How to Predict Parturition in Cattle? A Literature Review of Automatic Devices and Technologies for Remote Monitoring and Calving Prediction
Abstract
:Simple Summary
Abstract
1. Introduction
2. Pre-Calving Variation in Feeding, Activity, and Temperature
3. Wearable Sensors for Automatic Monitoring: What Can We Measure?
3.1. Combining Data from Activity, Feeding and Other Behaviors
3.2. Performance of Automatic Sensors and Machine-Learning for Remote Calving Prediction
3.3. General Considerations on Feeding, Activity and Temperature Remote Monitoring Devices Used for Calving Prediction
4. Devices Which Identify the Stage II of Labor
4.1. Vulvar Magnetic Sensors
4.2. Intravaginal Devices
4.3. General Considerations on Devices for the Identification of Stage II of Calving
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Britt, J.H. Enhanced Reproduction and Its Economic Implications. J. Dairy Sci. 1985, 68, 1585–1592. [Google Scholar] [CrossRef]
- Cabrera, V.E. Economics of fertility in high-yielding dairy cows on confined TMR systems. Animal 2014, 8, 211–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mee, J.F. Prevalence and risk factors for dystocia in dairy cattle: A review. Vet. J. 2008, 176, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Sheldon, I.M.; Cronin, J.; Goetze, L.; Donofrio, G.; Schuberth, H.-J. Defining postpartum uterine disease and the mechanisms of infection and immunity in the female reproductive tract in cattle. Biol. Reprod. 2009, 81, 1025–1032. [Google Scholar] [CrossRef]
- Arnott, G.; Roberts, D.; Rooke, J.A.; Turner, S.P.; Lawrence, A.B.; Rutherford, K.M.D. Board invited review: The importance of the gestation period for welfare of calves: Maternal stressors and difficult births. J. Anim. Sci. 2012, 90, 5021–5034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McHugh, N.; Kearney, J.F.; Berry, D.P. The effect of dystocia on subsequent performance in dairy cows. In Proceedings of the Agricultural Research Forum, Tullamore, Ireland, 12–13 March 2012; p. 22, ISBN 9781841705736. [Google Scholar]
- Kovács, L.; Kézér, F.L.; Ruff, F.; Szenci, O. Timing of obstetrical assistance affects peripartal cardiac autonomic function and early maternal behavior of dairy cows. Physiol. Behav. 2016, 165, 202–210. [Google Scholar] [CrossRef]
- Kovács, L.; Kézér, F.L.; Szenci, O. Effect of calving process on the outcomes of delivery and postpartum health of dairy cows with unassisted and assisted calvings. J. Dairy Sci. 2016, 99, 7568–7573. [Google Scholar] [CrossRef] [PubMed]
- Meyer, C.L.; Berger, P.J.; Koehler, K.J. Interactions among Factors Affecting Stillbirths in Holstein Cattle in the United States. J. Dairy Sci. 2000, 83, 2657–2663. [Google Scholar] [CrossRef]
- Lombard, J.E.; Garry, F.B.; Tomlinson, S.M.; Garber, L.P. Impacts of Dystocia on Health and Survival of Dairy Calves. J. Dairy Sci. 2007, 90, 1751–1760. [Google Scholar] [CrossRef]
- Hohnholz, T.; Volkmann, N.; Gillandt, K.; Waßmuth, R.; Kemper, N. Risk factors for dystocia and perinatal mortality in extensively kept angus suckler cows in germany. Agriculture 2019, 9, 85. [Google Scholar] [CrossRef] [Green Version]
- De Amicis, I.; Veronesi, M.C.; Robbe, D.; Gloria, A.; Carluccio, A. Prevalence, causes, resolution and consequences of bovine dystocia in Italy. Theriogenology 2018, 107, 104–108. [Google Scholar] [CrossRef] [PubMed]
- Mainau, E.; Manteca, X. Pain and discomfort caused by parturition in cows and sows. Appl. Anim. Behav. Sci. 2011, 135, 241–251. [Google Scholar] [CrossRef]
- Della Rocca, G.; Brondani, J.T.; de Oliveira, F.A.; Crociati, M.; Sylla, L.; Elad Ngonput, A.; Di Salvo, A.; Luna, S.P.L. Validation of the Italian version of the UNESP–Botucatu unidimensional composite pain scale for the assessment of postoperative pain in cattle. Vet. Anaesth. Analg. 2017, 44, 1253–1261. [Google Scholar] [CrossRef] [PubMed]
- Meyer, C.L.; Berger, P.J.; Koehler, K.J.; Thompson, J.R.; Sattler, C.G. Phenotypic Trends in Incidence of Stillbirth for Holsteins in the United States. J. Dairy Sci. 2001, 84, 515–523. [Google Scholar] [CrossRef]
- Norman, S.; Swain, D.; Collop, T.; Loy, J.; Larsen, J. Remote Calf Alert—Technology Development; Meat & Livestock Australia Limited: North Sydney, Australia, 2011; ISBN 9781741918878. [Google Scholar]
- Mahnani, A.; Sadeghi-Sefidmazgi, A.; Keshavarzi, H. Performance and financial consequences of stillbirth in Holstein dairy cattle. Animal 2018, 12, 617–623. [Google Scholar] [CrossRef] [Green Version]
- Martin-Collado, D.; Hely, F.; Byrne, T.J.; Evans, R.; Cromie, A.R.; Amer, P.R. Farmer views on calving difficulty consequences on dairy and beef farms. Animal 2017, 11, 318–326. [Google Scholar] [CrossRef] [Green Version]
- Blum, J.; Hammon, H. Colostrum effects on the gastrointestinal tract, and on nutritional, endocrine and metabolic parameters in neonatal calves. Livest. Prod. Sci. 2000, 66, 151–159. [Google Scholar] [CrossRef]
- Quigley, J.D.; Strohbehn, R.E.; Kost, C.J.; O’Brien, M.M. Formulation of colostrum supplements, colostrum replacers and acquisition of passive immunity in neonatal calves. J. Dairy Sci. 2001, 84, 2059–2065. [Google Scholar] [CrossRef]
- Gundelach, Y.; Essmeyer, K.; Teltscher, M.K.; Hoedemaker, M. Risk factors for perinatal mortality in dairy cattle: Cow and foetal factors, calving process. Theriogenology 2009, 71, 901–909. [Google Scholar] [CrossRef]
- Richter, J.; Götze, R. Tiergeburtshilfe, 3rd ed.; Verlag Paul Parey: Berlin/Hamburg, Germany, 1978. [Google Scholar]
- Norman, H.D.; Wright, J.R.; Kuhn, M.T.; Hubbard, S.M.; Cole, J.B.; VanRaden, P.M. Genetic and environmental factors that affect gestation length in dairy cattle. J. Dairy Sci. 2009, 92, 2259–2269. [Google Scholar] [CrossRef] [Green Version]
- Brownlie, T.S.; Morton, J.M.; McDougall, S. Accuracy of fetal age estimates using transrectal ultrasonography for predicting calving dates in dairy cows in seasonally calving herds in New Zealand. N. Z. Vet. J. 2016, 64, 324–329. [Google Scholar] [CrossRef]
- Proudfoot, K.L.; Huzzey, J.M.; von Keyserlingk, M.A.G. The effect of dystocia on the dry matter intake and behavior of Holstein cows. J. Dairy Sci. 2009, 92, 4937–4944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensen, M.B. Behaviour around the time of calving in dairy cows. Appl. Anim. Behav. Sci. 2012, 139, 195–202. [Google Scholar] [CrossRef]
- Borchers, M.R.; Chang, Y.-M.; Stone, E.; Wadsworth, A.; Bewley, J.M. Predicting impending calving using automatic activity and rumination measures in dairy cattle. In Proceedings of the 7th European Conference on Precision Livestock Farming, Milan, Italy, 15–18 September 2015; pp. 406–414. [Google Scholar]
- Titler, M.; Maquivar, M.G.; Bas, S.; Rajala-Schultz, P.J.; Gordon, E.; McCullough, K.; Federico, P.; Schuenemann, G.M. Prediction of parturition in Holstein dairy cattle using electronic data loggers. J. Dairy Sci. 2015, 98, 5304–5312. [Google Scholar] [CrossRef] [PubMed]
- Ouellet, V.; Vasseur, E.; Heuwieser, W.; Burfeind, O.; Maldague, X. Charbonneau Evaluation of calving indicators measured by automated monitoring devices to predict the onset of calving in Holstein dairy cows. J. Dairy Sci. 2016, 99, 1539–1548. [Google Scholar] [CrossRef] [Green Version]
- Clark, C.E.F.; Lyons, N.A.; Millapan, L.; Talukder, S.; Cronin, G.M.; Kerrisk, K.L.; Garcia, S.C. Rumination and activity levels as predictors of calving for dairy cows. Animal 2015, 9, 691–695. [Google Scholar] [CrossRef] [Green Version]
- Horváth, A.; Lénárt, L.; Pálffy, M.; Szenci, O. A field study using different technologies to detect calving at a scale hungarian dairy farm. Reprod. Dom. Anim. 2021, 56, 673–679. [Google Scholar] [CrossRef]
- Miller, G.A.; Mitchell, M.A.; Barker, Z.E.; Giebel, K.; Codling, E.; Amory, J.; Duthie, C.-A. Animal-mounted sensor technology to predict ‘time to calving’ in beef and dairy cows. In Proceedings of the Abstract from BSAS Annual Conference, Edinburgh, UK, 9–11 April 2019. [Google Scholar]
- Miller, G.A.; Mitchell, M.; Barker, Z.E.; Giebel, K.; Codling, E.A.; Amory, J.R.; Michie, C.; Davison, C.; Tachtatzis, C.; Andonovic, I.; et al. Using animal-mounted sensor technology and machine learning to predict time-to-calving in beef and dairy cows. Animal 2020, 14, 1304–1312. [Google Scholar] [CrossRef]
- Büchel, S.; Sundrum, A. Short communication: Decrease in rumination time as an indicator of the onset of calving. J. Dairy Sci. 2014, 97, 3120–3127. [Google Scholar] [CrossRef] [Green Version]
- Pahl, C.; Hartung, E.; Grothmann, A.; Mahlkow-Nerge, K.; Haeussermann, A. Rumination activity of dairy cows in the 24 hours before and after calving. J. Dairy Sci. 2014, 97, 6935–6941. [Google Scholar] [CrossRef] [Green Version]
- Fadul, M.; Christopher, B.; Maher, A.; Jürg, H.; Alexander, S.; Adrian, S.; Gaby, H. Prediction of calving time in dairy cattle. Anim. Reprod. Sci. 2017, 187, 37–46. [Google Scholar] [CrossRef]
- Zehner, N.; Niederhauser, J.J.; Schick, M.; Umstatter, C. Development and validation of a predictive model for calving time based on sensor measurements of ingestive behavior in dairy cows. Comput. Electron. Agric. 2019, 161, 62–71. [Google Scholar] [CrossRef]
- Rutten, C.J.; Kamphuis, C.; Hogeveen, H.; Huijps, K.; Nielen, M.; Steeneveld, W. Sensor data on cow activity, rumination, and ear temperature improve prediction of the start of calving in dairy cows. Comput. Electron. Agric. 2017, 132, 108–118. [Google Scholar] [CrossRef]
- Krieger, S.; Oczak, M.; Lidauer, L.; Berger, A.; Kickinger, F.; Oelschuster, M.; Auer, W.; Drillich, M.; Iwersen, M. Ear-attached accelerometer as an on-farm device to predict the onset of calving in dairy cows. In Proceedings of the 14th International Conference on Precision Agriculture, Montreal, QC, Canada, 24–27 June 2018. [Google Scholar]
- Krieger, S.; Oczak, M.; Lidauer, L.; Berger, A.; Kickinger, F.; Öhlschuster, M.; Auer, W.; Drillich, M.; Iwersen, M. An ear-attached accelerometer as an on-farm device to predict the onset of calving in dairy cows. Biosyst. Eng. 2019, 184, 190–199. [Google Scholar] [CrossRef]
- Krieger, S.; Sattlecker, G.; Kickinger, F.; Auer, W.; Drillich, M.; Iwersen, M. Prediction of calving in dairy cows using a tail-mounted tri-axial accelerometer: A pilot study. Biosyst. Eng. 2018, 173, 79–84. [Google Scholar] [CrossRef]
- Peng, Y.; Kondo, N.; Fujiura, T.; Suzuki, T.; Ouma, S.; Wulandari; Yoshioka, H.; Itoyama, E. Dam behavior patterns in Japanese black beef cattle prior to calving: Automated detection using LSTM-RNN. Comput. Electron. Agric. 2020, 169, 105178. [Google Scholar] [CrossRef]
- Cooper-Prado, M.J.; Long, N.M.; Wright, E.C.; Goad, C.L.; Wettemann, R.P. Relationship of ruminal temperature with parturition and estrus of beef cows. J. Anim. Sci. 2011, 89, 1020–1027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, J.B.G.; Ahola, J.K.; Weller, Z.D.; Peel, R.K.; Whittier, J.C.; Barcellos, J.O.J. Reticulo-rumen temperature as a predictor of calving time in primiparous and parous Holstein females. J. Dairy Sci. 2016, 99, 4839–4850. [Google Scholar] [CrossRef] [Green Version]
- Kovács, L.; Kézér, F.L.; Ruff, F.; Szenci, O. Rumination time and reticuloruminal temperature as possible predictors of dystocia in dairy cows. J. Dairy Sci. 2017, 100, 1568–1579. [Google Scholar] [CrossRef] [Green Version]
- Koyama, K.; Koyama, T.; Sugimoto, M.; Kusakari, N.; Miura, R.; Yoshioka, K.; Hirako, M. Prediction of calving time in Holstein dairy cows by monitoring the ventral tail base surface temperature. Vet. J. 2018, 240, 1–5. [Google Scholar] [CrossRef]
- Miwa, M.; Matsuyama, S.; Nakamura, S.; Noda, K.; Sakatani, M. Prepartum change in ventral tail base surface temperature in beef cattle: Comparison with vaginal temperature and behavior indices, and effect of ambient temperature. J. Reprod. Dev. 2019, 65, 515–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higaki, S.; Koyama, K.; Sasaki, Y.; Abe, K.; Honkawa, K.; Horii, Y.; Minamino, T.; Mikurino, Y.; Okada, H.; Miwakeichi, F.; et al. Technical note: Calving prediction in dairy cattle based on continuous measurements of ventral tail base skin temperature using supervised machine learning. J. Dairy Sci. 2020, 103, 8535–8540. [Google Scholar] [CrossRef] [PubMed]
- Sakatani, M.; Sugano, T.; Higo, A.; Naotsuka, K.; Hojo, T.; Gessei, S.; Uehara, H.; Takenouchi, N. Vaginal temperature measurement by a wireless sensor for predicting the onset of calving in Japanese Black cows. Theriogenology 2018, 111, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Ricci, A.; Racioppi, V.; Iotti, B.; Bertero, A.; Reed, K.F.; Pascottini, O.B.; Vincenti, L. Assessment of the temperature cut-off point by a commercial intravaginal device to predict parturition in Piedmontese beef cows. Theriogenology 2018, 113, 27–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giaretta, E.; Marliani, G.; Postiglione, G.; Magazzù, G.; Pantò, F.; Mari, G.; Formigoni, A.; Accorsi, P.A.; Mordenti, A. Calving time identified by the automatic detection of tail movements and rumination time, and observation of cow behavioural changes. Animal 2020, 15, 100071. [Google Scholar] [CrossRef] [PubMed]
- Voß, A.L.; Fischer-Tenhagen, C.; Bartel, A.; Heuwieser, W. Sensitivity and specificity of a tail-activity measuring device for calving prediction in dairy cattle. J. Dairy Sci. 2021, 104, 3353–3363. [Google Scholar] [CrossRef]
- Paolucci, M.; Di Giambattista, A.; Sylla, L.; Menichelli, M.; Banchio, A.; Monaci, M. Predicting time of parturition in Holstein Friesian cows by using C6 Birth Control®. In Proceedings of the Reproduction in Domestic Animals, Budapest, Hungary, 13–17 July 2008; pp. 57–58. [Google Scholar]
- Paolucci, M.; Sylla, L.; Di Giambattista, A.; Palombi, C.; Elad, A.; Stradaioli, G.; Pascolo, P.; Monaci, M. Improving calving management to further enhance reproductive performance in dairy cattle. Vet. Res. Commun. 2010, 34, 37–40. [Google Scholar] [CrossRef] [Green Version]
- Marchesi, G.; Leonardi, S.; Tangorra, F.M.; Calcante, A.; Beretta, E.; Pofcher, E.; Lazzari, M. Evaluation of an electronic system for automatic calving detection on a dairy farm. Anim. Prod. Sci. 2013, 53, 1112. [Google Scholar] [CrossRef]
- Calcante, A.; Tangorra, F.M.; Marchesi, G.; Lazzari, M. A GPS/GSM based birth alarm system for grazing cows. Comput. Electron. Agric. 2014, 100, 123–130. [Google Scholar] [CrossRef]
- Palombi, C.; Paolucci, M.; Stradaioli, G.; Corubolo, M.; Pascolo, P.B.; Monaci, M. Evaluation of remote monitoring of parturition in dairy cattle as a new tool for calving management. BMC Vet. Res. 2013, 9, 191. [Google Scholar] [CrossRef] [Green Version]
- Rossi, E.; Ferri, N.; Crociati, M.; Monaci, M.; Stradaioli, G.; Sylla, L. Remote monitoring system as a tool for calving management in Mediterranean Buffalo heifers (Bubalus bubalis). Reprod. Domest. Anim. 2020, 55, 1803–1807. [Google Scholar] [CrossRef] [PubMed]
- Crociati, M.; Sylla, L.; van Straten, M.; Stradaioli, G.; Monaci, M. Estimating the net return of a remote calving alarm system in a dairy farm. J. Dairy Sci. 2020, 103, 9646–9655. [Google Scholar] [CrossRef] [PubMed]
- Crociati, M.; Sylla, L.; Stradaioli, G.; Monaci, M.; Zecconi, A. Assessment of Sensitivity and Profitability of an Intravaginal Sensor for Remote Calving Prediction in Dairy Cattle. Sensors 2021, 21, 8348. [Google Scholar] [CrossRef] [PubMed]
- Henningsen, G.; Marien, H.; Hasseler, W.; Feldmann, M.; Schoon, H.A.; Hoedemaker, M.; Herzog, K. Evaluation of the iVET® birth monitoring system in primiparous dairy heifers. Theriogenology 2017, 102, 44–47. [Google Scholar] [CrossRef] [PubMed]
- Choukeir, A.I.; Kovács, L.; Szelényi, Z.; Kézér, L.F.; Albert, E.; Abdelmegeid, M.K.; Baukje, A.; Aubin-Wodala, M.; Buják, D.; Nagy, K.; et al. Effect of monitoring the onset of calving by a calving alarm thermometer on the prevalence of dystocia, stillbirth, retained fetal membranes and clinical metritis in a Hungarian dairy farm. Theriogenology 2020, 145, 144–148. [Google Scholar] [CrossRef]
- Lidfors, L.M.; Moran, D.; Jung, J.; Jensen, P.; Castren, H. Behaviour at calving and choice of calving place in cattle kept in different environments. Appl. Anim. Behav. Sci. 1994, 42, 11–28. [Google Scholar] [CrossRef]
- Speroni, M.; Malacarne, M.; Righi, F.; Franceschi, P.; Summer, A. Increasing of posture changes as indicator of imminent calving in dairy cows. Agriculture 2018, 8, 182. [Google Scholar] [CrossRef] [Green Version]
- Miedema, H.M.; Cockram, M.S.; Dwyer, C.M.; Macrae, A.I. Changes in the behaviour of dairy cows during the 24h before normal calving compared with behaviour during late pregnancy. Appl. Anim. Behav. Sci. 2011, 131, 8–14. [Google Scholar] [CrossRef]
- Miedema, H.M.; Cockram, M.S.; Dwyer, C.M.; Macrae, A.I. Behavioural predictors of the start of normal and dystocic calving in dairy cows and heifers. Appl. Anim. Behav. Sci. 2011, 132, 14–19. [Google Scholar] [CrossRef]
- Nabenishi, H.; Negishi, N.; Yamazaki, A. Predicting the start of calving in Japanese Black cattle using camera image analysis. J. Reprod. Dev. 2021, 67, 53. [Google Scholar] [CrossRef]
- Saint-Dizier, M.; Chastant-Maillard, S. Methods and on-farm devices to predict calving time in cattle. Vet. J. 2015, 205, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Chang, A.Z.; Swain, D.L.; Trotter, M.G. Towards sensor-based calving detection in the rangelands: A systematic review of credible behavioral and physiological indicators. Transl. Anim. Sci. 2020, 4, txaa155. [Google Scholar] [CrossRef] [PubMed]
- Sumi, K.; Zin, T.T.; Kobayashi, I.; Horii, Y. A study on cow monitoring system for calving process. In Proceedings of the 2017 IEEE 6th Global Conference on Consumer Electronics, Nagoya, Japan, 24–27 October 2017; pp. 1–2. [Google Scholar]
- Cangar, Ö.; Leroy, T.; Guarino, M.; Vranken, E.; Fallon, R.; Lenehan, J.; Mee, J.; Berckmans, D. Automatic real-time monitoring of locomotion and posture behaviour of pregnant cows prior to calving using online image analysis. Comput. Electron. Agric. 2008, 64, 53–60. [Google Scholar] [CrossRef]
- Noakes, D.E.; Parkinson, T.J.; England, G.C.W. Arthur’s Veterinary Reproduction and Obstetrics, 8th ed.; WB Saunders: Philadelphia, PA, USA, 2001; ISBN 978-0-7020-2556-3. [Google Scholar]
- Lange, K.; Fischer-Tenhagen, C.; Heuwieser, W. Predicting stage 2 of calving in Holstein-Friesian heifers. J. Dairy Sci. 2017, 100, 4847–4856. [Google Scholar] [CrossRef] [Green Version]
- Fujimoto, Y.; Kimura, E.; Sawada, T.; Ishikawa, M.; Matsunaga, H.; Mori, J. Change in rectal temperature, and heart and respiration rate of dairy cows before parturition. Jpn. J. Zootech. Sci. 1988, 59, 301–305. [Google Scholar]
- Lammoglia, M.A.; Bellows, R.A.; Short, R.E.; Bellows, S.E.; Bighorn, E.G.; Stevenson, J.S.; Randel, R.D. Body temperature and endocrine interactions before and after calving in beef cows. J. Anim. Sci. 1997, 75, 2526–2534. [Google Scholar] [CrossRef] [Green Version]
- Burfeind, O.; Suthar, V.S.; Voigtsberger, R.; Bonk, S.; Heuwieser, W. Validity of prepartum changes in vaginal and rectal temperature to predict calving in dairy cows. J. Dairy Sci. 2011, 94, 5053–5061. [Google Scholar] [CrossRef] [Green Version]
- Borchers, M.R.; Chang, Y.M.; Tsai, I.C.; Wadsworth, B.A.; Bewley, J.M. A validation of technologies monitoring dairy cow feeding, ruminating, and lying behaviors. J. Dairy Sci. 2016, 99, 7458–7466. [Google Scholar] [CrossRef]
- Wehrend, A.; Hofmann, E.; Failing, K.; Bostedt, H. Behaviour during the first stage of labour in cattle: Influence of parity and dystocia. Appl. Anim. Behav. Sci. 2006, 100, 164–170. [Google Scholar] [CrossRef]
- Schuenemann, G.M.; Nieto, I.; Bas, S.; Galvão, K.N.; Workman, J. Assessment of calving progress and reference times for obstetric intervention during dystocia in Holstein dairy cows. J. Dairy Sci. 2011, 94, 5494–5501. [Google Scholar] [CrossRef] [Green Version]
- Barraclough, R.A.C.; Shaw, D.J.; Boyce, R.; Haskell, M.J.; Macrae, A.I. The behavior of dairy cattle in late gestation: Effects of parity and dystocia. J. Dairy Sci. 2020, 103, 714–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borchers, M.R.; Chang, Y.M.; Proudfoot, K.L.; Wadsworth, B.A.; Stone, A.E.; Bewley, J.M. Machine-learning-based calving prediction from activity, lying, and ruminating behaviors in dairy cattle. J. Dairy Sci. 2017, 100, 5664–5674. [Google Scholar] [CrossRef] [PubMed]
- Zuko, M.; Jaja, I.F. Primiparous and multiparous friesland, jersey, and crossbred cows’ behavior around parturition time at the pasture-based system in South Africa. J. Adv. Vet. Anim. Res. 2020, 7, 290–298. [Google Scholar] [CrossRef] [PubMed]
- Nydegger, F.; Gyga, L.; Egli, W. Automatic measurement of rumination and feeding activity using a pressure sensor. In Proceedings of the International Conference on Agricultural Engineering-AgEng 2010: Towards Environmental Technologies, Clermont-Ferrand, France, 6–8 September 2010. [Google Scholar]
- Schirmann, K.; Chapinal, N.; Weary, D.M.; Vickers, L.; Von Keyserlingk, M.A.G. Short communication: Rumination and feeding behavior before and after calving in dairy cows. J. Dairy Sci. 2013, 96, 7088–7092. [Google Scholar] [CrossRef]
- Calamari, L.; Soriani, N.; Panella, G.; Petrera, F.; Minuti, A.; Trevisi, E. Rumination time around calving: An early signal to detect cows at greater risk of disease. J. Dairy Sci. 2014, 97, 3635–3647. [Google Scholar] [CrossRef]
- DeMars, C.A.; Auger-Méthé, M.; Schlägel, U.E.; Boutin, S. Inferring parturition and neonate survival from movement patterns of female ungulates: A case study using woodland caribou. Ecol. Evol. 2013, 3, 4149–4160. [Google Scholar] [CrossRef]
- Aoki, M.; Kimura, K.; Suzuki, O. Predicting time of parturition from changing vaginal temperature measured by data-logging apparatus in beef cows with twin fetuses. Anim. Reprod. Sci. 2005, 86, 1–12. [Google Scholar] [CrossRef]
- Mee, J.; English, L. Prediction of Onset of Calving from Tail Elevation—Preliminary Evaluation of a Novel Biosensor; Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy Co.: Cork, Ireland, 2019; pp. 156–157. [Google Scholar]
- Benaissa, S.; Tuyttens, F.A.M.; Plets, D.; Trogh, J.; Martens, L.; Vandaele, L.; Joseph, W.; Sonck, B. Calving and estrus detection in dairy cattle using a combination of indoor localization and accelerometer sensors. Comput. Electron. Agric. 2020, 168, 105153. [Google Scholar] [CrossRef]
- Liseune, A.; Van den Poel, D.; Hut, P.R.; van Eerdenburg, F.J.C.M.; Hostens, M. Leveraging sequential information from multivariate behavioral sensor data to predict the moment of calving in dairy cattle using deep learning. Comput. Electron. Agric. 2021, 191, 106566. [Google Scholar] [CrossRef]
- Sumi, K.; Maw, S.Z.; Zin, T.T.; Tin, P.; Kobayashi, I.; Horii, Y. Activity-integrated hidden markov model to predict calving time. Animals 2021, 11, 385. [Google Scholar] [CrossRef]
- Maw, S.Z.; Zin, T.T.; Tin, P.; Kobayashi, I.; Horii, Y. An Absorbing Markov Chain Model to Predict Dairy Cow Calving Time. Sensors 2021, 21, 6490. [Google Scholar] [CrossRef] [PubMed]
- Keceli, A.S.; Catal, C.; Kaya, A.; Tekinerdogan, B. Development of a recurrent neural networks-based calving prediction model using activity and behavioral data. Comput. Electron. Agric. 2020, 170, 105285. [Google Scholar] [CrossRef]
- Flörcke, C.; Grandin, T.; Flörcke, C.; Grandin, T. Separation Behavior for Parturition of Red Angus Beef Cows. Open J. Anim. Sci. 2014, 4, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Taverne, M.A.M.; Breeveld-Dwarkasing, V.N.A.; Van Dissel-Emiliani, F.M.F.; Bevers, M.M.; De Jong, R.; Van Der Weijden, G.C. Between prepartum luteolysis and onset of expulsion. Domest. Anim. Endocrinol. 2002, 23, 329–337. [Google Scholar] [CrossRef]
- Hiew, M.W.H.; Megahed, A.A.; Horstman, L.A.; Constable, P.D. Clinical utility of plasma progesterone and blood and plasma glucose concentrations in predicting parturition in Holstein cows. J. Dairy Sci. 2020, 103, 5575–5590. [Google Scholar] [CrossRef]
- O’Leary, N.W.; Byrne, D.T.; O’Connor, A.H.; Shalloo, L. Invited review: Cattle lameness detection with accelerometers. J. Dairy Sci. 2020, 103, 3895–3911. [Google Scholar] [CrossRef] [Green Version]
- Gondim, L.F.P.; McAllister, M.M.; Anderson-Sprecher, R.C.; Björkman, C.; Lock, T.F.; Firkins, L.D.; Gao, L.; Fischer, W.R. Transplacental transmission and abortion in cows administered Neospora caninum oocysts. J. Parasitol. 2004, 90, 1394–1400. [Google Scholar] [CrossRef]
- Watanabe, T.; Sakurai, A.; Kitazaki, K. Dairy cattle monitoring using wireless acceleration-sensor networks. Proc. IEEE Sens. 2008, 526–529. [Google Scholar] [CrossRef]
- Stephen, C.; Menzies, D.; Swain, D.; Patison, K.; Corbet, N.; Norman, S. Telemetric monitoring of calving using a novel calf alert device. In Proceedings of the 2019 Society for Theriogenoloy and American College of Theriogenologists Annual Conference, Savannah, GA, USA, 24 July–28 September 2019; Volume 11, p. 449. [Google Scholar]
- Pearson, C.; Lush, L.; González, L.A. Intravaginal Devices and GNSS Collars with Satellite Communication to Detect Calving Events in Extensive Beef Production in Northern Australia. Remote Sens. 2020, 12, 3963. [Google Scholar] [CrossRef]
- Mee, J.F. Managing the dairy cow at calving time. Vet. Clin. Food Anim. Pract. 2004, 20, 521–546. [Google Scholar] [CrossRef]
- Morin, M.P.; Dubuc, J.; Freycon, P.; Buczinski, S. A herd-level study on colostrum management factors associated with the prevalence of adequate transfer of passive immunity in Québec dairy herds. J. Dairy Sci. 2021, 104, 4914–4922. [Google Scholar] [CrossRef] [PubMed]
- Meas, S.; Usui, T.; Ohashi, K.; Sugimoto, C.; Onuma, M. Vertical transmission of bovine leukemia virus and bovine immunodeficiency virus in dairy cattle herds. Vet. Microbiol. 2002, 84, 275–282. [Google Scholar] [CrossRef]
- Donat, K.; Schmidt, M.; Köhler, H.; Sauter-Louis, C. Management of the calving pen is a crucial factor for paratuberculosis control in large dairy herds. J. Dairy Sci. 2016, 99, 3744–3752. [Google Scholar] [CrossRef] [PubMed]
Parameter | Sensor Type | Device | N | Application | TI | Device Performance | Factory | References |
---|---|---|---|---|---|---|---|---|
Activity and leg position | Accelerometer | Gemini Datalogger | 101 | Hind leg | 24 h 1 | Se = 77.8%; Sp = 77.8%; Acc = 77.8% 1 | Gemini Dataloggers Ltd., Chichester, UK (NS) | Proudfoot et al. [25] |
IceTag 3D | 38 | Hind leg | 6 h | n.a. | IceRobotics Ltd., Edinburgh, UK http://www.icerobotics.com | Jensen [26] | ||
IceQube | 132 | Hind leg | 6 h 14 min (range: 2 h–14 h 15 min) >4 h in 76% of cows | n.a. | IceRobotics, Ltd., Edinburgh, UK http://www.icerobotics.com/ | Borchers et al. [27] Titler et al. [28] | ||
Onset Pendant® G | 42 | Hind leg | 24 h | Se = 58%; Sp = 58%; PPV = 34%; NPV = 79%; AUC = 0.60 | Onset Computer Corporation, Bourne, MA https://www.onsetcomp.com/products/data-loggers/ua-004-64/ (NS) | Ouellet et al. [29] | ||
12 h | Se = 52%; Sp = 54%; PPV = 15%; NPV = 88%; AUC = 0.56 | |||||||
6 h | Se = 58%; Sp = 61%; PPV = 10%; NPV = 95%; AUC = 0.61 | |||||||
Eating and rumination | Microphone/ accelerometer | HR-Tag | 27 | Neck collar | 24 h | Se ~70%; Sp ~70% | SCR Engineers, Ltd., Netanya, Israel https://www.allflex.global/ | Clark et al. [30] |
Ruminact™ Hr-Tag | 54 | Neck collar | From 4 h to 2 h | n.a. | SCR Engineers, Ltd., Netanya, Israel https://www.allflex.global/ | Horvàth et al. [31] | ||
Accelerometer | Silent Herdsman® SHM 2 | 110 | Neck collar | 5 h | Dairy cattle Se = 66.7%; Sp = 62.3%; AUC = 68.2% | Afimilk Ltd., Israel www.afimilk.com/ | Miller et al. [32] | |
144 | Beef cattle Se = 70.9%; Sp = 71.5%; AUC = 78.1% | Miller et al. [33] | ||||||
Elecromyography | Dairy-Check | 17 | Noseband | 6 h | n.a. | BITSz Engineering GmbH, Zwickau, Germany http://www.bitsz-electronics.de/ (NS) | Büchel and Sundrum [34] | |
Pressure | ART-MSR | 17 | Noseband | 2 h | n.a. | ART-MSR; Agroscope Reckenholz-Tänikon, Ettenhausen, Switzerland https://www.msr.ch/en/product/special_data_logger/rumination_sensor/ (NS) | Pahl et al. [35] |
Parameter | Sensor Type | Device | N | Application | TI | Device Performance | Factory | References |
---|---|---|---|---|---|---|---|---|
Combination of activity, feeding, rumination and temperature | Accelerometer | RumiWatch | 22 multiparous | Noseband sensor + pedometer | 3 h | Multiparous cows | ITIN + HOCH GmbH, Fütterungstechnik CH-4410 Liestal, Switzerland | Fadul et al. [36] |
Se = 85%; Sp = 74%; | https://www.rumiwatch.com/ | |||||||
AUC = 90.8% | ||||||||
11 primiparous | Primiparous cows | |||||||
Se = 88.9%; Sp = 93.3%; | ||||||||
AUC = 97.7% | ||||||||
RumiWatch | 35 | Noseband sensor | 1 h | Se = 82%; Sp = 87%; | Agroscope, Ettenhausen, Switzerland and Itin + Hoch GmbH, Liestal, Switzerland | Zehner et al. [37] | ||
PPV = 4%; AUC = 82% | https://www.rumiwatch.com/ | |||||||
SensOor | 42 | Ear tag | 24 h | Se = 51%; Sp = 51%; | Agis Automatisering BV, Harmelen, Netherlands | Ouellet et al. [29] | ||
PPV = 27%; NPV = 75%; | https://www.agis.nl/Cowmanager | |||||||
AUC = 0.54 | ||||||||
12 h | Se = 52%; Sp = 55%; | |||||||
PPV = 15%; NPV = 88%; | ||||||||
AUC = 0.60 | ||||||||
6 h | Se = 63%; Sp = 63%; | |||||||
PPV = 11%; NPV = 95%; | ||||||||
AUC = 0.67 | ||||||||
400 | 12 h | Se = 51.5%; Sp = 99.4%; | Rutten et al. [38] | |||||
AUC = 90.1% | ||||||||
6 h | Se = 48.5%; Sp = 99.3%; | |||||||
AUC = 90.1% | ||||||||
3 h | Se = 42.4%; Sp = 99.2%; | |||||||
AUC = 90.1% | ||||||||
1 h | Se = 21.2%; 99.1%; | |||||||
AUC = 90.1% | ||||||||
Smartbow® | 150 | Ear tag | 24 h | Se = 27%; Sp = 96%; | Smartbow GmbH, Weibern, Austria | Krieger et al. [39] | ||
(validation set) | Acc = 92% | https://www.smartbow.com/ | Krieger et al. [40] | |||||
450 | Krieger et al. [41] | |||||||
(validation set) | ||||||||
12 h | Se = 35%; Sp = 95%; | |||||||
Acc = 94% | ||||||||
6 h | Se = 43%; Sp = 95%; | |||||||
Acc = 94% | ||||||||
3 h | Se = 49%; Sp = 95%; | |||||||
Acc = 94% | ||||||||
1 h | Se = 54%; Sp = 95%; | |||||||
Acc = 94% | ||||||||
54 | 4 h 1 | PPV = 12.6% | Horvàth et al. [31] | |||||
Smartbow® | 5 | Ear tag (fixed to the tail) | from 6 to | n.a. | Smartbow GmbH, Weibern, Austria | Horvàth et al. [31] Krieger et al. [41] | ||
121 min | https://www.smartbow.com/ | |||||||
RT-BT-9axisIMU | 3 | Collar | n.a. | n.a. | RT Corporation, Tokyo, Japan | Peng et al. [42] Peng et al. [42] | ||
(NS) |
Parameter | Sensor Type | Device | N | Application | TI | Device Performance | Factory | References |
---|---|---|---|---|---|---|---|---|
Temperature | Rumen temperature | SmartStock | 30 | Rumen bolus | 48–24 h | n.a. | SmartStock, LLC, Pawnee, OK https://www.smartstock-usa.com | Cooper-Prado et al. [43] |
Phase IV | 266 | Rumen bolus | 24 h | Cut-off = −0.2 °C Se = 68–69%; Sp = 67–69%; AUC = 73–74% | Fase IV Ingegneria, Boulder, CO https://www.phaseivengr.com/solutions-demos/animal-health-identification/ | Costa et al. [44] | ||
12 h | Cut-off = −0.2 °C Se = 69–70%; Sp = 64%; AUC = 71–72% | |||||||
Rumen temperature and pH | SmaXtec | 10 | Rumen bolus | Eutocic delivery −0.48 °C at 20 h | n.a. | Animal Care GmbH, Graz, Austria https://smaxtec.com/en/ | Kovàcs et al. [45] | |
8 | Dystocic delivery −0.23 °C at 32 h | |||||||
Vaginal temperature | Minilog II-t | 42 | Vaginal canal | 24 h | Se = 74%; Sp = 74%; PPV = 51%; NPV = 89%; AUC = 0.80 | Vemco Ltd., Halifax, Canada https://support.vemco.com/s/ (NS) | Ouellet et al. [29] | |
12 h | Se = 69%; Sp = 69%; PPV = 26%; NPV = 93%; AUC = 0.74 | |||||||
6 h | Se = 68%; Sp = 67%; PPV = 13%; NPV = 97%; AUC = 0.68 | |||||||
Tail base temperature | Thermistor Prototype: 103JT-025 | 35 22 | Ventral tail surface | 24 h | Se = 80–89%; Sp = 89–91%; PPV = 19–20%; NPV = 99% | SEMITEC Corporation, Tokyo, Japan http://www.semitec.co.jp/english/ (NS) | Koyama et al. [46], Miwa et al. [47] | |
18 h | Se = 83–92%; Sp = 87–88%; PPV = 55–56%; NPV = 97–98% | |||||||
12 h | Se = 84–90%; Sp = 82–85%; PPV = 35–38%; NPV = 98–99% | |||||||
6 h | Se = 83–90%; Sp = 79–82%; PPV = 19–20%; NPV = 99% | |||||||
108 (validation set) | Ventral tail surface + machine learning | 24 h | Se = 84.3%; Pr = 70.5% | Higaki et al. [48] | ||||
Vaginal temperature | Gyuonkei | 625 | Vaginal canal | ~22 h | n.a. | Remote Inc., Oita, Japan http://www.gyuonkei.jp/ | Sakatani et al. [49] | |
Vaginal temperature | Vel’Phone® | 211 | Vaginal canal | 24 h | Cut off = 38.2 °C Se = 86%; Sp = 91%; PPV = 80%; NPV = 88%; AUC = 0.89 Cut off = −0.21 °C Se = 66%; Sp = 76%; PPV = 67%; NPV = 69%; AUC = 0.72 | Medria, Châteaugiron, France https://www.medria.fr/en/solutions/velphone/ | Ricci et al. [50] |
Event | Sensor Type | Device | Application | N | TI | Device Performance | Factory | References |
---|---|---|---|---|---|---|---|---|
Tail movement and raising | Accelerometer/inclinometer | Moocall | Tail base | 12 | 24 h to 3 h | Se = 100%; Sp = 95% Se = 94%; Sp = 77% | Moocall Ltd., Dublin, Ireland https://www.moocall.com/ | Giaretta et al. [51] |
118 * | 24 h | Se = 75%; Sp = 63%; PPV = 56%; NPV = 79% | Voß et al. [52] 1 | |||||
12 h | Se = 69%; Sp = 74%; PPV = 44%; NPV = 89% | |||||||
4 h | Se = 66%; Sp = 89%; PPV = 34%; NPV = 97% | |||||||
2 h | Se = 43%; Sp = 93%; PPV = 21%; NPV = 97% | |||||||
1 h | Se = 19%; Sp = 96%; PPV = 9%; NPV = 98% | |||||||
54 | 4 h 1 | PPV = 12.6% | Horvàth et al. [31] |
Event | Sensor Type | Device | N | Application | TI | Device Performance | Factory | References |
---|---|---|---|---|---|---|---|---|
Vulvar lips separation | Magnetic sensor | Foalert, C6 birth control | 22 80 53 | Vulva (suture) | 0 h | Se = 100; PPV = 95% | Sisteck Srl, Sassuolo, Italy https://www.foalingalarm.net/ | Paolucci et al. [53] Paolucci et al. [54] Marchesi et al. [55] |
Magnetic sensor and GPS collar | GPS-CAL | 26 | Vulva (suture) + neck collar (GPS) | 0 h | Se = 100%; PPV = 100% | Sisteck Srl, Sassuolo, Italy SiRF Technology, San Jose, California, USA | Calcante et al. [56] | |
Device expulsion | Light and temperature | OraNasco® | 120 15 117 83 | Vagina | 0 h | Se = 86.30% | Kronotech Srl, Campoformido, Italy https://www.oranasco.it/ | Palombi et al. [57] Rossi et al. [58] Crociati et al. [59] Crociati et al. [60] |
Light | iVET® | 167 | Vagina | 0 h | Se = 78%; Sp = 93% | iVET®-Geburtsüberwachung für Kühe https://www.nrw-agrar.de/projekt/piloterprobung-des-geburtssensors-ivet-bei-milchkuehen-geburtsueberwachung/ | Henningsen et al. [61] | |
Temperature | Gyuonkei | 625 | Vagina | 0 h | n.a. | Remote Inc., Oita, Japan http://www.gyuonkei.jp/ | Sakatani et al. [49] | |
Temperature | Vel’Phone® | 211 241 | Vagina | 0 h | n.a. | Medria, Châteaugiron, France https://www.medria.fr/en/solutions/velphone/ | Ricci et al. [50] Choukeir et al. [62] | |
54 | 0 h | PPV = 100% | Horvàth et al. [31] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crociati, M.; Sylla, L.; De Vincenzi, A.; Stradaioli, G.; Monaci, M. How to Predict Parturition in Cattle? A Literature Review of Automatic Devices and Technologies for Remote Monitoring and Calving Prediction. Animals 2022, 12, 405. https://doi.org/10.3390/ani12030405
Crociati M, Sylla L, De Vincenzi A, Stradaioli G, Monaci M. How to Predict Parturition in Cattle? A Literature Review of Automatic Devices and Technologies for Remote Monitoring and Calving Prediction. Animals. 2022; 12(3):405. https://doi.org/10.3390/ani12030405
Chicago/Turabian StyleCrociati, Martina, Lakamy Sylla, Arianna De Vincenzi, Giuseppe Stradaioli, and Maurizio Monaci. 2022. "How to Predict Parturition in Cattle? A Literature Review of Automatic Devices and Technologies for Remote Monitoring and Calving Prediction" Animals 12, no. 3: 405. https://doi.org/10.3390/ani12030405