The Effect of Exogenous Lysozyme Supplementation on Growth Performance, Caecal Fermentation and Microbiota, and Blood Constituents in Growing Rabbits
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design, Animals, and Diets
2.2. Sampling and Measurements
2.2.1. Performance Measurements
2.2.2. Nutrient Digestibility
2.2.3. Carcass Traits
2.2.4. Caecal Microbiota and Fermentation Patterns
2.2.5. Blood Sampling, Biochemistry and Antioxidant Status
2.2.6. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Nutrient Digestibility
3.3. Carcass Traits
3.4. Caecal Microbiota and Fermentation Patterns
3.5. Blood Biochemistry and Antioxidant Status
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Manjunatha, D.B.; Rajeshwari, Y.B.; Mahadevappa, D.G.; Shree, J.S. Effect of Cellulolytic Enzymes and Probiotics on Growth Performance of Broiler Rabbits. J. Anim. Res. 2016, 6, 1–4. [Google Scholar] [CrossRef]
- Dalle, A.; Celia, C.; Cullere, M.; Szendrő, Z.; Kovács, M.; Gerencsér, Z.; Bosco, A.D.; Giaccone, V.; Matics, Z. Effect of an in-vivo and/or in-meat application of a liquorice (Glycyrrhiza glabra L.) extract on fattening rabbits live performance, carcass traits and meat quality. Anim. Feed Sci. Technol. 2020, 260, 114333. [Google Scholar] [CrossRef]
- Marai, I.F.M.; Habeeb, A.A.M.; Gad, A.E. Rabbits’ productive, reproductive and physiological performance traits as affected by heat stress: A review. Livest. Prod. Sci. 2002, 78, 71–90. [Google Scholar] [CrossRef]
- Alagawany, M.; EL-Hack, M.E.A.; Al-Sagheer, A.A.; Naiel, M.A.; Saadeldin, I.M.; Swelum, A.A. Dietary cold pressed watercress and coconut oil mixture enhances growth performance, intestinal microbiota, antioxidant status, and immunity of growing rabbits. Animals 2018, 8, 212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rehman, Z.; Kamran, J.; EL-Hack, M.A.; Alagawany, M.; Bhatti, S.; Ahmad, G.; Saleem, A.; Ullah, Z.; Yameen, R.; Ding, C. Influence of low-protein and low-amino acid diets with different sources of protease on performance, carcasses and nitrogen retention of broiler chickens. Anim. Prod. Sci. 2017, 58, 1625–1631. [Google Scholar] [CrossRef]
- Cachaldora, P.; Nicodemus, N.; Garcia, J.; Carabano, R.; De Blas, J.C. Efficacy of Amylofeed® in growing rabbit diets. World Rabbit Sci. 2004, 12, 23–31. [Google Scholar] [CrossRef] [Green Version]
- Zhao, G.-X.; Feng, Z.-H.; Wang, Y.-D.; Li, Y.-Q.; Liu, G.-Z. The effects of supplemental microbial phytase in diets on the growth performance and mineral excretion of Rex–rabbits. World Rabbit Sci. 2005, 13, 278–286. [Google Scholar]
- Garcia-Ruiz, A.I.; Garcia-Palmares, J.; Garcia-rebollar, P.; Chamorro, R.; Carabano, R.; de Blas, C. Effects of protein source and enzyme supplementation on ileal protein digestibility and fattening performance in rabbits. Span. J. Agric. Res. 2006, 4, 297–303. [Google Scholar] [CrossRef] [Green Version]
- Callewaert, L.; Michiels, C.W. Lysozymes in the animal kingdom. J. Biosci. 2010, 35, 127–160. [Google Scholar] [CrossRef] [PubMed]
- El-Deep, M.H.; Amber, K.A.; Eid, Y.Z.; Alrashood, S.T.; Khan, H.A.; Sakr, M.S.; Dawood, M.A.O. The influence of dietary chicken egg lysozyme on the growth performance, blood health, and resistance against Escherichia coli in the growing rabbits’ caecum. Front. Vet. Sci. 2020, 7, 579576. [Google Scholar] [CrossRef]
- Abdel-Latif, M.A.; El-Far, A.H.; Elbestawy, A.R.; Ghanem, R.; Mousa, S.A.; Abd El-Hamid, H.S. Exogenous dietary lysozyme improves the growth performance and gut microbiota in broiler chickens targeting the antioxidant and non-specific immunity mRNA expression. PLoS ONE 2017, 12, e0185153. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, S.; Pan, L.; Piao, X. Effects of lysozyme on the growth performance, nutrient digestibility, intestinal barrier, and microbiota of weaned pigs fed diets containing spray-dried whole egg or albumen powder. Can. J. Anim. Sci. 2017, 97, 466–475. [Google Scholar] [CrossRef] [Green Version]
- Syngai, G.G.; Ahmed, G. Chapter 11—lysozyme: A natural antimicrobial enzyme of interest in food applications. In Enzymes in Food Biotechnology; Kuddus, M., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 169–179. [Google Scholar]
- Baksi, S.; Chauhan, P.; Rao, N.; Chauhan, A. Effect of Lysozymes, Antibiotics and Probiotics on Growth Performance and Biochemical Parameters in Broiler Chickens. Int. J. Livest. Res. 2019, 9, 74–78. [Google Scholar] [CrossRef]
- Lee, M.; Kovacs-Nolan, J.; Yang, C.; Archbold, T.; Fan, M.Z.; Mine, Y. Hen egg lysozyme attenuates inflammation and modulates local gene rxpression in a porcine model of dextran sodium sulfate (dss)-induced colitis. J. Agric. Food Chem. 2009, 57, 2233–2240. [Google Scholar] [CrossRef] [PubMed]
- Nyachoti, C.M.; Kiarie, E.; Bhandari, S.K.; Zhang, G.; Krause, D.O. Weaned pig responses to Escherichia coli k88 oral challenge when receiving a lysozyme supplement. J. Anim. Sci. 2012, 90, 252–260. [Google Scholar] [CrossRef] [Green Version]
- May, K.D.; Wells, J.E.; Maxwell, C.V.; Oliver, W.T. Granulated lysozyme as an alternative to antibiotics improves growth performance and small intestinal morphology of 10-day-old pigs. J. Anim. Sci. 2012, 90, 1118–1125. [Google Scholar] [CrossRef] [PubMed]
- Long, Y.; Lin, S.; Zhu, J.; Pang, X.; Fang, Z.; Lin, Y.; Che, L.; Xu, S.; Li, J.; Huang, Y.; et al. Effects of dietary lysozyme levels on growth performance, intestinal morphology, non-specific immunity and mRNA expression in weanling piglets. Anim. Sci. J. 2016, 87, 411–418. [Google Scholar] [CrossRef] [PubMed]
- EL-Deep, M.H.; Amber, K.A.; Eid, Y.Z.; Aboelenin, S.M.; Soliman, M.M.; Sakr, M.S.; Dawood, M.A.O. The Influence of Chicken Egg Lysozyme or Zinc-Bacitracin Antibiotic on the Growth Performance, Antibacterial Capacity, Blood Profiles, and Antioxidative Status of Rabbits: A Comparative Study. Animals 2021, 11, 1731. [Google Scholar] [CrossRef] [PubMed]
- de Blas, C.; Mateos, G.G. Feed formulation. In Nutrition of the Rabbit, 3rd ed.; CABI Publishing CAB International: Wallingford, UK, 2020; pp. 243–253. [Google Scholar]
- Perez, J.M.; Lebas, F.; Gidenne, T.; Maertens, L.; Xiccato, G.; Parigi-Bini, R.; Dalle Zotte, A.; Cossu, M.E.; Carazzolo, A.; Villamide, M.J.; et al. European reference method for in vivo determination of diet digestibility in rabbits. World Rabbit Sci. 1995, 3, 41–43. [Google Scholar]
- AOAC. Official Methods of Analysis Association, 18th ed.; AOAC International: Rockville, MD, USA, 2005. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Eadie, J.M.; Hobson, P.; Mann, S. A note on some comparisons between the rumen content of barley-fed steers and that of young calves also fed on a high concentrate ration. Anim. Sci. 1967, 9, 247–250. [Google Scholar] [CrossRef]
- Mathew, S.; Sagathevan, S.; Thomas, J.; Mathen, G. An HPLC method for estimation of volatile fatty acids in ruminal fluid. Indian J. Anim. Sci. 1997, 67, 805–807. [Google Scholar]
- Chaney, A.L.; Marbach, E.P. Modified reagents for determination of urea and ammonia. Clin. Chem. 1962, 8, 130–132. [Google Scholar] [CrossRef] [PubMed]
- SAS. SAS/STAT Software; Release 15.1; SAS Institute Inc.: Cary, NC, USA, 2018. [Google Scholar]
- Eiben, C.S.; Mézes, M.; Zijártó, K.; Kustos, N.; Gódor-Surmann, K.; Erdélyi, M. Dose-dependent effect of cellulose supplementation on performance of early-weaned rabbit. In Proceedings of the 8th World Rabbit Congress, Puebla, Mexico, 7–10 September 2004; pp. 799–804. [Google Scholar]
- Attia, K.A.; Saleh, S.Y.; Abd El-hamid, S.S.; Zaki, A.A.; El-Sawy, M.A. Effects of exogenous multi-enzyme feed additive (kemzyme) on the activities of certain digestive enzymes and intestinal morphology in growing rabbits. J. Agric. Sci. 2012, 4, 35–44. [Google Scholar] [CrossRef]
- Zou, L.; Xiong, X.; Liu, H.; Zhou, J.; Liu, Y.; Yin, Y. Effects of dietary lysozyme levels on growth performance, intestinal morphology, immunity response and microbiota community of growing pigs. J. Sci. Food Agric. 2019, 99, 1643–1650. [Google Scholar] [CrossRef]
- Oliver, W.; Wells, J.; Maxwell, C. Lysozyme as an alternative to antibiotics improves performance in nursery pigs during an indirect immune challenge. J. Anim. Sci. 2014, 92, 4927–4934. [Google Scholar] [CrossRef]
- Petruschke, H.; Schori, C.; Canzler, S.; Riesbeck, S.; Poehlein, A.; Daniel, R.; Frei, D.; Segessemann, T.; Zimmerman, J.; Marinos, G.; et al. Discovery of novel community-relevant small proteins in a simplified human intestinal microbiome. Microbiome 2021, 9, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Brundige, D.R.; Maga, E.A.; Klasing, K.C.; Murray, J.D. Lysozyme transgenic goats’ milk influences gastrointestinal morphology in young pigs. J. Nutr. 2008, 138, 921–926. [Google Scholar] [CrossRef] [Green Version]
- Agnoletti, F.; Bacchin, C.; Bano, L.; Passera, A.; Favretti, M.; Mazzolini, E. Antimicrobial susceptibility to zinc bacitracin of Clostridium perfringens of rabbit origin. World Rabbit Sci. 2007, 15, 19–22. [Google Scholar] [CrossRef] [Green Version]
- Fang, S.; Chen, X.; Ye, X.; Zhou, L.; Xue, S.; Gan, Q. Effects of gut microbiome and short-chain fatty acids (scfas) on finishing weight of meat rabbits. Front. Microbiol. 2020, 11, 1835. [Google Scholar] [CrossRef] [PubMed]
- García, J.; Gidenne, T.; Falcão-e-Cunha, L.; de Blas, C. Identification of the main factors that influence caecal fermentation traits in growing rabbits. J. Anim. Res. 2002, 51, 165–173. [Google Scholar] [CrossRef]
- Marty, J.; Vernay, M. Absorption and metabolism of the volatile fatty acids in the hind-gut of the rabbit. Br. J. Nutr. 1984, 51, 265–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velasco-Galilea, M.; Piles, M.; Ramayo-Caldas, Y.; Sánchez, J.P. The value of gut microbiota to predict feed efficiency and growth of rabbits under different feeding regimes. Sci. Rep. 2021, 11, 19495. [Google Scholar] [CrossRef]
- Gidenne, T.; Jehl, N.; Lapanouse, A.; Segura, M. Inter-relationship of microbial activity, digestion and gut health in the rabbit: Effect of substituting fibre by starch in diets having a high proportion of rapidly fermentable polysaccharides. Br. J. Nutr. 2004, 92, 95–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monteils, V.; Cauquil, L.; Combes, S.; Godon, J.J.; Gidenne, T. Potential core species and satellite species in the bacterial community within the rabbit caecum. FEMS Microbiol. Ecol. 2008, 66, 620–629. [Google Scholar] [CrossRef] [PubMed]
- Angelakis, E. Weight gain by gut microbiota manipulation in productive animals. Microb. Pathog. 2017, 106, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Joardar, N.; Sengupta, S.; Babu, S.P.S. Gut microbes as future therapeutics in treating inflammatory and infectious diseases: Lessons from recent findings. J. Nutr. Biochem. 2018, 16, 111–128. [Google Scholar] [CrossRef]
- Ibrahim, H.R.; Imazato, K.; Ono, H. Human lysozyme possesses novel antimicrobial peptides within its N-terminal domain that target bacterial respiration. J. Agric. Food Chem. 2011, 59, 10336–10345. [Google Scholar] [CrossRef]
- Varga, M. Rabbit basic science. In Textbook of Rabbit Medicine, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 271–302. [Google Scholar]
- Chiou, P.W.S.; Yu, B.; Lin, C. Effect of different components of dietary fiber on the intestinal morphology of domestic rabbits. Comp. Biochem. Physiol. Part A Physiol. 1994, 108, 629–638. [Google Scholar] [CrossRef]
- Prohaszka, L. Antibacterial effect of volatile fatty acids in enteric Escherfchia coli infections of rabbits. Zent. Vet. Reihe B 1980, 27, 631–639. [Google Scholar]
- Peeters, J.E.; Maertens, L.; Orsenigo, R.; Colin, M. Influence of dietary beet pulp on caecal VFA, experimental colibacillosis and iota-enterotoxaemia in rabbits. Anim. Feed Sci. Technol. 1995, 51, 123–139. [Google Scholar] [CrossRef]
- Bellier, R.; Gidenne, T.; Vernay, M.; Colin, M. In vivo study of circadian variations of the caecal fermentation pattern in postweaned and adult rabbits. J. Anim. Sci. 1995, 73, 128–135. [Google Scholar] [CrossRef]
- Bergman, E.N. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev. 1990, 70, 567–590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piattoni, F.; Demeyer, D.; Martens, L. In vitro study of the age-dependent caecal fermentation pattern and methanogenesis in young rabbits. Reprod. Nutr. Dev. 1996, 36, 253–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Remesy, C.; Demigne, C.; Morand, C. Metabolism of short-chain fatty acids in the liver. In Physiological and Clinical Aspects of Short-Chain Fatty Acids; Cummings, J.H., Rombeau, J.L., Sakata, T., Eds.; Cambridge University Press: London, UK, 1995; pp. 171–190. [Google Scholar]
- Macfarlane, G.T.; Gibson, G.R. Microbiological aspects of the production of short-chain fatty acids in the large bowel. In Physiological and Clinical Aspects of Short-Chain Fatty Acids; Cummings, J.H., Rombeau, J.L., Sakata, T., Eds.; Cambridge University Press: London, UK, 1995; pp. 87–105. [Google Scholar]
- Gidenne, T. Caeco-colic digestion in the growing rabbit: Impact of nutritional factors and related disturbances. Livest. Prod. Sci. 1997, 51, 73–88. [Google Scholar] [CrossRef]
- Sahebkar, A. Effects of resveratrol supplementation on plasma lipids: A systematic review and meta-analysis of randomized controlled trials. Nutr. Rev. 2013, 71, 822–835. [Google Scholar] [CrossRef] [PubMed]
- Martini, C.; Pallottini, V. Cholesterol: From feeding to gene regulation. Genes Nutr. 2007, 2, 181–193. [Google Scholar] [CrossRef] [Green Version]
- Kambayashi, Y.; Binh, N.T.; Asakura, H.W.; Hibino, Y.; Hitomi, Y.; Nakamura, H.; Ogino, K. Efficient assay for total antioxidant capacity in human plasma using a 96-well microplate. J. Clin. Biochem. Nutr. 2009, 44, 46–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, R.; Yang, Y.; Sharma, A.; Awasthi, S.; Awasthi, Y.C. Antioxidant role of glutathione S-transferases: Protection against oxidant toxicity and regulation of stress-mediated apoptosis. Antioxid. Redox Signal. 2004, 6, 289–300. [Google Scholar] [CrossRef]
- Robertson, F.P.; Bessell, P.R.; Diaz-Nieto, R.; Thomas, N.; Rolando, N.; Fuller, B.; Davidson, B.R. High serum aspartate tran aminase levels on day 3 postliver transplantation correlates with graft and patient survival and would be a valid surrogate for outcome in liver transplantation clinical trials. Transpl. Int. 2016, 29, 323–330. [Google Scholar] [CrossRef] [Green Version]
- Lin, M.Y.; Yen, C.L. Antioxidative ability of lactic acid bacteria. J. Agric. Food Chem. 1999, 47, 1460–1466. [Google Scholar] [CrossRef] [PubMed]
- Fritz, J.; Ikegami, M.; Weaver, T.; Akinbi, H. Lysozyme ameliorates oxidant-induced lung injury. Am. Thorac. Soc. 2009, 179, A4005. [Google Scholar] [CrossRef]
Feed Ingredients | (%) |
---|---|
Soybean meal (44% CP) | 17.5 |
Wheat bran | 15.0 |
Yellow corn | 10.0 |
Barley | 18.0 |
Alfalfa hay | 35.0 |
Molasses | 3.0 |
DL-Methionine | 0.1 |
Di- Ca- phosphate | 0.8 |
NaCl | 0.3 |
Premix * | 0.3 |
Total | 100 |
Chemical composition (% as dry matter basis): | |
Dry matter | 90.3 |
Organic matter | 92.1 |
Nitrogen-free extract | 58.6 |
Crude protein | 17.8 |
Crude fiber | 13.4 |
Ether extract | 2.3 |
Neutral detergent fiber | 32.1 |
Acid detergent fiber | 17.1 |
Digestible energy (MJ/Kg DM) | 10.5 |
Lysine | 0.9 |
Methionine | 0.3 |
Ash | 7.9 |
Calcium | 0.9 |
Phosphors | 0.6 |
Parameters | Lysozyme, mg/kg Diet | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
LYZ0 | LYZ50 | LYZ100 | LYZ150 | Linear | Quadratic | ||
Initial body weight, g | 528 | 528 | 528 | 528 | 24 | 0.969 | 0.907 |
Final body weight, g | 1747 d | 1832 c | 1931 b | 2035 a | 32 | 0.003 | 0.021 |
Daily growth rate g/d | 29.1 d | 31.1 c | 33.4 b | 35.9 a | 0.5 | <0.001 | 0.001 |
Feed intake, g/d | 115 a | 105 b | 105 b | 111 a | 2 | 0.002 | 0.012 |
Feed conversion ratio | 3.95 a | 3.3 b | 3.13 b | 3.10 b | 0.27 | 0.015 | 0.024 |
Mortality rate % | 2.66 | 2.00 | 2.66 | 2.00 | 0.73 | 0.765 | 0.844 |
Parameters | Lysozyme, mg/kg Diet | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
LYZ0 | LYZ50 | LYZ100 | YZ150 | Linear | Quadratic | ||
Nutrients digestibility % | |||||||
Dry matter | 63.4 b | 64.8 a | 64.8 a | 64.9 a | 0.11 | 0.017 | 0.025 |
Organic matter | 65.1 c | 66.9 b | 67.8 a | 66.9 b | 0.89 | 0.010 | 0.845 |
Crude protein | 70.9 d | 73.8 c | 78.5 a | 76.1 b | 1.46 | 0.011 | 1.185 |
Crude fiber | 44.2 b | 44.6 b | 46.6 a | 46.9 a | 0.34 | 0.003 | 0.335 |
Ether extract | 67.3 b | 70.8 a | 71.a | 69.7 a | 1.85 | 0.020 | 0.097 |
Neutral detergent fiber | 60.5 c | 62.5 b | 62.1 b | 63.0 a | 0.27 | 0.023 | 0.374 |
Acid detergent fiber | 49.2 c | 52.7 b | 53.1 a | 53.8 a | 0.58 | 0.012 | 0.528 |
Parameters | Lysozyme, mg/kg Diet | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
LYZ0 | LYZ50 | LYZ100 | LYZ150 | Linear | Quadratic | ||
Slaughter weight, g | 1895 | 1915 | 2010 | 2035 | 124 | 0.762 | 0.733 |
Dressing percentage, % | 54.0 d | 56.4 c | 57.3 b | 58.7 a | 0.42 | <0.001 | 0.001 |
Lungs, % | 1.11 | 1.10 | 1.20 | 1.20 | 0.20 | 0.743 | 0.622 |
Liver, % | 3.09 | 3.14 | 3.22 | 3.27 | 0.83 | 0.276 | 0.835 |
Heart, % | 0.31 | 0.33 | 0.40 | 0.34 | 0.11 | 0.243 | 0.352 |
Spleen, % | 0.01 | 0.12 | 0.11 | 0.10 | 0.01 | 0.252 | 0.267 |
Kidney, % | 1.05 | 1.15 | 1.09 | 1.21 | 0.06 | 0.185 | 0.264 |
Total fat, % | 2.39 | 2.41 | 2.43 | 2.38 | 0.48 | 0.871 | 0.365 |
Parameters | Lysozyme, mg/kg Diet | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
LYZ0 | LYZ50 | LYZ100 | LYZ150 | Linear | Quadratic | ||
Caecum length, cm | 40.7 c | 45.7 b | 47.3 a | 47.7 a | 0.71 | 0.011 | 0.013 |
Full caecum weight, g | 95.1 c | 114.4 b | 115.8 b | 119.8 a | 1.64 | 0.011 | 0.053 |
Empty caecum weight, g | 23.3 c | 26.7 b | 27.9 ab | 28.5 a | 1.47 | 0.005 | 0.027 |
Caecal microbial count, log cfu/g caecal digesta | |||||||
Lactobacillus acidophilus | 1.36 c | 3.47 b | 4.91 a | 4.97 a | 0.05 | 0.031 | 0.054 |
Lactobacillus cellobiosus | 1.52 c | 1.98 b | 2.89 a | 2.94 a | 0.16 | 0.016 | 0.021 |
Enterococcus Sp. | 3.57 c | 4.21 b | 5.75 a | 5.95 a | 0.19 | 0.011 | 0.014 |
E. coli | 4.76 a | 3.43 b | 2.97 c | 2.21 c | 0.69 | <0.001 | 0.001 |
Caecal fermentation patterns | |||||||
Caecum pH | 5.98 a | 5.53 b | 5.38 c | 5.41 c | 0.03 | <0.001 | 0.007 |
NH3-N, mmol·L−1 | 13.5 a | 12.4 b | 12.3 b | 12.1 b | 0.63 | 0.002 | 0.042 |
TVFA, mmol·L−1 | 55.6 d | 62.1 c | 65.9 a | 63.7 b | 0.57 | 0.016 | 0.038 |
Acetic acid, mol/100 mol | 44.5 c | 48.9 b | 49.6 ab | 50.1 a | 0.55 | 0.019 | 0.024 |
Propionic acid, mol/100 mol | 3.34 | 3.61 | 3.77 | 3.32 | 0.17 | 0.452 | 0.898 |
Butyric acid, mol/100 mol | 7.79 c | 9.65 b | 12.47 a | 10.26 b | 0.49 | 0.013 | 0.052 |
Parameters | Lysozyme, mg/kg Diet | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
LYZ0 | LYZ50 | LYZ100 | LYZ150 | Linear | Quadratic | ||
Serum biochemical indices | |||||||
TL, mg/dL | 354.8 a | 348.5 b | 349.0 b | 341.2 b | 3.85 | 0.03 | 0.05 |
PL, mg/dL | 138.3 b | 141.9 a | 146.7 a | 144.2 a | 2.16 | 0.05 | 0.05 |
TG, mg/dL | 71.9 a | 63.3 b | 58.4 bc | 55.2 c | 4.52 | 0.02 | 0.03 |
TC, mg/dL | 99.2 a | 93.9 b | 90.2 b | 91.9 b | 3.06 | 0.01 | 0.02 |
HDL, mg/dL | 34.2 b | 45.3 a | 47.5 a | 45.7 a | 5.58 | 0.05 | 0.03 |
LDL, mg/dL | 50.6 a | 35.9 b | 30.9 c | 35.1 b | 5.37 | 0.05 | 0.01 |
vLDL, mg/dL | 14.4 a | 12.7 b | 11.7 c | 11.1 c | 0.58 | 0.02 | 0.03 |
HDL:TC ratio | 0.35 b | 0.44 a | 0.43 a | 0.43 a | 0.05 | 0.05 | 0.13 |
LDL:TC ratio | 0.51 a | 0.38 b | 0.34 b | 0.38 b | 0.14 | 0.05 | 0.13 |
HDL:LDL ratio | 0.68 c | 1.26 b | 1.53 a | 1.30 b | 0.11 | 0.05 | 0.07 |
LDL:HDL ratio | 1.48 a | 0.79 b | 0.65 c | 0.77 b | 0.02 | 0.05 | 0.07 |
Antioxidant enzymatic activity | |||||||
TAC, mmol/L | 2.20 c | 2.75 b | 3.15 a | 3.10 a | 0.16 | 0.001 | 0.01 |
SOD, U/L | 1.46 c | 1.85 b | 2.27 a | 2.89 a | 0.37 | 0.001 | 0.01 |
GST, U/L | 116.24 c | 136.74 b | 156.85 a | 153.28 a | 6.42 | 0.001 | 0.01 |
CAT, U/L | 0.22 c | 0.24 b | 0.24 a | 0.24 a | 0.01 | 0.001 | 0.01 |
MDA, μmol/L | 2.06 a | 1.51 b | 1.21 bc | 1.11 c | 0.68 | 0.002 | 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abu Hafsa, S.H.; Mahmoud, A.E.M.; Fayed, A.M.A.; Abdel-Azeem, A.-A.S. The Effect of Exogenous Lysozyme Supplementation on Growth Performance, Caecal Fermentation and Microbiota, and Blood Constituents in Growing Rabbits. Animals 2022, 12, 899. https://doi.org/10.3390/ani12070899
Abu Hafsa SH, Mahmoud AEM, Fayed AMA, Abdel-Azeem A-AS. The Effect of Exogenous Lysozyme Supplementation on Growth Performance, Caecal Fermentation and Microbiota, and Blood Constituents in Growing Rabbits. Animals. 2022; 12(7):899. https://doi.org/10.3390/ani12070899
Chicago/Turabian StyleAbu Hafsa, Salma H., Amr E. M. Mahmoud, Amal M. A. Fayed, and Abdel-Azeem S. Abdel-Azeem. 2022. "The Effect of Exogenous Lysozyme Supplementation on Growth Performance, Caecal Fermentation and Microbiota, and Blood Constituents in Growing Rabbits" Animals 12, no. 7: 899. https://doi.org/10.3390/ani12070899
APA StyleAbu Hafsa, S. H., Mahmoud, A. E. M., Fayed, A. M. A., & Abdel-Azeem, A.-A. S. (2022). The Effect of Exogenous Lysozyme Supplementation on Growth Performance, Caecal Fermentation and Microbiota, and Blood Constituents in Growing Rabbits. Animals, 12(7), 899. https://doi.org/10.3390/ani12070899