthäus, B. Antinutritive compounds in different oilseeds. Lipid/Fett 1997, 99, 170–174. [Google Scholar] [CrossRef]
- Singleton, L. Naturally Occurring Food Toxicants: Phenolic Substances of Plant Origin Common in Foods. Adv. Food Res. 1981, 27, 149–242. [Google Scholar] [CrossRef]
- Amarowicz, R.; Estrella, I.; Hernández, T.; Robredo, S.; Troszynska, A.; Kosinska, A.; Pegg, R.B. Free Radical-Scavenging Capacity, Antioxidant Activity and Phenolic Composition of Green Lentil (Lens culinaris). Food Chem. 2010, 121, 705–711. [Google Scholar] [CrossRef]
- Schill, S.R. 2009. Camelina Meal Approved for Feedlot Cattle. Biodiesel Magazine 2009. Available online: http://www.biodieselmagazine.com/articles/3837/camelinameal-approved-for-feedlot-cattle (accessed on 20 October 2020).
- Orczewska-Dudek, S.; Pietras, M. The Effect of Dietary Camelina sativa Oil or Cake in the Diets of Broiler Chickens on Growth Performance, Fatty Acid Profile, and Sensory Quality of Meat. Animals 2019, 9, 734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frame, D.D.; Palmer, M.; Peterson, B. Use of Camelina sativa in the Diets of Young Turkeys. J. Appl. Poult. Res. 2007, 16, 381–386. [Google Scholar] [CrossRef]
- Ciurescu, G.; Hebean, V.; Tamaş, V.; Burcea, D. Use of Dietary Camelina (Camelina sativa) Seeds During the Finishing Period: Effects on Broiler Performance and on the Organoleptic Traits of Broiler Meat. J. Anim. Sci. Biotechnol. 2007, 40, 410–417. [Google Scholar]
- Pietras, M.P.; Orczewska-Dudek, S. The effect of dietary Camelina Sativa oil on quality of broiler chicken meat. Ann. Anim. Sci. 2013, 13, 869–882. [Google Scholar] [CrossRef]
- Pekel, A.Y.; Patterson, P.H.; Hulet, R.M.; Acar, N.; Cravener, T.L.; Dowler, D.B.; Hunter, J.M. Dietary camelina meal versus flaxseed with and without supplemental copper for broiler chickens: Live performance and processing yield. Poult. Sci. 2009, 88, 2392–2398. [Google Scholar] [CrossRef]
- Aziza, A.; Awadin, W.F.; Quezada, N.; Cherian, G. Gastrointestinal morphology, fatty acid profile, and production performance of broiler chicken fed camelina meal or fish oil. Eur. J. Lipid Sci. Technol. 2014, 116, 1727–1733. [Google Scholar] [CrossRef]
- Martínez, Y.; Valdivié, M. Efficiency of Ross 308 broilers under different nutritional requirements. J. Appl. Poult. Res. 2021, 30, 100140. [Google Scholar] [CrossRef]
- Slominski, B.A. Recent advances in research on enzymes for poultry diets. Poult. Sci. 2011, 90, 2013–2023. [Google Scholar] [CrossRef]
- Woyengo, T.A.; Patterson, R.; Slominski, B.A.; Beltranena, E.; Zijlstra, R.T. Nutritive value of cold-pressed camelina cake with or without supplementation of multi-enzyme in broiler chickens. Poult. Sci. 2016, 95, 2314–2321. [Google Scholar] [CrossRef]
- FAO. Summary of conclusions and dietary recommendations on total fat and fatty acids. In Proceedings of the Fats and Fatty Acids in Human Nutrition: Report of An Expert Consultation, Geneva, Switzerland, 10–14 November 2008; Food and Agriculture Organization of the United Nations: Rome, Italy, 2010; Volume 91, pp. 1–166. [Google Scholar]
- Woloszyn, J.; Ksiazkiewicz, J.; Skrabka-Blotnicka, T.; Haraf, G.; Biernat, J.; Kisiel, T. Comparison of amino acid and fatty acid composition of duck breast muscles from five flocks. Arch. Anim. Breed. 2006, 49, 194–204. [Google Scholar] [CrossRef]
- Zock, P.L.; de Vries, J.H.M.; Katan, M.B. Impact of Myristic Acid Versus Palmitic Acid on Serum Lipid and Lipoprotein Levels in Healthy Women and Men. Arterioscler. Thromb. 1994, 14, 567–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nain, S.; Oryschak, M.A.; Betti, M.; Beltranena, E. Camelina sativa cake for broilers: Effects of increasing dietary inclusion from 0 to 24% on tissue fatty acid proportions at 14, 28, and 42 d of age. Poult. Sci. 2015, 94, 1247–1258. [Google Scholar] [CrossRef] [PubMed]
- Aronen, I.; Valkonen, E.; Tupasela, T.; Hiidenhovi, J.; Valaja, J. The Effect of Camelina Sativa Cake on Fatty Acid Composition and Sensory Quality of Eggs and Broiler Meat. 2009. Available online: https://pdfs.semanticscholar.org/748c/be17aeb67241466db54687c3dc5d96642336.pdf?_ga=2.253177551.710654730.1589791031-675995229.1575974901 (accessed on 25 November 2021).
- Del Puerto, M.; Cabrera, M.C.; Saadoun, A. A Note on Fatty Acids Profile of Meat from Broiler Chickens Supplemented with Inorganic or Organic Selenium. Int. J. Food Sci. 2017, 7613069. [Google Scholar] [CrossRef] [Green Version]
- Crespo, N.; Esteve-Garcia, E. Dietary Fatty Acid Profile Modifies Abdominal Fat Deposition in Broiler Chickens. Poult. Sci. 2001, 80, 71–78. [Google Scholar] [CrossRef]
- Trembecka, L.; Haščik, P.; Čubon, J.; Bobko, M.; Pavelkova, A. Fatty acids profile of breast and thigh muscles of broiler chickens fed diets with propolis and probiotics. J. Cent. Eur. Agric. 2016, 17, 1179–1193. [Google Scholar] [CrossRef] [Green Version]
- Zdunczyk, Z.; Gruzauskas, R.; Juskiewicz, J.; Semaskaite, A.; Jankowski, J.; Godycka-Klos, I.; Jarule, V.; Miezeliene, A.; Alencikiene, G. Growth performance, gastrointestinal tract responses, and meat characteristics of broiler chickens fed a diet containing the natural alkaloid sanguinarine from Macleaya cordata. J. Appl. Poult. Res. 2010, 19, 393–400. [Google Scholar] [CrossRef]
- Khatibjoo, A.; Kermanshahi, H.; Golian, A.; Zaghari, M. The effect of n-6/n-3 fatty acid ratios on broiler breeder performance, hatchability, fatty acid profile and reproduction. J. Anim. Physiol. Anim. Nutr. 2018, 102, 986–998. [Google Scholar] [CrossRef]
- Nguyen, L.Q.; Nuijens, N.C.G.A.; Everts, H.; Salden, H.; Beynen, A.C. Mathematical relationships between the intake of n-6 and n-3 polyunsaturated fatty acids and their contents in adipose tissue of growing pig. Meat Sci. 2003, 65, 1399–1406. [Google Scholar] [CrossRef]
- Kanakri, K.; Carragher, J.; Hughes, R.; Muhlhausler, B.; Gibson, R. The Effect of Different Dietary Fats on the Fatty Acid Composition of Several Tissues in Broiler. Eur. J. Lipid Sci. Tech. 2018, 120, 1700237. [Google Scholar] [CrossRef]
- Chen, X.; Du, X.; Shen, J.; Lu, L.; Wang, W. Effect of various dietary fats on fatty acid profile in duck liver: Efficient conversion of short-chain to long-chain omega-3 fatty acids. Exp. Biol. Med. 2017, 242, 80–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domenichiello, A.F.; Kitson, A.P.; Bazinet, R.P. Is docosahexaenoic acid synthesis from-linolenic acid sufficient to supply the adult brain? Prog. Lipid Res. 2015, 59, 54–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rymer, C.; Givens, D.I. Effect of species and genotype on the efficiency of enrichment of poultry meat with n-3 polyunsaturated fatty acids. Lipids 2006, 41, 445–451. [Google Scholar] [CrossRef] [PubMed]
- Gregory, M.K.; Geier, M.S.; Gibson, R.A.; James, M.J. Functional Characterization of the Chicken Fatty Acid Elongases. J. Nutr. 2013, 143, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Jing, M.; Zhao, S.; House, J.D. Performance and tissue fatty acid profile of broiler chickens and laying hens fed hemp oil and HempOmegaTM. Poult. Sci. 2017, 96, 1809–1819. [Google Scholar] [CrossRef]
- Gonzalez-Esquerra, R.; Leeson, S. Alternatives for enrichment of eggs and chicken meat with n-3 fatty acids. Can. J. Anim. Sci. 2001, 81, 295–305. [Google Scholar] [CrossRef]
- Wood, J.D.; Enser, M.; Fisher, A.V.; Nute, G.R.; Sheard, P.R.; Richardson, R.I.; Hughes, S.I.; Whittington, F.M. Fat deposition, fatty acid composition and meat quality: A review. Meat Sci. 2008, 78, 343–358. [Google Scholar] [CrossRef]
- Wang, Y.; Botolin, D.; Christian, B.; Busik, J.; Xu, J.; Jump, D.B. Tissue specific, nutritional, and developmental regulation of rat fatty acid elongases. J. Lipid Res. 2005, 46, 706–715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jing, M.; Gakhar, N.; Gibson, R.A.; House, J.D. Dietary and ontogenic regulation of fatty acid desaturase and elongase expression in broiler chickens. Prostaglandins Leukot. Essent. Fatty Acids 2013, 89, 107–113. [Google Scholar] [CrossRef]
- Gou, Z.Y.; Cui, X.Y.; Li, L.; Fan, Q.L.; Lin, X.J.; Wang, Y.B.; Jiang, Z.Y.; Jiang, S.Q. Effects of dietary incorporation of linseed oil with soybean isoflavone on fatty acid profiles and lipid metabolism-related gene expression in breast muscle of chickens. Animal 2020, 14, 2414–2422. [Google Scholar] [CrossRef]
- Okrouhla, M.; Stupka, R.; Cítek, J.; Šprysl, M.; Brzobohatý, L. Effect of dietary linseed supplementation on the performance, meat quality, and fatty acid profile of pigs. Czech J. Anim. Sci. 2013, 58, 279–288. [Google Scholar] [CrossRef] [Green Version]
- European Commission Nutrition Claims. Available online: https://ec.europa.eu/food/safety/labelling_nutrition/claims/nutrition_claims_en (accessed on 16 October 2021).
Parameters | Seed | Cake | |||||||
---|---|---|---|---|---|---|---|---|---|
References | |||||||||
[15] | [32] | [33] | [34] | [8] | [35] | [36] | |||
Metabolizable energy, MJ kg−1 | 14.13 | 17.88 | - | 9.11 | - | - | - | ||
Dry matter, % | 93.66 | 92.02 | 95.81 | 93.45 | 91.95–92.10 | 90.89 | |||
Crude protein, % | 24.78 | 37.17 | 34.99 | 36.88 | 33.31 | 34.25–34.40 | 39.8 | ||
Ether extract, % | 36.84 | 19.17 | 13.55 | 6.44 | 16.91 | 21.00–22.71 | 12.7 | ||
Crude fiber, % | 11.40 | 10.72 | 9.90 | 17.40 | 10.53 | 9.37 | 12.0 | ||
Crude ash, % | 4.27 | 6.80 | 5.67 | 5.97 | 4.91 | 5.01–5.38 | 6.30 | ||
Neutral-detergent fiber, % | - | 35.63 | - | 45.50 | - | 26.32–26.63 | 38.30 |
Amino Acids, % | References | |||||
---|---|---|---|---|---|---|
[33] | [32] | [46] | [8] | [47] | [36] | |
Essential amino acids | ||||||
Arginine | 2.86 | 2.39 | 2.64 | 2.57 | 2.68 | 2.87 |
Histidine | 0.83 | 0.67 | 0.78 | 0.73 | 0.80 | 0.85 |
Glycine | 1.77 | 1.66 | - | 1.59 | 1.68 | 1.81 |
Isoleucine | 1.25 | 1.33 | 1.11 | 1.10 | 1.22 | 1.34 |
Leucine | 2.20 | 2.04 | 2.26 | 2.00 | 2.16 | 2.33 |
Lysine | 1.59 | 1.25 | 1.62 | 1.47 | 1.52 | 1.72 |
Methionine | 0.59 | 0.56 | 1.64 * | 0.57 | 0.58 | 0.64 |
Phenylalanine | 1.44 | 1.44 | 1.37 | 1.31 | 1.39 | 1.44 |
Proline | 1.77 | 1.53 | - | 1.52 | 1.77 | 1.75 |
Threonine | 1.34 | 1.24 | 1.56 | 1.23 | 1.33 | 1.42 |
Valine | 1.75 | 1.68 | 2.11 | 1.74 | 1.66 | 1.80 |
Tryptophan | - | 0.41 | - | - | 0.41 | 0.41 |
Conditionally essential amino acids | ||||||
Cystine | 0.74 | 0.65 | - | 0.79 | 0.71 | 0.74 |
Tyrosine | - | 0.87 | - | 0.91 | - | 0.92 |
Nonessential amino acids | ||||||
Alanine | 1.52 | 1.44 | - | 1.31 | 1.50 | 1.55 |
Aspartic acid | 2.83 | 2.62 | - | 2.31 | 2.74 | 2.87 |
Glutamic acid | 5.74 | 5.20 | - | 4.99 | 5.47 | 5.79 |
Serine | 1.51 | 1.21 | - | 1.38 | 1.51 | 1.43 |
Fatty Acid | Seed | Oil | Cake | |||||
---|---|---|---|---|---|---|---|---|
References | ||||||||
[15] | [37] | [53] | [52] | [35] | [34] | |||
Myristic (C14:0) | - | - | 0.15 | 0.11 | 0.08 | 0.26 | ||
Pentadecanoic (C15:0) | - | - | - | 0.04 | - | - | ||
Palmitic (C16:0) | 6.07 | 5.24 | 7.43 | 7.05 | 6.28–6.44 | 7.73 | ||
Margaric (C17:0) | - | - | - | 0.06 | - | - | ||
Stearic (C18:0) | 1.91 | 2.60 | 2.01 | 2.37 | 2.37–2.68 | 2.76 | ||
Arachidic (C20:0) | - | - | - | 1.51 | 1.33–1.39 | 0.99 | ||
Heneicosanoic (C21:0) | - | - | - | 0.02 | - | - | ||
Behenic (C22:0) | - | - | - | 0.36 | 0.30–0.31 | 2.18 | ||
Lignoceric (C24:0) | - | - | - | 0.21 | - | 2.55 | ||
SFA | - | 7.84 | 9.59 | 11.73 | - | - | ||
Palmitoleic (C16:1n-7) | - | - | 0.24 | 0.22 | 0.02–0.16 | - | ||
Hexadecenoic (C16:1n-9) | - | - | - | 0.08 | - | - | ||
Heptadecenoic (C17:1n-9) | - | - | - | 0.05 | - | - | ||
Vaccenic (C18:1n-7) | - | - | - | 1.35 | - | - | ||
Oleic (C18:1n-9) | 16.46 | 15.70 | 17.69 | 17.11 | 15.28–17.17 | 12.8 | ||
Eicosenoic (C20:1n-9) | 12.99 | 14.61 | - | 12.28 | 14.04–15.34 | 8.85 | ||
Erucic (C22:1n-9) | 5.02 | 2.04 | - | 3.20 | 2.38 | 2.31 | ||
Nervonic (C24:1n-9) | - | - | - | 0.92 | - | - | ||
MUFA | - | 20.62 | 17.93 | 35.21 | - | - | ||
Linoleic (C18:2n-6) | 18.84 | - | 21.09 | 24.16 | 21.13–22.63 | 23.47 | ||
Linolelaidic (C18:2n-6 trans) | - | - | - | 0.02 | - | - | ||
Octadecadienoic (C18:2n-6cis, trans) | - | - | - | 0.04 | - | - | ||
γ—linolenic (C18:3n-6) | - | - | - | 0.11 | 0.24–0.25 | - | ||
α—linolenic (C18:3n-3) | 33.43 | 36.67 | 29.47 | 25.88 | 27.73–28.82 | 36.11 | ||
Octadecatetraenoic (C18:4n-3) | 0.36 | - | - | - | - | - | ||
Eicosadienoic (C20:2n-6) | 1.47 | 1.97 | - | 1.65 | - | - | ||
Eicosatrienoic (C20:3n-3) | - | - | - | 0.84 | 0.98–1.17 | - | ||
Eicosatrienoic (C20:3n-6) | - | 1.48 | - | 0.00 | - | - | ||
Arachidonic (C20:4n-6) | 1.02 | - | - | 0.05 | 2.47 | - | ||
Eicosapentaenoic (C20:5n-3) | 0.12 | - | - | 0.00 | 0.08–0.09 | - | ||
Docosadienoic (C22:2n-6) | - | - | - | 0.30 | - | - | ||
Docosatetranoic (C22:4n-6) | 0.33 | - | - | 0.03 | - | - | ||
Docosapentaenoic (C22:5n-3) | 0.04 | - | - | - | - | - | ||
Docosahexaenoic (C22:6n-3) | 0.34 | - | - | - | - | - | ||
n-6 PUFA | 21.66 | - | - | 26.36 | - | - | ||
n-3 PUFA | 34.29 | - | - | 26.72 | - | - | ||
PUFA/SFA | - | - | - | 4.53 | - | - | ||
n-6/n-3 | - | 0.60 | - | 0.99 | - | - | ||
Linoleic/α-linolenic | - | - | 0.72 | - | - | - |
Poultry/Feed | Level, % | Trial Period, Days | Body Weight, g | Weight Gain, g | Feed Intake, g/Birds | Feed Conversion Ratio, kg/kg | Bird Mortality, % | Reference |
---|---|---|---|---|---|---|---|---|
Chicken/cake | 2.5 | 1–42 | −172.29 * | −173.59 * | +2.3 | +0.17 | - | [7] |
5 | +54.37 | +54.43 | +312.8 | +0.11 | - | |||
10 | −59.69 | −59.01 | +182.1 | +0.15 | - | |||
Chicken/oil, cake | Oil, 4 | 22–42 | - | −22 | −50 | −0.04 | +0.66 | [85] |
Cake, 10 | - | −122 | −116 | +0.09 | +0.75 | |||
Chicken/oil, seed | Oil, 2.5 | 11–42 | +63.82 | - | +87.8 | −0.01 | −0.38 | [15] |
Seed, 5 | −31.86 | - | +134.85 | +0.08 | +0.39 | |||
Seed, 10 | −188.29 * | - | −40.44 | +0.13 | +0.19 | |||
Quail/cake | 5 | 1–35 | +2.65 | +2.65 | +7.71 | −0.00001 | - | [34] |
10 | +1.06 | +0.94 | +10.9 | +0.00004 | - | |||
15 | +3.35 | +2.38 | +31.27 | +0.00013 * | - | |||
20 | −2.31 | −3.53 | +17.92 | +0.00017 * | - | |||
Turkey/cake | 5 | 1–28 | −32 | - | +19 | +0.09 | [86] | |
15 | −56 | - | +4 | +0.12 | - | |||
5 | 1–28 | −66 | - | −90 | +0.03 | - | [86] | |
15 | −154 * | - | −226 * | +0.06 | - | |||
20 | −216 * | - | −197 * | +0.30 * | - | |||
Chicken/oil | 6.91 4.07 | 1–21 22–35 | - | −10 | +50 | +0.03 | - | [37] |
In comparison with soybean oil | ||||||||
- | −70 | −170 | −0.03 | - | ||||
In comparison with rapeseed oil | ||||||||
Chicken/seed | 10 | 7–42 | −116.8 * | −122.13 * | −250 | +0.01 | +0.5 | [87] |
Chicken/oil | 3 | 22–49 | +61 | - | - | −0.03 | +0.09 | [88] |
6 | +76 | - | - | −0.04 | +2.62 | |||
Chicken/cake | 10 | 1–21 | −60 * | - | −71 * | + 0.03 | - | [33] |
Chicken/cake | 8 | 23–42 | −35.69 | −22.17 | −17.5 | + 0.01 | - | [53] |
Chicken/cake | 10 | 1–42 | +107.5 | +3.13 | +0.10 | - | [89] | |
Chicken/cake | 5 male | 1–37 | −215 * | - | - | - | - | [8] |
5 female | −67 | - | - | - | - | |||
10 male | −264 * | - | - | - | - | |||
10 female | −128 * | - | - | - | - | |||
5 | 1–14 | - | - | −3 * per day | - | - | ||
10 | - | - | −4.3 * per day | - | - | |||
5 | 15–37 | - | - | −3 per day | - | - | ||
10 | - | - | −5 per day | - | - | |||
5 | 1–37 | - | - | - | +0.05 * | - | ||
10 | - | - | - | +0.08 * | - | |||
Chicken/cake | 8 | 1–42 | +334.5 * | +8 * | +1.7 | - | +0.54 | [35] |
16 | +508.5 * | +12.2 * | +0.7 | - | +11.29 * | |||
24 | +105.6 | +2.6 * | −1 | - | +12.89 * |
Poultry/Feed | Level% | Trial Days | CY, % | BM, % | LM, % | AF, % | L, % | H, % | G, % | Lymphoid Tissue, % | Reference | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S | T | BF | |||||||||||
Chickenoil, seed | Oil, 2.5 | 11–42 | +0.4 | +2 | +3 | −0.09 | - | - | - | +0.01 | −0.02 | −0.02 | [15] 1 |
Seed, 5 | −0.2 | −2 | −4 | −0.14 | - | - | - | −0.02 | −0.03 | +0.02 | |||
Seed, 10 | −0.7 | −4 | −7 | −0.52 * | - | - | - | −0.01 | −0.06 | −0.11 * | |||
Quail/ cake | 5 | 1–35 | - | - | - | - | −0.31 | −0.08 | - | −0.02 | - | - | [34] |
10 | - | - | - | - | −0.22 | −0.07 | +0.05 | −0.01 | - | - | |||
15 | - | - | - | - | −0.23 | −0.03 | +0.08 | 0 | - | - | |||
20 | - | - | - | - | −0.38 | −0.05 | +0.12 | −0.01 | - | - | |||
Chicken/cake | 2.5 | 1–42 | - | - | - | +0.46 | +0.1 | −0.08 | +0.12 | −0.01 | - | - | [7] |
5 | - | - | - | +0.41 | −0.37 | −0.04 | - | +0.01 | - | - | |||
10 | - | - | - | +0.45 | −0.40 | −0.11 | - | 0 | - | - | |||
Chicken/oil, cake | Oil, 4 | 22–42 | +0.74 | +0.44 | +0.42 | −0.09 | −0.09 | - | - | - | - | - | [85] |
Cake, 10 | +0.95 | −2.12 * | +0.23 | −0.15 | −0.09 | - | - | - | - | - | |||
Chicken/ oil | 3 | 22–49 | −0.8 | −0.4 | −0.2 | −0.10 | −0.10 | - | - | - | - | - | [88] |
6 | −0.4 | −0.3 | −0.1 | −0.02 | −0.11 | - | - | - | - | - | |||
Chicken/cake | 10 | 1–21 | +0.1 | 0 | 0 | - | - | - | - | - | - | - | [89] |
Chicken/ cake | 8 | 23–42 | - | - | - | −0.1 | - | - | - | −0.02 | −0.03 | −0.05 * | [53] |
Chicken/ cake | 8 | 1–42 | - | - | - | - | +1.29 | +0.05 | - | +0.02 | - | [35] 2 | |
16 | - | - | - | - | −0.97 | +0.29 | - | +0.13 | - | - | |||
24 | - | - | - | - | 0 | +0.29 | - | +0.10 | - | - |
Poultry/ Feed | Trial Period, Days | Level, % | Parameters | Reference | ||
---|---|---|---|---|---|---|
Dry Matter, % | Protein, % | Fat, % | ||||
Chicken/ oil, cake | 22–42 | Oil, 4 | −0.47 | −0.42 | +0.04 | [85] |
Cake, 10 | +0.18 | −0.08 | +0.09 | |||
Chicken/ oil | 22–49 | 3 | +0.46 | +0.47 * | +0.04 | [88] |
6 | +0.32 | +0.41 | +0.04 | |||
Chicken/ oil, seed | 11–42 | Oil, 2.5 | +0.04 | +0.25 | +0.26 | [15] |
Seed, 5 | +0.29 | +0.73 * | +0.32 | |||
Seed, 10 | −0.43 | +1.62 * | +0.37 | |||
Chicken/ cake | 1–42 | 2.5 | - | - | +0.12 | [7] |
5 | - | - | +0.07 | |||
10 | - | - | +0.41 |
Poultry/ Feed | Level, % | Trial Days | Glucose, mg/dL | Cholesterol, mg/dL | HDL, mg/dL | LDL, mg/dL | LDL/ HDL | Triglycerides, mg/dL | Reference |
---|---|---|---|---|---|---|---|---|---|
Chicken/cake | 8 | 23–42 | −11.84 * | −13.31 * | −6.66 * | −7.72 * | - | −4.61 | [53] |
Chicken/oil, seed | Oil, 2.5 | 11–42 | +8.7 | −18.1 * | −7.9 * | −2.3 | - | −0.7 | [15] |
Seed, 5 | +1.6 | −14.4 * | −5.5 * | −6.9 | - | +0.2 | |||
Seed, 10 | +4.9 | −25.7 * | −22.4 * | −8.3 * | - | +2.8 | |||
Chicken/oil | 3 | 22–49 | - | −3 | −1.3 | −2.8 * | −0.03 | +5.8 | [88] |
6 | - | −21.7 * | −15.4 * | −8 * | −0.05 | +8.5 |
Poultry Feed | Level, % | Trial, Days | C14:0 | C16:0 | SFA | C18:1 | MUFA | Reference |
---|---|---|---|---|---|---|---|---|
Breast | ||||||||
Chicken cake | 8 | 1–42 | 0 | −0.5 | −1.1 | −2.7 * | −2.8 * | [97] |
16 | +0.02 | −1.5 * | −2.2 * | −5.1 * | −5.7 * | |||
24 | −0.02 | −3 * | −2.8 * | −7.3 * | −8.5 * | |||
Chicken cake | 2.5 | 1–42 | - | −0.34 | +0.01 | +0.59 | +0.71 | [7] |
5 | - | −0.56 | −0.84 | +0.30 | +0.29 | |||
10 | - | +0.95 | −0.41 | +5.37 * | +6.82 * | |||
Chicken oil, cake | Oil, 4 | 22–42 | - | +1.45 | +1.95 | −6.66 * | −6.36 * | [85] |
Cake, 10 | - | −0.38 | −1.16 | −3.29 * | −3.23 * | |||
Chicken oil, seed | Oil, 2.5 | 11–42 | - | −0.24 | - | +3.18 * | - | [15] |
Seed, 5 | - | −0.42 | - | +2.62 * | - | |||
Seed, 10 | - | −0.13 | - | +2.89 * | - | |||
Chicken cake | 5 | 1–38 | - | −0.5 * | - | −3.2 * | - | [98] |
10 | - | −2.0 * | - | −4 * | - | |||
15 | - | −2.2 * | - | −5.6 * | - | |||
20 | - | −2.5 * | - | −6.2 * | - | |||
25 | - | −2.2 * | - | −10.2 * | - | |||
Duck cake | 15–20 | 1–49 | +0.02 | +0.53 | +0.51 | −2.89 | −2.25 | [52] |
Chicken oil | 6.91 4.07 | 1–21 22–35 | - | +1.39 | +1.08 | +16.46 * | - | [37] |
In comparison with soybean oil | ||||||||
- | +5.71 * | +6.41 * | −14.97 * | - | ||||
In comparison with rapeseed oil | ||||||||
Leg | ||||||||
Chicken cake | 8 | 1–42 | 0 | +0.9 | +1.0 | −1.4 | −1.7 | [97] |
16 | 0 | −4.0 | −3.2 | −2 | −4.1 | |||
24 | −0.1 | −4.4 | −3.9 | −4.2 | −6.9 * | |||
Chicken cake | 2.5 | 1–42 | +0.02 | −0.30 | +1.33 | −1.41 | −1.49 | [7] |
5 | +0.01 | +0.47 | +1.76 | −1.19 | −1.15 | |||
10 | +0.01 | +0.60 | +1.97 | −1.34 | −0.66 | |||
Chicken cake female | 5 | 1–37 | - | −0.67 | −0.31 | −1.25 | −0.90 | [8] |
10 | - | −3.21 * | −2.42 * | −3.51 * | −2.29 * | |||
Chicken cake male | 5 | 1–37 | - | −1.24 * | −1.39 * | −1.98 | −1.58 * | |
10 | - | −3.12 * | −3.73 * | −3.56 * | −2.21 * | |||
Duck cake | 15–20 | 1–49 | +0.03 | +1.37 * | +2.25 * | −4.85 * | −4.10 * | [52] |
Chicken oil | 6.91 4.07 | 1–21 22–35 | - | −1.98 * | −1.77 | +5.48 | - | [37] |
In comparison with soybean oil | ||||||||
- | +2.84 * | +5.22 * | −21.8 * | - | ||||
In comparison with rapeseed oil | ||||||||
Liver | ||||||||
Chicken cake | 8 | 1–42 | +0.01 | 0 | +3.1 * | −6 * | −6.7 * | [97] |
16 | −0.06 * | −2.1 * | +4.4 * | −12.3 * | −14.1 * | |||
24 | −0.14 * | −6.0 * | +4.3 * | −19.9 * | −22.7 * | |||
Chicken cake | 2.5 | 1–42 | −0.29 * | +0.16 | −8.26 * | −3.27 | −3.44 | [7] |
5 | −0.25 * | +0.54 | +4.98 * | −4.47 | −4.92 | |||
10 | −0.12 | −0.02 | +2.25 | −4.52 | −4.75 |
Poultry/ Feed | Level,% | Trial Days | C18:3 | C20:3 | C20:5 | C22:5 | C22: 6n-3 | LC n-3 PUFA | n-3 PUFA | C18: 2n-6 | n-6 PUFA | n-6/n-3 PUFA | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Breast | |||||||||||||
Chicken/ cake | 8 | 1–42 | +2.1 * | +0.12 * | +0.01 | +0.26 | 0 | +0.3 | +2.3 * | +1.6 * | +1.4 | −1.2 * | [97] |
16 | +3.4 * | +0.33 * | −0.03 | +0.58 * | +0.1 | +1 * | +4.3 * | +3.4 * | +3.4 * | −1.5 * | |||
24 | +4.8 * | +0.37 * | 0 | +0.64 * | +0.1 | +1.1 * | +5.7 * | +5.1 * | +5.4 * | −1.6 * | |||
Chicken/ cake | 2.5 | 1–42 | +0.59 * | - | +0.03 | +0.21 | +0.34 | - | +1.16 * | +0.48 | −1.88 | −6.4 * | [7] |
5 | +0.95 * | - | +0.08 | +0.33 | +0.28 | - | +1.62 * | +1.85 | −1.07 | −7.62 * | |||
10 | +1.62 * | - | +0.14 | +0.12 | +0.22 | - | +2.10 * | −2.37 | −8.5 * | −10.44 * | |||
Chicken/ oil, cake | Oil, 4 | 22–42 | +4.5 * | - | - | - | - | - | +4.88 * | +0.16 | −0.68 | −2.04 * | [85] |
Cake, 10 | +3.69 * | - | - | - | - | - | +3.73 * | +1.49 * | +0.51 | −1.66 * | |||
Chicken/ oil, seed | Oil, 2.5 | 11–42 | +2.46 * | - | +0.42 * | +0.19 * | +0.48 * | - | +3.50 * | +0.83 | −2.36 * | - | [15] |
Seed, 5 | +1.73 * | - | +0.15 * | +0.16 * | +0.40 * | - | +2.37 * | +1.30 | −1.47 * | - | |||
Seed, 10 | +2.38 * | - | +0.55 * | +0.25 * | +0.46 * | - | +3.55 * | +0.59 | −2.41 * | - | |||
Chicken/ cake | 5 | 1–38 | +1.72 * | - | +0.32 * | - | +0.54 * | - | +3.36 * | +1 | +1.3 * | −2.24 * | [98] |
10 | +3.63 * | - | +0.52 * | - | +0.36 * | - | +5.33 * | +1 | +1.0 * | −2.23 * | |||
15 | +3.56 * | - | +0.54 * | - | +0.76 * | - | +6.03 * | +1.5 | +2.3 * | −2.33 * | |||
20 | +4.72 * | - | +1.01 * | - | +0.86 * | - | +8.33 * | 0 | +0.7 * | −2.38 * | |||
25 | +5.07 * | - | +1.08 * | - | +1.78 * | -- | +10.43 * | +2 | +3.4 * | −2.88 * | |||
Duck/ cake | 15–20 | 1–49 | +1.49 * | +0.08 * | +0.08 | +0.09 | +0.13 | +1.86 * | +0.28 | +0.01 | −2.16 * | [52] | |
Chicken/ oil | 6.91 4.07 | 1–21 22–35 | +3.07 * | - | - | - | - | - | - | −21.27 * | - | −35.14 * | [37] |
In comparison with soybean oil | |||||||||||||
+3.55 * | - | - | - | - | - | - | +4.13 * | - | −17.82 * | ||||
In comparison with rapeseed oil | |||||||||||||
Leg | |||||||||||||
Chicken/cake | 8 | 1–42 | +1.7 * | +0.08 * | −0.01 | +0.18 * | +0.07 | +0.33 | +2.1 * | −0.9 | −1.4 | −3 * | [97] |
16 | +4.2 * | +0.20 * | 0 | +0.21 * | +0.06 | +0.47 * | +4.7 * | +2.5 | +2.6 | −2.9 * | |||
24 | +6.4 * | +0.23 * | 0 | +0.27 * | +0.14 | +0.63 * | +7.1 * | +3.9 * | +3.6 | −3.6 * | |||
Chicken/cake | 2.5 | 1–42 | +0.37 | - | +0.08 | +0.37 * | +0.38 * | - | +1.2 * | −2.44 | −1.04 | −9.38 * | [7] |
5 | +0.61 * | - | +0.04 | +0.33 * | +0.25 * | - | +1.23 * | −2.58 | −1.84 | −9.83 * | |||
10 | +1.45 * | - | +0.23 * | +0.42 * | +0.40 * | - | +2.5 * | −3.93 | −3.81 | −13.91 * | |||
Chicken cake female | 5 | 1–37 | +1.48 * | - | - | - | - | - | +1.55 * | −0.16 | +0.04 | −1.11 * | [8] |
10 | +4.02 * | - | - | - | - | - | +4.17 * | +1.79 * | +2.16 * | −1.89 * | |||
Chicken cake male | 5 | 1–37 | +1.88 * | - | - | - | - | - | +2.05 * | +0.62 | +0.68 | −1.46 * | |
10 | +4.53 * | - | - | - | - | - | +4.69 * | +1.63 * | +1.56 | −2.39 * | |||
Duck/ cake | 15–20 | 1–49 | +2.33 * | +0.10 * | +0.06 | +0.04 | +0.06 | - | +2.5 * | +0.29 | +0.02 | −2.94 * | [52] |
Chicken/ oil | 6.91 4.07 | 1–21 22–35 | +7.59 * | - | - | - | - | - | - | −7.90 * | - | −11.57 * | [37] |
In comparison with soybean oil | |||||||||||||
+8.45 * | - | - | - | - | - | - | +10.44 * | - | −9.43 * | ||||
In comparison with rapeseed oil | |||||||||||||
Liver | |||||||||||||
Chicken/ cake | 8 | 1–42 | +0.47 * | +0.08 * | +0.02 | +0.21 * | +0.50 * | +0.8 * | +1.3 * | +2.2 * | +2.3 * | −1.2 * | [97] |
16 | +1.13 * | +0.19 * | +0.03 | +0.59 * | +1.24 * | +2.0 * | +3.2 * | +4.8 * | +6.5 * | −1.7 * | |||
24 | +2.10 * | +0.37 * | +0.03 | +0.97 * | +2.63 * | +3.9 * | +6.1 * | +9 * | +12.4 * | −2.2 * | |||
Chicken /cake | 2.5 | 1–42 | −0.25 | - | +0.21 * | +0.80 * | 0 | - | +2.58 * | −7.91 * | −2.83 | −6.45 * | [7] |
5 | −0.21 | - | +0.31 * | +0.64 | +3.05 * | - | +3.79 * | −7.77 * | −3.86 * | −7.66 * | |||
10 | +0.43 | - | +0.45 * | +1.19 * | +4.02 * | - | +6.09 * | −5.01 | −3.59 * | −8.85 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Juodka, R.; Nainienė, R.; Juškienė, V.; Juška, R.; Leikus, R.; Kadžienė, G.; Stankevičienė, D. Camelina (Camelina sativa (L.) Crantz) as Feedstuffs in Meat Type Poultry Diet: A Source of Protein and n-3 Fatty Acids. Animals 2022, 12, 295. https://doi.org/10.3390/ani12030295
Juodka R, Nainienė R, Juškienė V, Juška R, Leikus R, Kadžienė G, Stankevičienė D. Camelina (Camelina sativa (L.) Crantz) as Feedstuffs in Meat Type Poultry Diet: A Source of Protein and n-3 Fatty Acids. Animals. 2022; 12(3):295. https://doi.org/10.3390/ani12030295
Chicago/Turabian StyleJuodka, Robertas, Rasa Nainienė, Violeta Juškienė, Remigijus Juška, Raimondas Leikus, Gitana Kadžienė, and Daiva Stankevičienė. 2022. "Camelina (Camelina sativa (L.) Crantz) as Feedstuffs in Meat Type Poultry Diet: A Source of Protein and n-3 Fatty Acids" Animals 12, no. 3: 295. https://doi.org/10.3390/ani12030295
APA StyleJuodka, R., Nainienė, R., Juškienė, V., Juška, R., Leikus, R., Kadžienė, G., & Stankevičienė, D. (2022). Camelina (Camelina sativa (L.) Crantz) as Feedstuffs in Meat Type Poultry Diet: A Source of Protein and n-3 Fatty Acids. Animals, 12(3), 295. https://doi.org/10.3390/ani12030295