In Its Southern Edge of Distribution, the Tawny Owl (Strix aluco) Is More Sensitive to Extreme Temperatures Than to Rural Development
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Survey
2.3. Species Distribution Model
2.4. Nesting Survey
2.5. Ontogenetic Survey
2.6. Diet Analysis
2.7. Statistical Analysis
2.8. Relative Fitness in Warm Edge Populations
3. Results
3.1. Species Distribution Model
3.2. Nesting Success
3.3. Juvenile Survival and Ontogeny
3.4. Diet Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hampe, A.; Petit, R.J. Conserving Biodiversity under Climate Change: The Rear Edge Matters. Ecol. Lett. 2005, 8, 461–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinitz, H. The Effects of Global Climate Change on the Distribution of Terrestrial Mammals in Israel. Ph.D. Thesis, Tel Aviv University, Tel Aviv, Israel, 2010. [Google Scholar]
- BirdLife International. Strix aluco. The IUCN Red List of Threatened Species 2016: e.T22725469A86871093. 2016. Available online: http://dx.doi.org/10.2305/IUCN.UK.2016-3.RLTS.T22725469A86871093.en (accessed on 14 February 2022).
- Gryz, J.; Chojnacka-Ożga, L.; Krauze-Gryz, D. Long-Term Stability of Tawny Owl (Strix aluco) Population Despite Varying Environmental Conditions—A Case Study from Central Poland. Pol. J. Ecol. 2019, 67, 75–83. [Google Scholar] [CrossRef]
- Schaffer, G.; Levin, N. Mapping Human Induced Landscape Changes in Israel Between the End of the 19th Century and the Beginning of the 21th Century. J. Landsc. Ecol. 2014, 7, 110–145. [Google Scholar] [CrossRef] [Green Version]
- Yosef, Y.; Baharad, A.; Uzan, L.; Osetinsky-Tzidaki, I.; Carmona, I.; Halfon, N.; Furshpan, A.; Levi, Y.; Stav, N. Climate Change in Israel—Historical Trends and Future Predictions of Temperature and Precipitation; Research Report; Israel Meteorological Service: Beit Dagan, Israel, 2019; No. 4000-0804-2019-0000075. [Google Scholar]
- Yosef, Y.; Baharad, A.; Uzan, L.; Furshpan, A.; Levi, Y. Israel Temperature Projections by 2100; Research Report; Israel Meteorological Service: Beit Dagan, Israel, 2020; No. 4000-0802-2020-0000044. [Google Scholar]
- Shirihai, H. The Birds of Israel; Academic Press: London, UK, 1996. [Google Scholar]
- International Union for Conservation of Nature. IUCN Red List Categories and Criteria: Version 3.1, 2nd ed.; IUCN: Gland, Switzerland; Cambridge, UK, 2012. [Google Scholar]
- Guillera-Arroita, G.; Lahoz-Monfort, J.J.; Elith, J.; Gordon, A.; Kujala, H.; Lentini, P.E.; McCarthy, M.A.; Tingley, R.; Wintle, B.A. Is My Species Distribution Model Fit for Purpose? Matching Data and Models to Applications. Glob. Ecol. Biogeogr. 2015, 24, 276–292. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Dudík, M.; Schapire, R.E.; Blair, M.E. Opening the Black Box: An Open-Source Release of Maxent. Ecography 2017, 40, 887–893. [Google Scholar] [CrossRef]
- Sohl, T.L. The Relative Impacts of Climate and Land-Use Change on Conterminous United States Bird Species from 2001 to 2075. PLoS ONE 2014, 9, e112251. [Google Scholar] [CrossRef] [PubMed]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very High Resolution Interpolated Climate Surfaces for Global Land Areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Comay, O.; Dayan, T. What Determines Prey Selection in Owls? Roles of Prey Traits, Prey Class, Environmental Variables, and Taxonomic Specialization. Ecol. Evol. 2018, 8, 3382–3392. [Google Scholar] [CrossRef] [PubMed]
- Yackulic, C.B.; Chandler, R.; Zipkin, E.F.; Royle, J.A.; Nichols, J.D.; Campbell Grant, E.H.; Veran, S. Presence-Only Modelling Using MAXENT: When Can We Trust the Inferences? Methods Ecol. Evol. 2013, 4, 236–243. [Google Scholar] [CrossRef]
- Radosavljevic, A.; Anderson, R.P. Making Better Maxent Models of Species Distributions: Complexity, Overfitting and Evaluation. J. Biogeogr. 2014, 41, 629–643. [Google Scholar] [CrossRef]
- Merow, C.; Smith, M.J.; Silander, J.A., Jr. A Practical Guide to MaxEnt for Modeling Species’ Distributions: What It Does, and Why Inputs and Settings Matter. Ecography 2013, 36, 1058–1069. [Google Scholar] [CrossRef]
- Paz, U. Birds. In The Plants and Animals of the Land of Israel; Ministry of Defence/The Publishing House, Society for the Protection of Nature: Ramat Gan, Israel, 1986; Volume 6. [Google Scholar]
- Mendelssohn, H.; Yom-Tov, Y. Mammals; Ministry of Defence/The Publishing House, Society for the Protection of Nature: Ramat Gan, Israel, 1988; Volume 7. [Google Scholar]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Krivoruchko, K. Spatial Statistical Data Analysis for GIS Users; ESRI Press: Redlands, CA, USA, 2011. [Google Scholar]
- Hiemstra, P.; Pebesma, E.; Twenhöfel, C.; Heuvelink, G. Real-Time Automatic Interpolation of Ambient Gamma Dose Rates from the Dutch Radioactivity Monitoring Network. Comput. Geosci. 2009, 35, 1711–1721. [Google Scholar] [CrossRef]
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Springer: New York, NY, USA, 2002; ISBN 0-387-95457-0. [Google Scholar]
- Cramp, S. Handbook of the Birds of Europe, the Middle East and North Africa: The Birds of the Western Palearctic; Oxford University Press: Oxford, UK, 1985. [Google Scholar]
- Bruce, M.D. Family Tytonidae (Barn-Owls). In Handbook of the Birds of the World; Del Holyo, J., Elliot, A., Sargal, J., Eds.; Lynx Edicions: Barcelona, Spain, 1999; pp. 34–75. [Google Scholar]
- Luka, V.; Riegert, J. Apodemus Mice as the Main Prey That Determines Reproductive Output of Tawny Owl (Strix aluco) in Central Europe. Popul. Ecol. 2018, 60, 237–249. [Google Scholar] [CrossRef]
- Arnon, I. Plants and animals in the service of mankind. In Plants and Animals of the Land of Israel: An Illustrated Encyclopedia; Ministry of Defence/The Publishing House, Society for the Protection of Nature: Ramat Gan, Israel, 1988; Volume 12. [Google Scholar]
- Southern, H.N. Tawny Owls and Their Prey. Ibis 1954, 96, 384–410. [Google Scholar] [CrossRef]
- Obuch, J. Spatial and Temporal Diversity of the Diet of the Tawny Owl (Strix aluco). Raptor J. 2011, 5, 1–120. [Google Scholar] [CrossRef]
- Amori, G. Microtus guentheri. The IUCN Red List of Threatened Species 2016: e.T13463A115518923. 2016. Available online: http://dx.doi.org/10.2305/IUCN.UK.2016-3.RLTS.T13463A22349143.en (accessed on 14 February 2022).
- Israel Meteorological Service. Israel Meteorological Service Database. Updates Daily 2017. Available online: https://ims.data.gov.il/ims/1 (accessed on 14 February 2022).
- Hulme-Beaman, A.; Dobney, K.; Cucchi, T.; Searle, J.B. An Ecological and Evolutionary Framework for Commensalism in Anthropogenic Environments. Trends Ecol. Evol. 2016, 31, 633–645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solonen, T.; af Ursin, K. Breeding of Tawny Owls Strix aluco in Rural and Urban Habitats in Southern Finland. Bird Study 2008, 55, 216–221. [Google Scholar] [CrossRef] [Green Version]
- Hardy, E. A Handlist of the Birds of Palestine; Education Officer-in-Chief, GHQ Middle East Forces, Office of the Command Education Officer, British Troops: North Levant, Palestine and Transjordan, 1946. [Google Scholar]
- Israel Meteorological Service. Climate Changes in Israel; The Findings of Israel Meteorological Service; Israel Meteorological Service: Beit Dagan, Isreael, 2015. [Google Scholar]
- Adar, M. Birds in Jerusalem: A Summary of Observations in the Years 1975–1981; The Society for the Protection of Nature in Israel, Birding Class; The Ministry of Education and Culture, Youth Department, Unit for Israel Geography and Field Studies: Jerusalem, Israel, 1982. [Google Scholar]
- Ranazzi, L.; Manganro, A.; Salvati, L. The Breeding Success of Tawny Owls (Strix aluco) in a Mediterranean Area: A Long-Term Study in Urban Rome. J. Raptor Res. 2000, 34, 322–326. [Google Scholar]
- Gryz, J.; Krauze-Gryz, D. Influence of Habitat Urbanisation on Time of Breeding and Productivity of Tawny Owl (Strix aluco). Pol. J. Ecol. 2018, 66, 153–161. [Google Scholar] [CrossRef]
MaxEnt Model | Training Latitudinal Ranges | Training Observations | Test Latitudinal Ranges | Test Observations |
---|---|---|---|---|
Model A | 32.981°–33.13° N | 94 | 32.9°–32.981° N | 32 |
Model B | 32.981°–32.98° N 33.021°–33.13° N | 95 | 32.981°–33.021° N | 31 |
Model C | 32.9°–33.021° N 33.047°–33.13° N | 95 | 33.021°–33.047° N | 31 |
Model D | 32.9°–33.047° N | 94 | 33.047°–33.13° N | 32 |
Combined | 32.9°–33.3° N | 126 | - | - |
Dataset | N | Eggs | Fledglings | ||||
---|---|---|---|---|---|---|---|
Mean ± SD | Mode | Max | Mean ± SD | Mode | Max | ||
No. of eggs laid is known and >0 | 105 | 3.152 ± 0.959 | 3 | 6 | 1.686 ± 1.470 | 0 | 5 |
At least 1 fledgling * | 110 | 3.373 ± 0.671 | 3 | 5 | 2.391 ± 0.889 | 2 | 5 |
At least one egg or at least one fledgling * | 148 | - | - | - | 1.777 ± 1.298 | 2 | 5 |
Nesting Year | 87′ | 88′ | 89′ | 90′ | 91′ | 92′ | 93′ | 94′ | 95′ | 96′ | Total |
---|---|---|---|---|---|---|---|---|---|---|---|
Sites surveyed for eggs | 5 | 30 | 47 | 40 | 42 | 26 | 22 | 19 | 20 | 17 | 268 |
Nests where the no. of eggs laid is known and >0 (% of surveyed) | 5 (100%) | 15 (50%) | 16 (34%) | 14 (35%) | 14 (33%) | 2 (8%) | 10 (45%) | 7 (37%) | 9 (45%) | 13 (76%) | 105 (39%) |
At least 1 hatchling * | 0 | 9 | 6 | 10 | 9 | 2 | 8 | 5 | 6 | 12 | 67 |
Mean clutch size ± standard deviation * | 3.0 ± 1.4 | 3.1 ± 1.0 | 3.1 ± 1.5 | 3.1 ± 1.2 | 3.1 ± 0.6 | 2.5 ± 0.7 | 3.3 ± 0.5 | 3.1 ± 0.4 | 3.1 ± 0.9 | 3.4 ± 0.7 | 3.2 ± 1.0 |
Mean brood size ± standard deviation * | 0 ± 0.0 | 1.7 ± 1.7 | 1.0 ± 1.5 | 2.1 ± 1.5 | 1.6 ± 1.5 | 1.5 ± 0.7 | 1.7 ± 1.2 | 2.0 ± 1.5 | 1.9 ± 1.5 | 2.5 ± 1.1 | 1.7 ± 1.5 |
Total fledglings * | 0 | 25 | 17 | 29 | 22 | 3 | 17 | 14 | 17 | 33 | 177 |
Predictor | Full Model | Final Model | |||
---|---|---|---|---|---|
Coefficient ± SE | p-Value | Coefficient ± SE | Standardized Coefficient | p-Value | |
(Intercept) | −2011 ± 4.763 | <0.001 | −2012 ± 4.593 | – | <0.001 |
Pines (Binary) | 0.787 ± 0.375 | 0.036 | 1.000 ± 0.280 | 0.34 | <0.001 |
Oaks (Binary) | −0.303 ± 0.376 | 0.420 | Omitted | ||
Rural (Binary) | −0.0004 ± 0.295 | 0.999 | Omitted | ||
Number of hot days | −0.029 ± 0.046 | 0.618 | Omitted | ||
Maximal seasonal temp. (C°) | −1.056 ± 0.122 | <0.001 | −1.094 ± 0.096 | −1.35 | <0.001 |
Minimal seasonal temp. (C°) | 2.859 ± 0.193 | <0.001 | 2.901 ± 0.170 | 2.44 | <0.001 |
log10 (precipitation, mm) | 14.84 ± 2.177 | <0.001 | 15.34 ± 1.837 | 1.26 | <0.001 |
AIC | 427.58 | 422.17 |
Scientific Name | Common Name | Maquis | Maquis and Pines | Rural | Significantly More Common in |
---|---|---|---|---|---|
Mammalia | Mammals (Total) | 457 | 393 | 560 | |
Soricidae | Shrews | 37 | 27 | 18 | Maquis |
Meriones tristrami | Tristram’s Jird | 36 | 36 | 13 | Maquis and pines |
Microtus guentheri | Günther’s Vole | 219 | 180 | 401 | Rural |
Cricetulus migratorius | Gray Hamster | 5 | 4 | 1 | NS |
Apodemus spp. | Field Mice | 109 | 69 | 24 | Maquis, maquis and pines |
Mus musculus/macedonicus | House and Macedonian mice | 43 | 68 | 41 | Maquis and pines |
Rattus rattus | Black Rat | 7 | 9 | 59 | Rural |
Spalax ehrenbergi | Middle East Blind Mole Rat | 1 | 0 | 3 | NS |
Aves | Birds (Total) | 62 | 45 | 232 | |
Gallus gallus domesticus | Domesticated chicken (Arabian) | 0 | 0 | 1 | NS |
Scolopax rusticola | Eurasian Woodcock | 3 | 0 | 0 | NS |
Columbidae | Pigeons and doves | 6 | 9 | 69 | Rural |
Tyto alba | Barn Owl | 0 | 0 | 1 | NS |
Caprimulgus europaeus | European Nightjar | 0 | 1 | 0 | NS |
Dendrocopos syriacus | Syrian Woodpecker | 0 | 2 | 0 | NS |
Turdus merula | Common Blackbird | 13 | 2 | 6 | Maquis |
Turdus philomelos | Song Thrush | 2 | 0 | 0 | NS |
Erithacus rubecula | European Robin | 2 | 0 | 1 | NS |
Muscicapa striata | Spotted Flycatcher | 0 | 0 | 1 | NS |
Garrulus glandarius | Eurasian Jay | 1 | 0 | 11 | Rural |
Corvus cornix | Hooded Crow | 0 | 5 | 3 | NS |
Passer domesticus | House Sparrow | 21 | 16 | 117 | Rural |
Carduelis carduelis | European Goldfinch | 2 | 0 | 1 | NS |
Aves (indet.) | Unidentified birds | 12 | 10 | 21 | NS |
Insecta | Insects | 1 | 3 | 19 | Rural |
Total Prey Items | 520 | 441 | 811 | 1772 |
Natural History Trait | Israel | Europe | |
---|---|---|---|
Minimum Age | Maximum Age | ||
Age at fledging (days) | 23–32 | 28–37 | 32–37 |
Age at flying (days) a | 42–76 | 48–83 | 46–51 |
Age at adolescence (days) b | 83–102 | 89–104 | 92–97 |
Mean clutch size | 3.2 ± 1.0 (n = 105) | 3.4 ± 1.1 | |
Mean brood size | 1.7 ± 1.5 (n = 105) | 2.8 ± 1.2 | |
% eggs hatched | 86% (n = 43) | 66% (n = 818) | |
% hatchlings fledged | 73% (n = 37) | 96% (n = 509) | |
% eggs survived to fledging | 86% × 73% = 63% | 66% × 96% = 63% | |
% birds in diet c | 33% | 13% (rural); 63% (urban-suburban) | |
Male calling season | Year-round, mostly January-February and April-May | Year-round, mostly October-November | |
Start of egg laying season | Mid-late-March | Mid-March | |
Common habitat | Various woods and forests; to a lesser extent, rural settlements and fields; rarely, in cities. | Various woods and forests; also in rural settlements and even cities |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Comay, O.; Ezov, E.; Yom-Tov, Y.; Dayan, T. In Its Southern Edge of Distribution, the Tawny Owl (Strix aluco) Is More Sensitive to Extreme Temperatures Than to Rural Development. Animals 2022, 12, 641. https://doi.org/10.3390/ani12050641
Comay O, Ezov E, Yom-Tov Y, Dayan T. In Its Southern Edge of Distribution, the Tawny Owl (Strix aluco) Is More Sensitive to Extreme Temperatures Than to Rural Development. Animals. 2022; 12(5):641. https://doi.org/10.3390/ani12050641
Chicago/Turabian StyleComay, Orr, Efrayim Ezov, Yoram Yom-Tov, and Tamar Dayan. 2022. "In Its Southern Edge of Distribution, the Tawny Owl (Strix aluco) Is More Sensitive to Extreme Temperatures Than to Rural Development" Animals 12, no. 5: 641. https://doi.org/10.3390/ani12050641
APA StyleComay, O., Ezov, E., Yom-Tov, Y., & Dayan, T. (2022). In Its Southern Edge of Distribution, the Tawny Owl (Strix aluco) Is More Sensitive to Extreme Temperatures Than to Rural Development. Animals, 12(5), 641. https://doi.org/10.3390/ani12050641