Effects of Extrusion on Energy Contents and Amino Acid Digestibility of Corn DDGS and Full-Fat Rice Bran in Growing Pigs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Diets and Design
2.1.1. Exp. 1
2.1.2. Exp. 2
2.2. Calculations and Statistics Analysis
3. Results
3.1. Exp. 1: Energy Content and Nutrients Digestibility
3.2. Exp. 2: Cannulated Pig Trial
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferket, P.R. Technological advances could make extrusion an economically feasible alternative to pelleting. Feedstuffs 1991, 63, 1. [Google Scholar]
- Hancock, J.; Behnke, K. Use of Ingredient and Diet Processing Technologies (Grinding, Mixing, Pelleting, and Extruding) to Produce Quality Feeds for Pigs; CRC Press: Boca Raton, FL, USA, 2000; pp. 489–518. [Google Scholar]
- Sharif, M.K.; Butt, M.S.; Anjum, F.M.; Khan, S.H. Rice Bran: A Novel Functional Ingredient. Crit. Rev. Food Sci. Nutr. 2014, 54, 807–816. [Google Scholar] [CrossRef] [PubMed]
- Martin, E.A. Strategies to improve the nutritive value of rice bran in poultry diets. IV. Effects of addition of fish meal and a microbial phytase to duckling diets on bird performance and amino acid digestibility. Br. Poult. Sci. 1998, 39, 612–621. [Google Scholar] [CrossRef]
- Ruiz, U.S.; Luna, G.C.; Wang, L.F. Effects of feeding raw, steam-pelleted, or extruded faba bean on diet nutrient and energy di-gestibility and growth performance in weaned pigs. J. Anim. Sci. 2018, 96, 139. [Google Scholar]
- Wondra, K.J.; Hancock, J.D.; Behnke, K.C.; Hines, R.H.; Stark, C.R. Effects of particle size and pelleting on growth performance, nutrient digestibility, and stomach morphology in finishing pigs2. J. Anim. Sci. 1995, 73, 757–763. [Google Scholar] [CrossRef]
- Richert, B.T.; DeRouchey, J.M. Swine feed processing and manufacturing. In National Swine Nutrition Guide; Meisinger, D.J., Ed.; Pork Center of Excellence: Ames, IA, USA, 2010; pp. 245–250. [Google Scholar]
- NRC. Nutrient Requirements of Swine, 11th revised ed.; National Academies Press: Washington, DC, USA, 2012. [Google Scholar]
- Al-Marzooqi, W.; Wiseman, J. Effect of extrusion under controlled temperature and moisture conditions on ileal apparent amino acid and starch digestibility in peas determined with young broilers. Anim. Feed Sci. Technol. 2009, 153, 113–130. [Google Scholar] [CrossRef]
- Gatel, F.; Grosjean, F. Composition and nutritive value of peas for pigs: A review of European results. Livest. Prod. Sci. 1990, 26, 155–175. [Google Scholar] [CrossRef]
- Heyer, C.M.E.; Wang, L.F.; Beltranena, E.; Zijlstra, R.T. Nutrient digestibility of extruded canola meal in ileal-cannulated growing pigs and effects of its feeding on diet nutrient digestibility and growth performance in weaned pigs. J. Anim. Sci. 2021, 99, 1–11. [Google Scholar] [CrossRef]
- Johnston, S.L.; Hines, R.H.; Hancock, J.D.; Behnke, K.C.; Traylor, S.L.; Chae, B.J.; Han, I.K. Effects of Conditioners (Standard, Long-Term and Expander) on Pellet Quality and Growth Performance in Nursery and Finishing Pigs. Asian-Australas. J. Anim. Sci. 1999, 12, 558–564. [Google Scholar] [CrossRef]
- Mujahid, A.; Asif, M.; Haq, I.; Abdullah, M.; Gilani, A.H. Nutrient digestibility of broiler feeds containing different levels of vari-ously processed rice bran stored for different periods. Poult. Sci. 2003, 82, 1438–1443. [Google Scholar] [CrossRef] [Green Version]
- Adeola, O. Digestion and balance techniques in pigs. In Swine Nutrition, 2nd ed.; Lewis, A.J., Southern, L.L., Eds.; CRC Press: Washington, DC, USA, 2001; pp. 903–916. [Google Scholar]
- Stein, H.H.; Sève, B.; Fuller, M.F.; Moughan, P.J.; De Lange, C.F.M. Invited review: Amino acid bioavailability and digestibility in pig feed ingredients: Terminology and application. J. Anim. Sci. 2007, 85, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Zhang, G.; Li, Z.; Liu, L.; Zhang, S.; Li, D. Effects of Different Crude Protein and Dietary Fiber Levels on the Comparative Energy and Nutrient Utilization in Sows and Growing Pigs. Animals 2020, 10, 495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hughes, R.J.; Choct, M. Chemical and physical characteristics of grains related to variability in energy and amino acid availa-bility in poultry. Aust. J. Agric. R. 1999, 50, 689–701. [Google Scholar]
- Marty, B.J.; Chavez, E.R. Effects of heat processing on digestible energy and other nutrient digestibilities of full fat soybeans fed to weaner, grower, and finisher pigs. Can. J. Anim. Sci. 1993, 73, 411–419. [Google Scholar] [CrossRef]
- Said, N.W. Extrusion of Alternative Ingredients: An Environmental and a Nutritional Solution. J. Appl. Poult. Res. 1996, 5, 395–407. [Google Scholar] [CrossRef]
- Huang, B.B.; Sun, Z.Q.; Wang, L. Effects of different defatted rice bran sources and processing technologies on nutrient digesti-bility in cannulated growing pigs. J. Anim. Sci. 2021, 99, 2. [Google Scholar] [CrossRef]
- Xue, P.C.; Ragland, D.; Adeola, O. Determination of additivity of apparent and standardized ileal digestibility of amino acids in diets containing multiple protein sources fed to growing pigs. J. Anim. Sci. 2014, 92, 3937–3944. [Google Scholar] [CrossRef]
- Shi, C.X.; Liu, Z.Y.; Shi, M.; Li, P.; Zeng, Z.K.; Liu, L.; Huang, C.F.; Zhu, Z.P.; Li, D.F. Prediction of Digestible and Metabolizable Energy Content of Rice Bran Fed to Growing Pigs. Asian-Australas. J. Anim. Sci. 2015, 28, 654–661. [Google Scholar] [CrossRef] [Green Version]
- Morgan, D.J.; Cole, D.; Lewis, D. Energy values in pig nutrition: I. The relationship between digestible energy, metabolizable energy and total digestible nutrient values of a range of feedstuffs. J Agric. Sci. 1975, 84, 7. [Google Scholar] [CrossRef]
- Stein, H.H.; Bohlke, R.A. The effects of thermal treatment of field peas (Pisum sativum L.) on nutrient and energy digestibility by growing pigs. J. Anim. Sci. 2007, 85, 1424–1431. [Google Scholar] [CrossRef]
- Rojas, O.J.; Vinyeta, E.; Stein, H.H. Effects of pelleting, extrusion, or extrusion and pelleting on energy and nutrient digestibility in diets containing different levels of fiber and fed to growing pigs. J. Anim. Sci. 2016, 94, 1951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, X.; Slominski, B.A.; Nyachoti, C.M.; Campbell, L.D.; Guenter, W. Degradation of cell wall polysaccharides by combinations of carbohydrase enzymes and their effect on nutrient utilization and broiler chicken performance. Poult. Sci. 2005, 84, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Camire, M.E. Extrusion and nutritional quality. Extrus. Cook. 2001, 4, 108–129. [Google Scholar]
- Htoo, J.K.; Meng, X.; Patience, J.F.; Dugan, M.E.R.; Zijlstra, R.T. Effects of coextrusion of flaxseed and field pea on the digestibility of energy, ether extract, fatty acids, protein, and amino acids in grower-finisher pigs. J. Anim. Sci. 2008, 86, 2942–2951. [Google Scholar] [CrossRef] [Green Version]
- Herkelman, K.L.; Rodhouse, S.L.; Veum, T.L.; Ellersieck, M.R. Effect of extrusion on the ileal and fecal digestibilities of lysine in yellow corn in diets for young pigs. J. Anim. Sci. 1990, 68, 2414–2424. [Google Scholar] [CrossRef] [Green Version]
- Hunt, J.N.; Knox, M.T. A relation between the chain length of fatty acids and the slowing of gastric emptying. J. Physiol. 1968, 194, 327–336. [Google Scholar] [CrossRef]
- Cervantes-Pahm, S.K.; Stein, H.H. Effect of dietary soybean oil and soybean protein concentration on the concentration of di-gestible amino acids in soybean products fed to growing pigs. J. Anim. Sci. 2008, 86, 1841. [Google Scholar] [CrossRef]
- Asp, B.G. The effects of extrusion cooking on nutritional value—A literature review. J. Food Eng. 1983, 2, 281–308. [Google Scholar]
- Oryschak, M.; Korver, D.; Zuidhof, M. Comparative feeding value of extruded and non-extruded wheat and corn distillers dried grains with solubles for broilers. Poult. Sci. 2010, 89, 83–96. [Google Scholar]
- Hultin, H.O. Textural attributes of proteinaceous animal foods as influenced by reactions during food processing. In Role of Chemistry in the Quality of Processed Food; Fennema, O.R., Chang, W.H., Lii, C.Y., Eds.; Food and Nutrition Press: Westport, CN, USA, 1986; pp. 202–224. [Google Scholar]
- de Sousa, M.F.; Guimarães, R.M.; de Oliveira Araújo, M.; Barcelos, K.R.; Carneiro, N.S.; Lima, D.S.; Dos Santos, D.C.; de Aleluia Batista, K.; Fernandes, K.; Egea, M.B.; et al. Characterization of corn (Zea mays L.) bran as a new food ingredient for snack bars. LWT-Food Sci. Technol. 2019, 101, 812–818. [Google Scholar] [CrossRef]
- Riaz, M.N. Selecting the right extruder.Science Direct. In Extrusion Cooking; Elsevier: Amsterdam, The Netherlands, 2001; pp. 29–50. [Google Scholar]
- Imbeah, M.; Sauer, W. The effect of dietary level of fat on amino acid digestibilities in soybean meal and canola meal and on rate of passage in growing pigs. Livest. Prod. Sci. 1991, 29, 227–239. [Google Scholar] [CrossRef]
- Lewis, L.L.; Stark, C.R.; Fahrenholz, A.C.; Bergstrom, J.R.; Jones, C.K. Evaluation of conditioning time and temperature on gelatinized starch and vitamin retention in a pelleted swine diet. J. Anim. Sci. 2015, 93, 615–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Item % | Extruded FFRB | FFRB | Extruded DDGS | DDGS |
---|---|---|---|---|
DM | 93.35 | 92.29 | 91.57 | 87.91 |
OM | 85.00 | 83.75 | 85.85 | 82.47 |
GE, MJ/kg | 20.46 | 19.94 | 20.47 | 19.85 |
CP | 14.70 | 14.09 | 28.70 | 27.25 |
EE | 17.33 | 17.14 | 11.12 | 11.16 |
NDF | 19.61 | 21.02 | 28.53 | 30.98 |
ADF | 7.71 | 8.68 | 8.73 | 9.54 |
Ash | 8.35 | 8.54 | 5.73 | 5.43 |
Indispensable AA | ||||
Arg | 1.01 | 0.98 | 0.99 | 1.04 |
His | 0.35 | 0.35 | 0.73 | 0.67 |
Ile | 0.56 | 0.45 | 1.09 | 0.96 |
Leu | 0.97 | 0.88 | 3.30 | 3.00 |
Lys | 0.67 | 0.68 | 0.86 | 0.79 |
Met | 0.28 | 0.28 | 0.56 | 0.55 |
Phe | 0.63 | 0.59 | 1.33 | 1.25 |
Thr | 0.50 | 0.50 | 1.00 | 0.92 |
Trp | 0.16 | 0.18 | 0.17 | 0.17 |
Val | 0.79 | 0.77 | 1.42 | 1.26 |
Dispensable AA | ||||
Ala | 0.86 | 0.84 | 2.08 | 1.89 |
Asp | 1.15 | 1.15 | 1.69 | 1.58 |
Cys | 0.27 | 0.27 | 0.48 | 0.47 |
Glu | 1.79 | 1.67 | 4.90 | 4.34 |
Gly | 0.74 | 0.72 | 1.06 | 0.98 |
Pro | 0.38 | 0.50 | 1.92 | 1.76 |
Ser | 0.59 | 0.57 | 1.24 | 1.16 |
Tyr | 0.46 | 0.43 | 0.92 | 0.83 |
Item % | Basal Diet | Extruded FFRB | FFRB | Extruded DDGS | DDGS |
---|---|---|---|---|---|
Ingredient composition, as-fed basis | |||||
Corn | 96.90 | 67.83 | 67.83 | 67.83 | 67.83 |
FFRB | - | 29.07 | 29.07 | - | - |
DDGS | - | - | - | 29.07 | 29.07 |
Dicalcium phosphate | 1.70 | 1.70 | 1.70 | 1.70 | 1.70 |
limestone | 0.60 | 0.60 | 0.60 | 0.60 | 0.60 |
Salt | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 |
Vitamin–mineral premix 2 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
Total | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Analyzed composition | |||||
DM | 89.41 | 90.46 | 89.38 | 90.44 | 90.47 |
OM | 85.94 | 84.67 | 83.89 | 86.27 | 85.80 |
GE, MJ/kg | 16.28 | 17.16 | 17.11 | 17.46 | 17.05 |
CP | 8.55 | 10.28 | 9.94 | 14.35 | 14.10 |
EE | 1.00 | 3.93 | 3.42 | 2.30 | 2.50 |
NDF | 9.39 | 11.93 | 12.20 | 15.28 | 15.87 |
ADF | 2.38 | 3.79 | 4.23 | 4.11 | 4.40 |
Ash | 3.46 | 5.79 | 5.50 | 4.97 | 4.65 |
Item % | N-Free | Extruded FFRB | FFRB | Extruded DDGS | DDGS |
---|---|---|---|---|---|
Corn starch | 68.90 | 34.40 | 34.40 | 34.40 | 34.40 |
WRB | - | 40.00 | 40.00 | - | - |
DDGS | - | - | - | 40.00 | 40.00 |
Cellulose acetate | 4.00 | - | - | - | - |
Soybean oil | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 |
Dicalcium phosphate | 1.60 | 1.00 | 1.00 | 1.00 | 1.00 |
Magnesium oxide | 0.10 | - | - | - | - |
limestone | 1.00 | 0.50 | 0.50 | 0.50 | 0.50 |
Salt | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 |
Vitamin–mineral premix 2 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
Chromic oxide | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 |
Total | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Analyzed composition | |||||
CP | 0.96 | 6.25 | 5.76 | 11.25 | 11.00 |
Indispensable AA | |||||
Arg | 0.03 | 0.50 | 0.49 | 0.39 | 0.40 |
His | 0.03 | 0.24 | 0.14 | 0.29 | 0.29 |
FIle | 0.02 | 0.34 | 0.22 | 0.43 | 0.42 |
Leu | 0.06 | 0.49 | 0.39 | 1.34 | 1.24 |
Lys | 0.07 | 0.39 | 0.30 | 0.29 | 0.32 |
Met | 0.01 | 0.12 | 0.11 | 0.22 | 0.21 |
Phe | 0.06 | 0.45 | 0.26 | 0.55 | 0.52 |
Thr | 0.04 | 0.32 | 0.21 | 0.42 | 0.39 |
Trp | 0.01 | 0.06 | 0.06 | 0.07 | 0.07 |
Val | 0.06 | 0.42 | 0.38 | 0.58 | 0.54 |
Dispensable AA | |||||
Ala | 0.05 | 0.59 | 0.38 | 0.84 | 0.79 |
Asp | 0.03 | 0.57 | 0.47 | 0.74 | 0.65 |
Cys | 0.01 | 0.11 | 0.10 | 0.18 | 0.18 |
Glu | 0.06 | 0.84 | 0.73 | 1.97 | 1.85 |
Gly | 0.03 | 0.67 | 0.31 | 0.45 | 0.42 |
Pro | 0.05 | 0.54 | 0.25 | 0.85 | 0.89 |
Ser | 0.04 | 0.57 | 0.25 | 0.51 | 0.49 |
Tyr | 0.04 | 0.38 | 0.17 | 0.38 | 0.38 |
Items | Main Effect | SEM | p-Values | |||||
---|---|---|---|---|---|---|---|---|
FFRB | DDGS | Extruded | Non-Extruded | Processing | Ingredient Type | Interaction | ||
DE | 14.55 | 15.14 | 15.86 | 13.84 | 0.38 | <0.01 | 0.39 | 0.35 |
ME | 14.21 | 14.39 | 15.24 | 13.36 | 0.37 | <0.01 | 0.37 | 0.91 |
ME/DE | 0.97 | 0.94 | 0.96 | 0.95 | 0.01 | 0.52 | 0.07 | 0.17 |
ATTD, % | ||||||||
GE | 74.82 | 73.33 | 78.60 | 69.55 | 1.92 | <0.01 | 0.57 | 0.14 |
DM | 62.28 | 65.04 | 66.55 | 60.77 | 1.54 | 0.02 | 0.93 | 0.39 |
OM | 66.61 | 66.12 | 69.31 | 63.41 | 1.51 | 0.01 | 0.23 | 0.35 |
CP | 57.41 | 72.82 | 68.54 | 61.69 | 2.88 | 0.06 | 0.02 | 0.41 |
NDF | 27.56 | 49.28 | 41.79 | 35.04 | 3.49 | 0.02 | <0.01 | 0.24 |
ADF | 21.75 | 48.25 | 37.77 | 32.24 | 3.85 | 0.07 | <0.01 | 0.20 |
Items | Main Effect | SEM | p-Values | |||||
---|---|---|---|---|---|---|---|---|
FFRB | DDGS | Extruded | Non-Extruded | Processing | Ingredient Type | Interaction | ||
CP | 60.16 | 57.91 | 60.79 | 57.28 | 2.98 | 0.42 | 0.34 | 0.36 |
Indispensable AA | ||||||||
Arg | 72.66 | 61.73 | 69.55 | 64.86 | 1.95 | 0.32 | <0.01 | 0.53 |
His | 68.84 | 71.75 | 75.49 | 65.09 | 1.62 | <0.01 | 0.06 | <0.01 |
Ile | 65.01 | 75.43 | 71.64 | 68.81 | 1.47 | 0.33 | <0.01 | 0.46 |
Leu | 71.31 | 83.95 | 84.45 | 70.81 | 2.22 | <0.01 | <0.01 | <0.01 |
Lys | 66.64 | 48.67 | 62.08 | 53.24 | 3.04 | 0.01 | <0.01 | <0.01 |
Met | 70.94 | 82.16 | 79.59 | 73.51 | 1.52 | <0.01 | <0.01 | <0.01 |
Phe | 72.60 | 78.85 | 83.95 | 67.50 | 2.36 | <0.01 | <0.01 | <0.01 |
Thr | 55.27 | 62.15 | 64.65 | 52.78 | 2.20 | <0.01 | 0.01 | <0.01 |
Trp | 55.72 | 49.74 | 53.19 | 52.28 | 2.52 | 0.58 | 0.65 | 0.17 |
Val | 74.77 | 71.86 | 79.32 | 67.31 | 1.77 | <0.01 | 0.06 | <0.01 |
Dispensable AA | ||||||||
Ala | 66.63 | 74.78 | 77.73 | 63.67 | 2.13 | <0.01 | <0.01 | <0.01 |
Asp | 66.48 | 63.70 | 73.80 | 56.39 | 2.56 | <0.01 | 0.44 | <0.01 |
Cys | 48.70 | 60.50 | 56.89 | 52.33 | 2.15 | 0.35 | <0.01 | <0.01 |
Glu | 74.22 | 80.82 | 83.59 | 71.45 | 1.81 | <0.01 | <0.01 | <0.01 |
Gly | 49.95 | 34.67 | 46.21 | 38.41 | 3.46 | 0.01 | 0.04 | 0.20 |
Ser | 63.71 | 69.05 | 74.85 | 57.91 | 2.57 | <0.01 | 0.01 | <0.01 |
Tyr | 71.63 | 79.69 | 82.29 | 69.03 | 2.11 | <0.01 | <0.01 | <0.01 |
Items | Main Effect | SEM | p-Values | |||||
---|---|---|---|---|---|---|---|---|
FFRB | DDGS | Extruded | Non-Extruded | Processing | Ingredient Type | Interaction | ||
CP | 70.22 | 75.86 | 74.51 | 71.57 | 2.16 | 0.47 | 0.10 | 0.32 |
Arg | 87.19 | 80.82 | 85.96 | 82.05 | 1.68 | 0.41 | 0.06 | 0.20 |
His | 86.75 | 82.44 | 87.54 | 81.66 | 1.33 | 0.07 | 0.04 | 0.55 |
Ile | 84.19 | 86.25 | 86.06 | 84.38 | 0.97 | 0.74 | 0.21 | 0.83 |
Leu | 85.76 | 90.11 | 92.10 | 83.77 | 1.22 | <0.01 | <0.01 | <0.01 |
Lys | 82.12 | 68.25 | 77.86 | 72.51 | 2.47 | 0.2 | <0.01 | 0.02 |
Met | 77.64 | 86.05 | 84.57 | 79.12 | 1.24 | <0.01 | <0.01 | 0.07 |
Phe | 84.26 | 87.49 | 90.96 | 80.79 | 1.54 | <0.01 | 0.03 | <0.01 |
Thr | 84.88 | 82.26 | 84.87 | 82.27 | 1.54 | 0.75 | 0.42 | 0.71 |
Trp | 79.23 | 71.45 | 74.98 | 75.70 | 2.88 | 0.43 | 0.36 | 0.78 |
Val | 87.74 | 84.12 | 89.21 | 82.64 | 1.24 | <0.01 | 0.01 | <0.01 |
Ala | 83.42 | 85.50 | 88.60 | 80.32 | 1.41 | 0.01 | 0.34 | 0.32 |
Asp | 81.81 | 78.78 | 85.19 | 75.40 | 1.83 | <0.01 | 0.2 | 0.01 |
Cys | 71.72 | 73.84 | 74.03 | 71.53 | 1.66 | 0.88 | 0.38 | 0.18 |
Glu | 88.05 | 88.28 | 91.59 | 84.73 | 1.14 | <0.01 | 0.83 | 0.26 |
Gly | 72.41 | 64.91 | 74.70 | 62.62 | 3.94 | 0.30 | 0.59 | 0.84 |
Ser | 84.39 | 83.85 | 88.09 | 80.16 | 1.57 | 0.03 | 0.71 | 0.16 |
Tyr | 85.47 | 88.63 | 90.80 | 83.30 | 1.26 | <0.01 | <0.01 | <0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Zhang, G.; Zhang, S.; Zhao, J. Effects of Extrusion on Energy Contents and Amino Acid Digestibility of Corn DDGS and Full-Fat Rice Bran in Growing Pigs. Animals 2022, 12, 579. https://doi.org/10.3390/ani12050579
Zhang Z, Zhang G, Zhang S, Zhao J. Effects of Extrusion on Energy Contents and Amino Acid Digestibility of Corn DDGS and Full-Fat Rice Bran in Growing Pigs. Animals. 2022; 12(5):579. https://doi.org/10.3390/ani12050579
Chicago/Turabian StyleZhang, Zeyu, Ge Zhang, Shuai Zhang, and Jinbiao Zhao. 2022. "Effects of Extrusion on Energy Contents and Amino Acid Digestibility of Corn DDGS and Full-Fat Rice Bran in Growing Pigs" Animals 12, no. 5: 579. https://doi.org/10.3390/ani12050579
APA StyleZhang, Z., Zhang, G., Zhang, S., & Zhao, J. (2022). Effects of Extrusion on Energy Contents and Amino Acid Digestibility of Corn DDGS and Full-Fat Rice Bran in Growing Pigs. Animals, 12(5), 579. https://doi.org/10.3390/ani12050579