Productive Performance, Egg Quality and Yolk Lipid Oxidation in Laying Hens Fed Diets including Grape Pomace or Grape Extract
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Grape Products Tested
2.2. Birds and Diets
2.3. Hen Performance Measurement and Egg Quality Assessment
2.4. Excreta Measurements
2.5. Chemical Analyses
2.5.1. Total Extractable Polyphenol Content
2.5.2. Fatty Acid Composition
2.5.3. Oxidation Assessment
2.6. Calculations and Statistical Analysis
3. Results
3.1. Hen Performance
3.2. Excreta Protein and Polyphenol Digestibility
3.3. Egg Quality
3.4. Yolk Fatty Acid Profile
3.5. Yolk TBARS Value
4. Discussion
4.1. Hen Performance and Protein and Polyphenol Intestinal Utilisation
4.2. Egg Quality Parameters
4.3. Yolk Fatty Acid Profile
4.4. Yolk Lipid Oxidation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Herron, K.L.; Fernandez, M.L. Are the current dietary guidelines regarding egg consumption appropriate? J. Nutr. 2004, 134, 187–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nau, F.; Yamakawa, Y.N.Y.; Réhault-Godbert, S. Nutritional value of the hen egg for humans. Prod. Anim. Paris Inst. Natl. Rech. Agron. 2010, 23, 225–236. [Google Scholar]
- López-Sobaler, A.M.; Aparicio Vizuete, A.; Ortega, R.M. Role of the egg in the diet of athletes and physically active people. Nutr. Hosp. 2017, 34, 31–35. [Google Scholar] [PubMed]
- Anton, M.; Nau, F.; Nys, Y. Bioactive egg components and their potential uses. World Poultry Sci. J. 2006, 62, 429–438. [Google Scholar] [CrossRef]
- Zdrojewicz, Z.; Herman, M.; Starostecka, E. Hen’s egg as a source of valuable biologically active substances. Postep. Hig. Med. Dosw. 2016, 70, 751–759. [Google Scholar] [CrossRef] [PubMed]
- Nimalaratne, C.; Lopes-Lutz, D.; Schieber, A.; Wu, J. Free aromatic amino acids in egg yolk show antioxidant properties. Food Chem. 2011, 129, 155–161. [Google Scholar] [CrossRef]
- Liu, J.; Jin, Y.; Lin, S.; Jones, G.S.; Chen, F. Purification and identification of novel antioxidant peptides from egg white protein and their antioxidant activities. Food Chem. 2015, 175, 258–266. [Google Scholar] [CrossRef]
- Aparicio, A.; Salas González, M.D.; Cuadrado-Soto, E.; Ortega, R.M.; López-Sobaler, A.M. Egg as a source of antioxidants and bioactive components against chronic processes. Nutr. Hosp. 2018, 35, 36–40. [Google Scholar]
- FAO: Food and Agriculture Organization of the United Nations. Available online: http://www.fao.org/faostat/en/ (accessed on 16 March 2022).
- Juturu, V. Omega-3 fatty acids and the cardiometabolic syndrome. J. Cardiometab. Syndr. 2008, 3, 244–253. [Google Scholar] [CrossRef]
- Jiao, J.; Li, Q.; Chu, J.; Zeng, W.; Yang, M.; Zhu, S. Effect of n-3 PUFA supplementation on cognitive function throughout the life span from infancy to old age: A systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2014, 100, 1422–1436. [Google Scholar] [CrossRef] [Green Version]
- Lewis, N.M.; Seburg, S.; Flanagan, N.L. Enriched eggs as a source of N-3 polyunsaturated fatty acids for humans. Poultry Sci. 2000, 79, 971–974. [Google Scholar] [CrossRef]
- Lemahieu, C.; Bruneel, C.; Ryckebosch, E.; Muylaert, K.; Buyse, J.; Foubert, I. Impact of different omega-3 polyunsaturated fatty acid (n-3 PUFA) sources (flaxseed, Isochrysis galbana, fish oil and DHA Gold) on n-3 LC-PUFA enrichment (efficiency) in the egg yolk. J. Funct. Foods 2015, 19, 821–827. [Google Scholar] [CrossRef]
- Galobart, J.; Barroeta, A.C.; Baucells, M.D.; Guardiola, F. Lipid oxidation in fresh and spray-dried eggs enriched with omega3 and omega6 polyunsaturated fatty acids during storage as affected by dietary vitamin E and canthaxanthin supplementation. Poultry Sci. 2001, 80, 327–337. [Google Scholar] [CrossRef] [PubMed]
- Shahryar, H.A.; Salamatdoust, R.; Chekani-Azar, S.; Ahadi, F.; Vahdatpoor, T. Lipid oxidation in fresh and stored eggs enriched with dietary ω3 and ω6 polyunsaturated fatty acids and vitamin E and A dosages. Afr. J. Biotechnol. 2010, 9, 1827–1832. [Google Scholar]
- Liang, K.; Zu, H.; Wang, X. Effect of storage on n-3 PUFA-enriched eggs. J. Food 2020, 18, 102–107. [Google Scholar] [CrossRef] [Green Version]
- Tao, L. Oxidation of polyunsaturated fatty acids and its impact on food quality and human health. Adv. Food Technol. Nutr. Sci. 2015, 1, 135–142. [Google Scholar] [CrossRef]
- Grune, T.; Krämer, K.; Hoppe, P.P.; Siems, W. Enrichment of eggs with n-3 polyunsaturated fatty acids: Effects of vitamin E supplementation. Lipids 2001, 36, 833–838. [Google Scholar] [CrossRef]
- Vastolo, A.; Calabrò, S.; Cutrignelli, M.I. A review on the use of agro-industrial CO-products in animals’ diets. Ital. J. Anim. Sci. 2022, 21, 577–594. [Google Scholar] [CrossRef]
- Yilmaz, Y.; Toledo, R.T. Oxygen radical absorbance capacities of grape/wine industry byproducts and effect of solvent type on extraction of grape seed polyphenols. J. Food Compos. Anal. 2006, 19, 41–48. [Google Scholar] [CrossRef]
- Aditya, S.; Sang-Jip, O.; Ahammed, M.; Lohakare, J. Supplementation of grape pomace (Vitis vinifera) in broiler diets and its effect on growth performance, apparent total tract digestibility of nutrients, blood profile, and meat quality. Anim. Nutr. 2018, 4, 210–214. [Google Scholar] [CrossRef]
- Nardoia, M.; Romero, C.; Brenes, A.; Arija, I.; Viveros, A.; Ruiz-Capillas, C.; Chamorro, S. Addition of fermented and unfermented grape skin in broilers’ diets: Effect on digestion, growth performance, intestinal microbiota and oxidative stability of meat. Animal 2020, 14, 1371–1381. [Google Scholar] [CrossRef] [PubMed]
- Romero, C.; Nardoia, M.; Arija, I.; Viveros, A.; Rey, A.I.; Prodanov, M.; Chamorro, S. Feeding broiler chickens with grape seed and skin meals to enhance α- and γ-tocopherol content and meat oxidative stability. Antioxidants 2021, 10, 699. [Google Scholar] [CrossRef] [PubMed]
- Romero, C.; Nardoia, M.; Brenes, A.; Arija, I.; Viveros, A.; Chamorro, S. Combining grape byproducts to maximise biological activity of polyphenols in chickens. Animals 2021, 11, 3111. [Google Scholar] [CrossRef] [PubMed]
- Kara, K.; Kocaoğlu Güçlü, B.; Baytok, E.; Şentürk, M. Effects of grape pomace supplementation to laying hen diet on performance, egg quality, egg lipid peroxidation and some biochemical parameters. J. Appl. Anim. Res. 2016, 44, 303–310. [Google Scholar] [CrossRef] [Green Version]
- Benmeziane, F.; Cadot, Y.; Djamai, R.; Djermoun, L. Determination of major anthocyanin pigments and flavonols in red grape skin of some table grape varieties (Vitis vinifera sp.) by high-performance liquid chromatography-photodiode array detection (HPLC-DAD). Oeno One 2016, 50, 125–135. [Google Scholar] [CrossRef] [Green Version]
- Castellanos-Gallo, L.; Ballinas-Casarrubias, L.; Espinoza-Hicks, J.C.; Hernández-Ochoa, L.R.; Muñoz-Castellanos, L.N.; Zermeño-Ortega, M.R.; Borrego-Loya, A.; Salas, E. Grape pomace valorization by extraction of phenolic polymeric pigments: A review. Processes 2022, 10, 469. [Google Scholar] [CrossRef]
- Falakodin, L.; Hedayati, M.; Manafi, M.; Khalaji, S. Effect of replacing different levels of corn with raisin by-product on production properties and digestibility in old laying hens (Hy-Line strain W-36). Nat. Volatiles Essent. Oils 2022, 9, 105–117. [Google Scholar]
- Reis, J.H.; Gebert, R.R.; Barreta, M.; Boiago, M.M.; Souza, C.F.; Baldissera, M.D.; Santos, I.D.; Wagner, R.; Laporta, L.V.; Stefani, L.M.; et al. Addition of grape pomace flour in the diet on laying hens in heat stress: Impacts on health and performance as well as the fatty acid profile and total antioxidant capacity in the egg. J. Therm. Biol. 2019, 80, 141–149. [Google Scholar] [CrossRef]
- Kaya, A.; Yildirim, B.A.; Kaya, H.; Gül, M.; Çelebi, Ş. The effects of diets supplemented with crushed and extracted grape seed on performance, egg quality parameters, yolk peroxidation and serum traits in laying hens. Eur. Poultry Sci. 2014, 78, 1–10. [Google Scholar]
- Vlaicu, P.A.; Panaite, T.D.; Turcu, R.P. Enriching laying hens eggs by feeding diets with different fatty acid composition and antioxidants. Sci. Rep. 2021, 11, 20707. [Google Scholar] [CrossRef]
- Eisen, E.J.; Bohren, B.B.; Mckean, H.E. The Haugh unit as a measure of egg albumen quality. Poultry Sci. 1962, 41, 1461–1468. [Google Scholar] [CrossRef]
- AOAC: Association of Official Analytical Chemists. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists International: Arlington, VA, USA, 1995. [Google Scholar]
- Van Soest, J.P.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Siriwan, P.; Bryden, W.L.; Mollah, Y.; Annison, E.F. Measurements of endogenous amino acid losses in poultry. Brit. Poultry Sci. 1993, 34, 939–949. [Google Scholar] [CrossRef] [PubMed]
- Montreau, F.R. Sur le dosage des composés phénoliques totaux dans les vins par la méthode Folin-Ciocalteu. J. Int. Sci. Vigne Vin. 1972, 6, 397–404. [Google Scholar] [CrossRef]
- ISO 5508; Animal and Vegetable Fats and Oils—Analysis by Gas Chromatography of Methyl Esters of Fatty Acids. European Committee for Standardization: Brussels, Belgium, 1990.
- Botsoglou, N.A.; Fletouris, D.J.; Papageorgiu, G.E.; Vassilopoulos, V.N.; Mantis, A.J.; Trakatellis, A.G. Rapid, sensitive, and specific thiobarbituric acid method for measuring lipid peroxidation in animal tissue, food, and feedstuff samples. J. Agric. Food Chem. 1994, 42, 1931–1937. [Google Scholar] [CrossRef]
- Sun, P.; Lu, Y.; Cheng, H.; Song, D. The effect of grape seed extract and yeast culture on both cholesterol content of egg yolk and performance of laying hens. J. Appl. Poultry Res. 2018, 27, 564–569. [Google Scholar] [CrossRef]
- Brenes, A.; Viveros, A.; Goñi, I.; Centeno, C.; Sáyago-Ayerdy, S.G.; Arija, I.; Saura-Calixto, F. Effect of grape pomace concentrate and vitamin E on digestibility of polyphenols and antioxidant activity in chickens. Poultry Sci. 2008, 87, 307–316. [Google Scholar] [CrossRef]
- Turcu, R.P.; Panaite, T.D.; Untea, A.E.; Șoica, C.; Iuga, M.; Mironeasa, S. Effects of supplementing grape pomace to broilers fed polyunsaturated fatty acids enriched diets on meat quality. Animals 2020, 10, 947. [Google Scholar] [CrossRef] [PubMed]
- Chamorro, S.; Viveros, A.; Centeno, C.; Romero, C.; Arija, I.; Brenes, A. Effects of dietary grape seed extract on growth performance amino acid digestibility and plasma lipids and mineral content in broiler chicks. Animal 2013, 7, 555–561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shim, M.Y.; Song, E.; Billard, L.; Aggrey, S.E.; Pesti, G.M.; Sodsee, P. Effects of balanced dietary protein levels on egg production and egg quality parameters of individual commercial layers. Poultry Sci. 2013, 92, 2687–2696. [Google Scholar] [CrossRef] [PubMed]
- Fróes, H.G.; Jácome, I.M.T.D.; Tavares, R.A.; Garcia, R.G.; Domingues, C.H.F.; Bevilaqua, T.M.S.; Martinelli, M.; Naas, I.A.; Borille, R. Grape (Vitis vinifera) pomace flour as pigment agent of quail eggs. Braz. J. Poultry Sci. 2018, 20, 183–188. [Google Scholar] [CrossRef] [Green Version]
- Silici, S.; Kocaoğlu Güçlü, B.; Kara, K. Effect of supplementation of crushed grape seed on breeding quail (Coturnix coturnix japonica) diet on production, hatching performance, and egg quality. J. Health Sci. Erciyes. 2011, 20, 68–76. [Google Scholar]
- Brenes, A.; Viveros, A.; Goñi, I.; Centeno, C.; Saura-Calixto, F.; Arija, I. Effect of grape seed extract on growth performance, protein and polyphenol digestibilities, and antioxidant activity in chickens. Span. J. Agric. Res. 2010, 8, 326–333. [Google Scholar] [CrossRef] [Green Version]
- Omri, B.; Alloui, N.; Durazzo, A.; Lucarini, M.; Aiello, A.; Romano, R.; Santini, A.; Abdouli, H. Egg yolk antioxidants profiles: Effect of diet supplementation with linseeds and tomato-red pepper mixture before and after storage. Foods 2019, 8, 320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bunea, C.I.; Pop, N.; Babes, A.C.; Matea, C.; Dulf, F.V.; Bunea, A. Carotenoids, total polyphenols and antioxidant activity of grapes (Vitis vinifera) cultivated in organic and conventional systems. Chem. Cent. J. 2012, 6, 66–74. [Google Scholar] [CrossRef] [Green Version]
- Galobart, J.; Sala, R.; Rincón-Carruyo, X.; Manzanilla, E.G.; Vilà, B.; Gasa, J. Egg yolk color as affected by saponification of different natural pigmenting sources. J. Appl. Poultry Res. 2004, 13, 328–334. [Google Scholar] [CrossRef]
- Sobolewska, S.; Janusz, O.; Jarosz, B.; Graczyk, S.; Majda, J.; Rose1, S.; Pirgozliev, V. Modification of egg yolk fatty acids profile by using dietary linseed oil and grape pomace. Poultry Science Association 106th Annual Meeting Abstracts. Poultry Sci. 2017, 96, 166. [Google Scholar]
- Olteanu, M.; Criste, R.D.; Panaite, T.D.; Ropota, M.; Vlaicu, P.A.; Turcu, R.P.; Soica, C.; Visinescu, P. Preservation of egg quality using grape pomace cakes as a natural antioxidant in the diets of laying hens enriched in omega 3 fatty acids. Sci. P. Anim. Sci. S. Lucrări Ştiinţifice—Ser. Zooteh. 2019, 72, 54–59. [Google Scholar]
- Ceylan, N.; Ciftçi, I.; Mizrak, C.; Kahraman, Z.; Efil, H. Influence of different dietary oil sources on performance and fatty acid profile of egg yolk in laying hens. J. Anim. Feed Sci. 2011, 20, 71–83. [Google Scholar] [CrossRef] [Green Version]
- Çelik, L.T.; Kutlu, H.R.; Sahan, Z.; Kiraz, A.B.; Serbester, U.; Hesenov, A. Effects of the dietary flax or grape seed oils on the egg yolk fatty acid composition and on the n-3/n-6 polyunsaturated fatty acid ratio in laying hens. Rev. Med. Vet. 2011, 162, 297–303. [Google Scholar]
- Ayerza, R.; Coates, W. Dietary levels of Chia: Influence on yolk cholesterol, lipid content and fatty acid composition for two strains of hens. Poultry Sci. 2000, 79, 724–739. [Google Scholar] [CrossRef] [PubMed]
- King, E.J.; Hugo, A.; de Witt, F.H.; van der Merwe, H.J.; Fair, M.D. Effect of dietary fat source on fatty acid profile and lipid oxidation of eggs. S. Afr. J. Anim. Sci. 2012, 42, 503–506. [Google Scholar] [CrossRef] [Green Version]
- Cimrin, T.; Avsaroglu, M.D.; Ivgin Tunca, R.; Kandir, S.; Ayasan, T. Effects of the dietary supplementation of layer diets with natural and synthetic antioxidant additives on yolk lipid peroxidation and fatty acid composition of eggs stored at different temperatures and duration. Braz. J. Poultry Sci. 2019, 21, 1–8. [Google Scholar] [CrossRef]
- Boruta, A.; Niemiec, J. The effect of diet composition and length of storing eggs on changes in the fatty acid profile of egg yolk. J. Anim. Feed Sci. 2005, 14, 427–430. [Google Scholar] [CrossRef]
- Sasyte, V.; Grashorn, M.A.; Klementaviciute, J.; Viliene, V.; Raceviciute-Stupeliene, A.; Gruzauskas, R.; Dauksiene, A.; Alijosius, S. Effect of extruded full-fat rapeseed on egg quality in laying hens. Eur. Poultry Sci. 2017, 81, 201. [Google Scholar]
- Buckiuniene, V.; Alencikiene, G.; Miezeliene, A.; Raceviciute-Stupeliene, A.; Bliznikas, S.; Gruzauskas, R. Effect of sunflower and rapeseed oil, organic and inorganic selenium and vitamin E in the diet on yolk fatty acids profile, malondialdehydes concentration and sensory quality of laying hens eggs. Vet. Med. Zoot. 2018, 76, 21–28. [Google Scholar]
- Pike, O.A.; Peng, I.C. Stability of shell egg and liquid yolk to lipid oxidation. Poultry Sci. 1985, 64, 1470–1475. [Google Scholar] [CrossRef]
- Venglovská, K.; Grešáková, L.; Plachá, I.; Ryzner, M.; Čobanová, K. Effects of feed supplementation with manganese from its different sources on performance and egg parameters of laying hens. Czech J. Anim. Sci. 2014, 59, 147–155. [Google Scholar] [CrossRef] [Green Version]
- Sahin, K.; Akdemir, F.; Orhan, C.; Tuzcu, M.; Hayirli, A.; Sahin, N. Effects of dietary resveratrol supplementation on egg production and antioxidant status. Poultry Sci. 2010, 89, 1190–1198. [Google Scholar] [CrossRef]
- Chamorro, S.; Romero, C.; Brenes, A.; Sánchez-Patán, F.; Bartolomé, B.; Viveros, A.; Arija, I. Impact of a sustained consumption of grape extract on digestion, gut microbial metabolism and intestinal barrier in broiler chickens. Food Funct. 2019, 10, 1444–1454. [Google Scholar] [CrossRef] [Green Version]
- Alldritt, I.; Whitham-Agut, B.; Sipin, M.; Studholme, J.; Trentacoste, A.; Tripp, J.A.; Cappai, M.G.; Ditchfield, P.; Devièse, T.; Hedges, R.E.M.; et al. Metabolomics reveals diet-derived plant polyphenols accumulate in physiological bone. Sci. Rep. 2019, 9, 8047. [Google Scholar] [CrossRef] [PubMed]
- Iglesias, J.; Pazos, M.; Torres, J.L.; Medina, I. Antioxidant mechanism of grape procyanidins in muscle tissues: Redox interactions with endogenous ascorbic acid and α-tocopherol. Food Chem. 2012, 134, 1767–1774. [Google Scholar] [CrossRef] [PubMed]
Nutrients | Grape Pomace Composition |
---|---|
Humidity | 8.2 ± 0.06 |
Crude protein | 11.8 ± 0.08 |
Ether extract | 7.5 ± 0.19 |
Crude fibre | 14.6 ± 0.16 |
Neutral-detergent fibre | 32.8 ± 1.78 |
Acid-detergent fibre | 27.3 ± 1.47 |
Acid-detergent lignin | 21.4 ± 1.87 |
Gross energy (kcal/kg) | 4539 ± 9.9 |
Total extractable polyphenols (g gallic acid equivalents/100 g DM 1) | 8.08 ± 0.06 |
Ingredients | Experimental Diets | ||||
---|---|---|---|---|---|
Control | GP 1 30 | GP 60 | GE 2 0.5 | GE 1.0 | |
Corn | 547.5 | 515.4 | 483.6 | 547.5 | 547.5 |
Soybean | 222.8 | 235.3 | 247.8 | 222.8 | 222.8 |
Sunflower meal | 80.0 | 60.0 | 39.8 | 80.0 | 80.0 |
Sunflower oil | 31.9 | 42.2 | 52.5 | 31.9 | 31.9 |
Grape pomace | − | 30.0 | 60.0 | − | − |
Grape extract | − | − | − | 0.50 | 1.0 |
Salt | 3.4 | 3.4 | 3.3 | 3.4 | 3.4 |
Monocalcium phosphate | 12.7 | 12.8 | 12.8 | 12.7 | 12.7 |
Calcium carbonate | 85.7 | 85.2 | 84.8 | 85.7 | 85.7 |
Vitamin–mineral premix 3 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 |
L-Lysine | 0.88 | 0.48 | 0.09 | 0.88 | 0.88 |
DL-Methionine | 0.11 | 0.20 | 0.28 | 0.11 | 0.11 |
Vitamin E (mg/kg) | 100 | − | − | − | − |
Celite 4 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 |
Analysed composition | |||||
Crude protein | 180 | 174 | 169 | 181 | 174 |
Crude fibre | 66.5 | 70.2 | 71.3 | 65.7 | 66.1 |
Neutral-detergent fibre | 123.0 | 124.2 | 128.8 | 120.7 | 118.5 |
Total extractable polyphenols (g GAE 5/kg) | 2.50 | 4.91 | 7.42 | 2.65 | 2.86 |
Calculated composition | |||||
Grape extractable polyphenols (g GAE/kg) 6 | − | 2.42 | 4.85 | 0.148 | 0.296 |
AME 7 (kcal/kg) | 2750 | 2750 | 2750 | 2750 | 2750 |
Ether extract | 57.5 | 68.8 | 80.1 | 57.5 | 57.5 |
Calcium | 37.0 | 37.0 | 37.0 | 37.0 | 37.0 |
Available P | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 |
Sodium | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 |
Lysine | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 |
Meth + Cys | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 |
Diets | Daily Egg Production (%) | Average Egg Weight (g) | Daily Egg Mass (g/d) | Feed Intake (g/d) | Feed Conversion Ratio (g feed/g Egg Mass) |
---|---|---|---|---|---|
Control | 82.3 | 68.5 a | 56.4 | 125.3 a | 2.18 a |
GP 30 | 82.6 | 67.4 b | 55.6 | 122.3 b | 2.15 ab |
GP 60 | 85.7 | 67.6 b | 57.8 | 120.5 bc | 2.07 bc |
GE 0.5 | 84.9 | 67.4 b | 56.9 | 118.8 c | 2.05 c |
GE 1.0 | 83.6 | 68.6 a | 57.2 | 121.9 b | 2.11 abc |
SEM 1 | 1.40 | 0.279 | 1.01 | 0.971 | 0.030 |
p-value 2 | ns | ** | ns | *** | * |
Diets | Proportion of XL 1 Eggs (%) | Proportion of L Eggs (%) | Proportion of M Eggs (%) | Proportion of S Eggs (%) | Proportion of Unmarketable 2 Eggs (%) |
---|---|---|---|---|---|
Control 3 | 21.1 ab | 72.2 | 6.49 c | 0.209 | 3.60 |
GP 30 | 14.8 c | 72.1 | 12.9 a | 0.198 | 3.96 |
GP 60 | 15.1 c | 72.5 | 12.2 ab | 0.243 | 2.90 |
GE 0.5 | 16.2 bc | 68.4 | 15.2 a | 0.242 | 2.37 |
GE 1.0 | 22.7 a | 68.6 | 8.49 bc | 0.210 | 3.21 |
p-value 4 | ** | ns | *** | ns | ns |
Diets | Yolk Colour Score | Haugh Units | Shell Thickness (μm) |
---|---|---|---|
Control | 7.34 c | 76.4 b | 363.0 |
GP 30 | 7.98 b | 80.6 a | 368.0 |
GP 60 | 8.28 a | 80.2 a | 365.1 |
GE 0.5 | 8.06 ab | 77.0 b | 368.6 |
GE 1.0 | 8.18 ab | 81.6 a | 361.2 |
SEM 1 | 0.089 | 1.02 | 3.98 |
p-value 2 | *** | *** | ns |
Diets | Saturated Fatty Acids (%) | Monounsaturated Fatty Acids (%) | Polyunsaturated Fatty Acids (%) | ω-6 Fatty Acids (%) | ω-3 Fatty Acids (%) | Ratio ω-6/ω-3 |
---|---|---|---|---|---|---|
Control | 32.9 ab | 41.4 ab | 25.7 bc | 24.8 bc | 0.682 a | 36.4 d |
GP 30 | 32.2 c | 41.6 ab | 26.2 b | 25.3 b | 0.627 c | 40.4 b |
GP 60 | 31.6 d | 39.5 c | 28.9 a | 28.0 a | 0.617 c | 45.4 a |
GE 0.5 | 32.6 bc | 40.7 b | 26.7 b | 25.8 b | 0.680 a | 37.9 c |
GE 1.0 | 33.0 a | 42.0 a | 25.0 c | 24.1 c | 0.657 b | 36.7 cd |
SEM 1 | 0.128 | 0.348 | 0.375 | 0.365 | 0.0075 | 0.457 |
p-value 2 | *** | *** | *** | *** | *** | *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romero, C.; Arija, I.; Viveros, A.; Chamorro, S. Productive Performance, Egg Quality and Yolk Lipid Oxidation in Laying Hens Fed Diets including Grape Pomace or Grape Extract. Animals 2022, 12, 1076. https://doi.org/10.3390/ani12091076
Romero C, Arija I, Viveros A, Chamorro S. Productive Performance, Egg Quality and Yolk Lipid Oxidation in Laying Hens Fed Diets including Grape Pomace or Grape Extract. Animals. 2022; 12(9):1076. https://doi.org/10.3390/ani12091076
Chicago/Turabian StyleRomero, Carlos, Ignacio Arija, Agustin Viveros, and Susana Chamorro. 2022. "Productive Performance, Egg Quality and Yolk Lipid Oxidation in Laying Hens Fed Diets including Grape Pomace or Grape Extract" Animals 12, no. 9: 1076. https://doi.org/10.3390/ani12091076
APA StyleRomero, C., Arija, I., Viveros, A., & Chamorro, S. (2022). Productive Performance, Egg Quality and Yolk Lipid Oxidation in Laying Hens Fed Diets including Grape Pomace or Grape Extract. Animals, 12(9), 1076. https://doi.org/10.3390/ani12091076