Military Working Dogs Operating in Afghanistan Theater: Comparison between Pre- and Post-Mission Blood Analyses to Monitor Physical Fitness and Training
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Queiroz, R.W.; Silva, V.L.; Rocha, D.R.; Costa, D.S.; Turco, S.H.N.; Silva, M.T.B.; Santos, A.A.; Oliveira, M.B.L.; Pereira, A.S.R.; Palheta-Junior, R.C. Changes in cardiovascular performance, biochemistry, gastric motility and muscle temperature induced by acute exercise on a treadmill in healthy military dogs. J. Anim. Physiol. Anim. Nutr. 2018, 102, 122–130. [Google Scholar] [CrossRef] [Green Version]
- Lazarowski, L.; Waggoner, L.P.; Krichbaum, S.; Singletary, M.; Haney, P.; Rogers, B.; Angle, C. Selecting Dogs for Explosives Detection: Behavioral Characteristics. Front. Vet. Sci. 2020, 7, 597. [Google Scholar] [CrossRef] [PubMed]
- Menchetti, L.; Guelfi, G.; Speranza, R.; Carotenuto, P.; Moscati, L.; Diverio, S. Benefits of dietary supplements on the physical fitness of German Shepherd dogs during a drug detection training course. PLoS ONE 2019, 14, e0218275. [Google Scholar] [CrossRef] [Green Version]
- Ensminger, J. Police and Military Dogs; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Tamimi, N.S.M.; Wali, A.A. Health problems of Iraqi police dogs referred to Baghdad Veterinary Hospital during 2015–2017. Vet. World 2019, 12, 1046–1051. [Google Scholar] [CrossRef] [PubMed]
- Woodward, R.; Jenkings, K.N. ’This place isn’t worth the left boot of one of our boys’: Geopolitics, militarism and memoirs of the Afghanistan war. Polit. Geogr. 2012, 31, 495–508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gou, X.; Wang, Z.; Li, N.; Qiu, F.; Xu, Z.; Yan, D.; Yang, S.; Jia, J.; Kong, X.; Wei, Z.; et al. Whole-genome sequencing of six dog breeds from continuous altitudes reveals adaptation to high-altitude hypoxia. Genome Res. 2014, 24, 1308–1315. [Google Scholar] [CrossRef] [Green Version]
- Beall, C.M. Two routes to functional adaptation: Tibetan and Andean high-altitude natives. Proc. Natl. Acad. Sci. USA 2007, 104, 8655–8660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelly, J.F.; Ritenour, A.E.; McLaughlin, D.F.; Bagg, K.A.; Apodaca, A.N.; Mallak, C.T.; Pearse, L.; Lawnick, M.M.; Champion, H.R.; Wade, C.E.; et al. Injury severity and causes of death from Operation Iraqi Freedom and Operation Enduring Freedom: 2003–2004 versus 2006. J. Trauma 2008, 64, 21–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toffoli, C.A.; Rolfe, D.S. Challenges to Military Working Dog Management and Care in the Kuwait Theater of Operation. Mil. Med. 2006, 171, 1002–1005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, E.; Choi, J.H.; Jeong, H.J.; Hwang, S.G.; Lee, S.; Oh, J.W. Hematologic and serologic status of military working dogs given standard T diet containing natural botanical supplements. Toxicol. Rep. 2018, 5, 343–347. [Google Scholar] [CrossRef] [PubMed]
- Mey, W.; Schuh-Renner, A.; Anderson, M.K.; Stevenson-LaMartina, H.; Grier, T. Risk factors for injury among military working dogs deployed to Iraq. Prev. Vet. Med. 2020, 176, 104911. [Google Scholar] [CrossRef]
- Jennings, P.B., Jr. Veterinary care of the Belgian Malinois military working dog. Mil. Med. 1991, 156, 36–38. [Google Scholar] [CrossRef] [PubMed]
- Leighton, E.A.; Linn, J.M.; Willham, R.L.; Castleberry, M.W. A genetic study of canine hip dysplasia. Am. J. Vet. Res. 1997, 38, 241–244. [Google Scholar]
- Takara, M.S.; Harrell, K. Noncombat-related injuries or illnesses incurred by military working dogs in a combat zone. J. Am. Vet. Med. Assoc. 2014, 245, 1124–1128. [Google Scholar] [CrossRef]
- Baker, J.L.; Havas, K.A.; Miller, L.A.; Lacy, W.A.; Schlanser, J. Gunshot wounds in military working dogs in Operation Enduring Freedom and Operation Iraqi Freedom: 29 cases (2003–2009). J. Vet. Emerg Crit. Care 2013, 23, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Prezant, D.J.; Weiden, M.; Banauch, G.I.; McGuinness, G.; Rom, W.N.; Aldrich, T.K.; Kelly, K.J. Cough and bronchial responsiveness in firefighters at the World Trade Center site. N. Engl. J. Med. 2002, 347, 806–815. [Google Scholar] [CrossRef]
- Grassato, L.; Drudi, D.; Pinna, S.; Valentini, S.; Diana, A.; Spinella, G. Shoulder Lameness in Dogs: Preliminary Investigation on Ultrasonography, Signalment and Hemato-Biochemical Findings Correlation. Front. Vet. Sci. 2019, 6, 229. [Google Scholar] [CrossRef] [PubMed]
- Glickman, L.T.; Lantz, G.C.; Schellenberg, D.B.; Glickman, N.W. A prospective study of survival and recurrence following the acute gastric dilatation-volvulus syndrome in 136 dogs. J. Am. Anim. Hosp. Assoc. 1998, 34, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Rovira, S.; Munoz, A.; Benito, M. Effect of exercise on physiological, blood and endocrine parameters in search and rescue-trained dogs. Vet. Med. 2008, 53, 333–346. [Google Scholar] [CrossRef] [Green Version]
- Spoo, J.W.; Zoran, D.L.; Downey, R.L.; Bischoff, K.; Wakshlag, J.J. Serum biochemical, blood gas and antioxi- dant status in search and rescue dogs before and after simulated fieldwork. Vet. J. 2015, 206, 47–53. [Google Scholar] [CrossRef]
- Sneddon, J.C.; Minnaar, P.P.; Grosskopf, J.F.; Groeneveld, H.T. Physiological and blood biochemical responses to submaximal treadmill exercise in Canaan dogs before, during and after training. J. S Afr. Vet. Assoc. 1989, 60, 87–91. [Google Scholar] [PubMed]
- Rovira, S.; Muñoz, A.; Benito, M. Hematologic and biochemical changes during canine agility competitions. Vet. Clin. Pathol. 2007, 36, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Ober, J.; Gillette, R.L.; Graig Angle, T.; Haney, P.; Fletcher, D.J.; Wakshlag, J.J. The Effects of Varying Concentrations of Dietary Protein and Fat on Blood Gas, Hematologic Serum Chemistry, and Body Temperature Before and After Exercise in Labrador Retrievers. Front. Vet. Sci 2016, 3, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finsterer, J. Biomarkers of muscle fatigue during exercise. Clin. Neurophysiol. 2016, 127, e24. [Google Scholar] [CrossRef]
- Brancaccio, P.; Lippi, G.; Maffulli, N. Biochemical markers of muscular damage. Clin. Chem. Lab. Med. 2010, 48, 757–767. [Google Scholar] [CrossRef] [PubMed]
- Cerqueira, J.A.; Restan, W.A.Z.; Fonseca, M.G.; Catananti, L.A.; de Almeida, M.L.M.; Feringer, W.H., Jr.; Pereira, G.T.; Carciofi, A.C.; De Camargo Ferraz, G. Intense exercise and endurance-training program influence serum kinetics of muscle and cardiac biomarkers in dogs. Res. Vet. Sci. 2018, 121, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Koch, A.J.; Pereira, R.; Machado, M. The creatine kinase response to resistance exercise. J. Musculoskelet Neuronal Interact 2014, 14, 68–77. [Google Scholar] [PubMed]
- Aktas, M.; Auguste, D.; Lefebrve, H.P.; Toutain, P.L.; Braun, J.P. Creatine kinase in the dog: A review. Vet. Res. Commun. 1993, 17, 353–369. [Google Scholar] [CrossRef]
- Chanoit, G.P.; Lefebvre, H.P.; Orcel, K.; Laroute, V.; Toutain, P.L.; Braun, J.P. Use of plasma creatine kinase pharmacokinetics to estimate the amount of exercise-induced muscle damage in Beagles. Am. J. Vet. Res. 2001, 62, 1375–1380. Available online: papers2://publication/uuid/4CB3372F-162A-49C7-947E-75FBAAB6DC84 (accessed on 15 January 2022). [CrossRef]
- Spinella, G.; Valentini, S.; Musella, V.; Bortolotti, E.; Lopedote, M. Clinical Evaluation of Creatine Kinase and Aspartate Aminotransferase for Monitoring Muscle Effort in Working Dogs in Different Simulated Fieldworks. Animals 2021, 11, 1879. [Google Scholar] [CrossRef] [PubMed]
- Diverio, S.; Barbato, O.; Cavallina, R.; Guelfi, G.; Iaboni, M.; Zasso, R.; Di Mari, W.; Santoro, M.M.; Knowles, T.G. A simulated avalanche search and rescue mission induces temporary physiological and behavioural changes in military dogs. Physiol. Behav. 2016, 163, 193–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kraemer, W.J.; Volek, J.S.; Spiering, B.A.; Vingren, J.L. L-carnitine supplementation: A new paradigm for its role in exercise. Monatshefte fur Chemie 2005, 13, 1383–1390. [Google Scholar] [CrossRef]
- Spadari, A.; Spinella, G.; Morini, M.; Romagnoli, N.; Valentini, S. Sartorius muscle contracture in a German Shepherd Dog. Vet. Surg. 2008, 37, 149–152. [Google Scholar] [CrossRef] [PubMed]
- Bartsch, P.; Saltin, B. General introduction to altitude adaptation and mountain sickness. Scand. J. Med. Sci. Sports 2008, 18, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Vetlabor. Available online: www.vetlabor.com/files/EMOCROMO_COMPLETO.pdf (accessed on 19 January 2022).
Parameter | Pre-Mission | Post-Mission | ||||
---|---|---|---|---|---|---|
Registered Cases | Mean | SD | Registered Cases | Mean | SD | |
WBC (103/mm3) | 44 | 7.9173 | 1.8421 | 49 | 7.5569 | 2.2657 |
RBC (103/mm3) | 44 | 7.5873 | 0.8982 | 51 | 7.4582 | 0.8296 |
HGB (%) | 44 | 16.8973 | 2.3405 | 52 | 17.4023 | 2.2678 |
HCT (%) | 44 | 51.1945 | 6.5800 | 52 | 51.1256 | 5.6880 |
PLT (103/mm3) | 42 | 273.6429 | 114.8256 | 50 | 253.6200 | 74.8876 |
MCV (fL) | 42 | 82.7588 | 93.8252 | 47 | 66.4785 | 9.4234 |
MCH (pg) | 42 | 23.1188 | 2.0549 | 47 | 24.5523 | 8.9462 |
MCHC (%) | 42 | 33.9307 | 2.9219 | 47 | 34.2740 | 2.3454 |
RDW (%) | 41 | 14.8405 | 1.4370 | 46 | 15.4028 | 2.5762 |
MPV (fL) | 40 | 9.3310 | 1.8348 | 44 | 9.0211 | 1.6699 |
LYM (103/mm3) | 43 | 1.6630 | 0.6576 | 50 | 1.5382 | 0.6822 |
MON (103/mm3) | 43 | 0.3712 | 0.2163 | 51 | 0.4859 | 0.5266 |
GRA (103/mm3) | 41 | 6.0290 | 1.4038 | 50 | 5.3928 | 1.7960 |
GLU (mg/dL) | 16 | 84.6875 | 15.3089 | 20 | 91.750 | 9.0895 |
BUN (mg/dL) | 23 | 26.96 | 15.426 | 32 | 24.31 | 13.881 |
CREA (mg/dL) | 22 | 1.155 | 0.1862 | 30 | 1.1217 | 0.2606 |
AST (U/L) | 19 | 26.79 | 13.624 | 29 | 31.31 | 15.421 |
ALT (U/L) | 17 | 62.823 | 45.2372 | 32 | 58.125 | 42.6552 |
TP (g/dL) | 21 | 6.3238 | 0.5804 | 32 | 6.4406 | 0.5874 |
ALB (g/dL) | 19 | 2.6321 | 0.5537 | 32 | 2.8450 | 0.4889 |
tCHOL (mg/dL) | 15 | 274.13 | 66.666 | 20 | 268.45 | 72.610 |
AMY (U/L) | 9 | 785.67 | 74.024 | 9 | 714.44 | 229.145 |
GGT (U/L) | 11 | 12.73 | 7.115 | 8 | 7.13 | 5.111 |
CK (U/L) | 7 | 209.43 | 145.305 | 11 | 124.82 | 68.353 |
tBIL (mg/dL) | 12 | 0.3942 | 0.1889 | 13 | 0.2785 | 0.0950 |
LDH (U/L) | 10 | 220.40 | 215.883 | 17 | 102.71 | 56.167 |
ALP (U/L) | 10 | 43.30 | 18.031 | 17 | 52.41 | 27.543 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spinella, G.; Tidu, L.; Grassato, L.; Musella, V.; Matarazzo, M.; Valentini, S. Military Working Dogs Operating in Afghanistan Theater: Comparison between Pre- and Post-Mission Blood Analyses to Monitor Physical Fitness and Training. Animals 2022, 12, 617. https://doi.org/10.3390/ani12050617
Spinella G, Tidu L, Grassato L, Musella V, Matarazzo M, Valentini S. Military Working Dogs Operating in Afghanistan Theater: Comparison between Pre- and Post-Mission Blood Analyses to Monitor Physical Fitness and Training. Animals. 2022; 12(5):617. https://doi.org/10.3390/ani12050617
Chicago/Turabian StyleSpinella, Giuseppe, Lorenzo Tidu, Lisa Grassato, Vincenzo Musella, Micheletino Matarazzo, and Simona Valentini. 2022. "Military Working Dogs Operating in Afghanistan Theater: Comparison between Pre- and Post-Mission Blood Analyses to Monitor Physical Fitness and Training" Animals 12, no. 5: 617. https://doi.org/10.3390/ani12050617
APA StyleSpinella, G., Tidu, L., Grassato, L., Musella, V., Matarazzo, M., & Valentini, S. (2022). Military Working Dogs Operating in Afghanistan Theater: Comparison between Pre- and Post-Mission Blood Analyses to Monitor Physical Fitness and Training. Animals, 12(5), 617. https://doi.org/10.3390/ani12050617