Creatinine as a Urinary Marker of the Purine Derivatives Excretion in Urine Spot Samples of Lambs Fed Peach Palm Meal
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Care
2.2. Experimental Design
2.3. Diet and Feeding
2.4. Collection and Laboratory Analyses
2.5. Calculations
2.6. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murillo, M.; Kroneberg, A.; Mata, J.F.; Calzada, J.G.; Castro, V. Estudio preliminar sobre factores inhibidores de enzimas proteolíticas en la harina de pejibaye (Bactris gasipaes). Rev. Biol. Trop. 1983, 31, 227–231. [Google Scholar]
- Murillo, M.G.; Zumbado, M.; Cooz, A.E.; Espinoza, A. Evaluacíon de la harina de pejibaye (Bactris gasipaes) en dietas para pollas de reemplazo durante el periodo de iniciacíon y engallinas ponedoras al início de postura. Agron. Costarric. 1991, 15, 135–141. [Google Scholar]
- Mora-Kopper, S.; Mora-Urpi, J.; Mata-Sagrada, J. Lipolytic activity in meals of pejibaye palm fruit (Bactris gasipaes, Palmae). Rev. Biol. Trop. 1997, 44, 597–599. [Google Scholar]
- Gómez, G.; Vargas, R.; Quesada, S. Crecimiento y conversión alimenticia de ratas Sprague Dawley sometidas a la ingesta de extractos acuosos de pejibaye (Bactris gasipaes). Agron. Costarric. 1998, 22, 185–190. [Google Scholar]
- Santos, A.B.; Pereira, M.L.; Silva, H.G.; Carvalho, G.G.; Pereira, T.C.; Ribeiro, L.S.; Azevedo, J.A.; Silva, M.G.; Sousa, L.B.; Sousa, L.B.; et al. Intake, digestibility and performance of lambs fed diets containing peach palm meal. Trop. Anim. Health Prod. 2016, 48, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.B.; Pereira, M.L.; Silva, H.G.; Pereira, T.C.; Ribeiro, L.S.; Azevêdo, J.A.; Sousa, L.B.; Sousa, L.B.; Silva, S.N.; Ferreira, F.A.; et al. Feeding behavior of lambs fed diets containing peach palm meal. Semin. Cienc. Agrar. 2016, 37, 1629. [Google Scholar] [CrossRef] [Green Version]
- Cabanac, M. Palatability of Food and the Ponderostat. Ann. N. Y. Acad. Sci. 1989, 575, 340–352. [Google Scholar] [CrossRef]
- Henry, B.A.; Tilbrook, A.J.; Dunshea, F.R.; Rao, A.; Blache, D.; Martin, G.B.; Clarke, I.J. Long-Term Alterations in Adiposity Affect the Expression of Melanin-Concentrating Hormone and Enkephalin But Not Proopiomelanocortin in the Hypothalamus of Ovariectomized Ewes1. Endocrinology 2000, 141, 1506–1514. [Google Scholar] [CrossRef]
- Sugino, T.; Hasegawa, Y.; Kurose, Y.; Kojima, M.; Kangawa, K.; Terashima, Y. Effects of ghrelin on food intake and neuroendocrine function in sheep. Anim. Reprod. Sci. 2004, 82–83, 183–194. [Google Scholar] [CrossRef]
- Archer, Z.A. Hypothalamic responses to peripheral glucose infusion in food-restricted sheep are influenced by photoperiod. J. Endocrinol. 2005, 184, 515–525. [Google Scholar] [CrossRef]
- Herness, S.; Zhao, F. The neuropeptides CCK and NPY and the changing view of cell-to-cell communication in the taste bud. Physiol. Behav. 2009, 7, 581–591. [Google Scholar] [CrossRef] [PubMed]
- Fulton, S. Appetite and reward. Front. Neuroendocrinol. 2009, 31, 85–103. [Google Scholar] [CrossRef] [PubMed]
- Dotson, C.D.; Geraedts, M.C.P.; Munger, S.D. Peptide regulators of peripheral taste function. Semin. Cell Dev. Biol. 2013, 24, 232–239. [Google Scholar] [CrossRef] [Green Version]
- Crespo, S.C.; Cachero, A.P.; Jiménez, L.P.; Barrios, V.; Ferreiro, E.A. Peptides and Food Intake. Front. Endocrinol. 2014, 5, 58. [Google Scholar] [CrossRef] [Green Version]
- Foradori, C.D.; Whitlock, B.K.; Daniel, J.A.; Zimmerman, A.D.; Jones, M.A.; Read, C.C.; Steele, B.P.; Smith, J.T.; Clarke, L.J.; Elsasser, T.H.; et al. Kisspeptin Stimulates Growth Hormone Release by Utilizing Neuropeptide Y Pathways and Is Dependent on the Presence of Ghrelin in the Ewe. Endocrinology 2017, 158, 3526–3539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Felice, E.; Giaquinto, D.; Damiano, S.; Salzano, A.; Fabroni, S.; Ciarcia, R.; Scocco, P.; Girolamo, P.; D’Angelo, L. Distinct Pattern of NPY in Gastro–Entero–Pancreatic System of Goat Kids Fed with a New Standardized Red Orange and Lemon Extract (RLE). Animals 2021, 11, 449. [Google Scholar] [CrossRef]
- Chen, X.L.; Kuepfer, M.M.; Westfall, T.C. Hemodynamic and sympathetic effects of spinal administration of neuropeptide Y in rats. Am. J. Physiol.-Heart Circ. Physiol. 1990, 259, H1674–H1680. [Google Scholar] [CrossRef]
- Martin, J.R.; Knuepfer, M.M.; Beinfeld, M.C.; Westfall, T.C. Mechanism of pressor response to posterior hypothalamic injection of neuropeptide Y. Am. J. Physiol.-Heart Circ. Physiol. 1989, 257, H791–H798. [Google Scholar] [CrossRef]
- Miner, J.L.; Della-Fera, M.A.; Paterson, J.A.; Baile, C.A. Lateral cerebroventricular injection of neuropeptide Y stimulates feeding in sheep. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1989, 257, R383–R387. [Google Scholar] [CrossRef]
- Matsumura, K.; Tsuchihashi, T.; Abe, I. Central Cardiovascular Action of Neuropeptide Y in Conscious Rabbits. Hypertension 2000, 36, 1040–1044. [Google Scholar] [CrossRef] [Green Version]
- Roberts, T.J.; Caston-Balderrama, A.; Nijland, M.J.; Ross, M.G. Central neuropeptide Y stimulates ingestive behavior and increases urine output in the ovine fetus. Am. J. Physiol.-Endocrinol. Metab. 2000, 279, E494–E500. [Google Scholar] [CrossRef] [PubMed]
- Michel, M.C. Neuropeptide Y and Related Peptides. In Handbook of Experimental Pharmacology; Levens, N.R., Feletou, M., Galizziv, J.P., Fauchere, L.N., Della-Zuana, O., Lonchampt, M., Eds.; Springer: Suresnes, France, 2004. [Google Scholar] [CrossRef]
- Ezzat, H.; Wahab Saeed, S.A.; Abouelsaad, H.A.; Teama, N.M. Assessment of the Association between Neuropeptide Y and Chronic Kidney Disease Progression. Egypt. J. Hosp. Med. 2020, 80, 986–989. [Google Scholar] [CrossRef]
- Pitts, R.F. Physiology of the Kidney and Body Fluids, 3rd ed.; Year Book Medical Publishers, Inc.: Chicago, IL, USA, 1974; p. 315. [Google Scholar]
- Muszczyñski, Z.; Skotnicka, E.; Jankowiak, D. Diurnal variations of renal activity in goats. Turk. J. Vet. Anim. Sci. 2015, 39, 455–464. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.B.; Chen, Y.K.; Franklin, M.F.; Ørskov, E.R.; Shand, W.J. The effect of feed intake and body weight on purine derivative excretion and microbial protein supply in sheep. J. Anim. Sci. 1992, 70, 1534–1542. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Deng, K.D.; Tu, Y.; Jiang, C.G.; Zhang, N.F.; Li, Y.L.; Si, B.; Lou, C.; Diao, Q. Effect of dietary concentrate: Forage ratios and undegraded dietary protein on nitrogen balance and urinary excretion of purine derivatives in Dorper × thin-tailed Han crossbred lambs. Asian Australas. J. Anim. Sci. 2014, 27, 161–168. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.W.; Mi, J.D.; Degen, A.A.; Ding, L.M.; Guo, X.S.; Shang, Z.H.; Long, R.J. Urinary purine derivatives excretion, rumen microbial nitrogen synthesis and the efficiency of utilization of recycled urea in Tibetan and fine-wool sheep. Anim. Feed Sci. Technol. 2017, 227, 24–31. [Google Scholar] [CrossRef]
- Hristov, A.N.; Bannink, A.; Crompton, L.A.; Huhtanen, P.; Kreuzer, M.; McGee, M.; Nozière, P.; Reynolds, C.K.; Bayat, A.R.; Yáñez-Ruiz, D.R.; et al. Invited review: Nitrogen in ruminant nutrition: A review of measurement techniques. J. Dairy Sci. 2019, 102, 5811–5852. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.B.; Jayasuriya, M.C.N.; Makkar, H.P.S. Measurement and application of purine derivatives: Creatinine ratio in spot urine samples of ruminants. In Estimation of Microbial Protein Supply in Ruminants Using Urinary Purine Derivatives; Makkar, H.P.S., Chen, X.B., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004; pp. 167–179. [Google Scholar] [CrossRef]
- Cetinkaya, N.; Yaman, S.; Baber, N.H.O. The use of purine derivatives/creatinine ratio in spot urine samples as an index of microbial protein supply in Yerli Kara crossbred cattle. Livest. Sci. 2006, 100, 91–98. [Google Scholar] [CrossRef]
- George, S.K.; Verma, A.K.; Mehra, U.R.; Dipu, M.T.; Singh, P. Evaluation of purine metabolites-creatinine index to predict the rumen microbial protein synthesis from urinary spot samples in Barbari goats. J. Anim. Feed Sci. 2011, 20, 509–525. [Google Scholar] [CrossRef] [Green Version]
- Santos, S.A.; Prates, L.L.; Carvalho, G.G.P.; Santos, A.C.S.; Valadares Filho, S.C.; Tosto, M.S.L.; Mariz, L.D.S.; Neri, F.S.; Sampaio, M.Q. Creatinine as a metabolic marker to estimate urinary volume in growing goats. Small Rumin. Res. 2017, 154, 105–109. [Google Scholar] [CrossRef]
- Santos, A.C.S.; Santos, S.A.; Carvalho, G.G.P.; Mariz, L.D.S.; Tosto, M.S.L.; Valadares Filho, S.C.; Azevedo, J.A.G. A comparative study on the excretion of urinary metabolites in goats and sheep to evaluate spot sampling applied to protein nutrition trials. J. Anim. Sci. 2018, 96, 3381–3397. [Google Scholar] [CrossRef] [PubMed]
- NRC. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids and New World Camelids; National Academies Press: Washington, DC, USA, 2007. [Google Scholar]
- Association of Official Analytical Chemists. Official Methods of Analysis, 18th ed.; AOAC Int.: Washington, DC, USA, 2010. [Google Scholar]
- Mertens, D.R.; Allen, M.; Carmany, J.; Clegg, J.; Davidowicz, A.; Drouches, M.; Frank, K.; Gambin, D.; Garkie, M.; Gildemeister, B.; et al. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: Collaborative study. J. AOAC Int. 2002, 85, 1217–1240. [Google Scholar] [PubMed]
- Licitra, G.; Hernandez, T.M.; Van Soest, P.J. Standardization of procedures for nitrogen fractionation of ruminant feed. Anim. Feed Sci. Technol. 1996, 57, 347–358. [Google Scholar] [CrossRef]
- Detmann, E.; Souza, M.A.; Valadares Filho, S.C.; Queiroz, C.; Berchielli, T.T.; Saliba, E.O.S.; Cabral, L.S.; Pina, D.S.; Ladeira, M.M.; Azevedo, J.A.G. Methods for Food Analysis; INCT Animal Science Suprema Publisher: Visconde do Rio Branco, MG, Brazil, 2012. [Google Scholar]
- Hall, M.B. Challenges with non-fiber carbohydrate methods. J. Anim. Sci. 2003, 81, 3226–3232. [Google Scholar] [CrossRef] [PubMed]
- Detmann, E.; Valadares Filho, S.C. On the estimation of non-fibrous carbohydrates in feeds and diets. Arq. Bras. Med. Veterinária Zootec. 2010, 62, 980–984. [Google Scholar] [CrossRef]
- Weiss, W. Energy prediction equations for ruminant. In Cornell Nutrition Conference for Feed Manufacturers; Proceedings Maizeell University: Ithaca, NY, USA, 1999; pp. 176–185. [Google Scholar]
- Yañez-Ruiz, D.R.; Moumen, A.; Martin Garcia, A.I.; Molina Alcaide, E. Ruminal fermentation and degradation patterns protozoa population, and urinary purine derivatives excretion in goats and wethers fed diets based on two-stage olive cake: Effect of PEG supply. J. Anim. Sci. 2004, 82, 2023–2032. [Google Scholar] [CrossRef] [PubMed]
- Chizzotti, M.L.; Valadares Filho, S.C.; Valadares, R.F.D.; Chizzotti, F.H.M.; Tedeschi, L.O. Determination of creatinine excretion and evaluation of spot urine sampling in Holstein cattle. Livest. Sci. 2008, 113, 218–225. [Google Scholar] [CrossRef]
- Gonda, H.L.; Lindberg, J.E. Evaluation of dietary nitrogen utilization in dairy cows based on urea concentrations in blood, urine and milk, and on urinary concentration of purine derivatives. Acta Agric. Scand. 1994, 44, 236–245. [Google Scholar] [CrossRef]
- SAS. SAS User’s Guide; Version 9.1.; SAS Institute Inc.: Cary, NC, USA, 2006. [Google Scholar]
- Quaranta, A.; D’ Alessandro, A.G.; Frate, A.; Colella, G.E.; Martemucci, G.; Casamassina, D. Behavioural response towards twelve feedstuffs in lambs. Small Rumin. Res. 2006, 64, 60–66. [Google Scholar] [CrossRef]
- Jöbstl, E.; O’Connell, J.; Fairclough, J.P.A.; Williamson, M.P. Molecular Model for Astringency Produced by Polyphenol/Protein Interactions. Biomacromolecules 2004, 5, 942–949. [Google Scholar] [CrossRef]
- Rojas-Garbanzo, C.; Pérez, A.M.; Vaillant, F.; Pineda-Castro, M.L. Physicochemical and antioxidant composition of fresh peach palm (Bactris gasipaes Kunth) fruits in Costa Rica. Braz. J. Food Technol. 2016, 19, e2015097. [Google Scholar] [CrossRef]
- Anukulkitch, C.; Rao, A.; Pereira, A.; McEwan, J.; Clarke, I.J. Expression of Genes for Appetite-Regulating Peptides in the Hypothalamus of Genetically Selected Lean and Fat Sheep. Neuroendocrinology 2010, 91, 223–238. [Google Scholar] [CrossRef]
- Bischoff, A.; Michel, M.C. Renal effects of neuropeptide Y. Pflug. Arch. Eur. J. Physiol. 1998, 435, 443–453. [Google Scholar] [CrossRef] [PubMed]
- Winaver, J.; Abassi, Z. Role of neuropeptide Y in the regulation of kidney function. Exp. Suppl. 2006, 95, 123–132. [Google Scholar] [CrossRef]
- Skotnicka, E.; Muszczyñski, Z.; Dudzinska, W.; Suska, M. A review of the renal system and diurnal variations of renal activity in livestock. Ir. Vet. J. 2007, 60, 161–168. [Google Scholar] [CrossRef] [Green Version]
- Ergene, N.; Pickering, E.C. The effects of urea infusion on glomerular filtration rate and renal plasma flow in sheep fed low and high protein diets. Q. J. Exp. Phisiology 1978, 63, 67–76. [Google Scholar] [CrossRef] [Green Version]
- Marini, J.C.; Sands, J.M.; Van Amburgh, M.E. Urea transporters and urea recycling in ruminants. In Ruminant Physiology: Digestion, Metabolism and Impact of Nutrition on Gene Expression, Immunology and Stress; Sejrsen, K., Hvelplund, T., Nielsen, M.O., Eds.; Wageningen Academic Publishers: Wageningen, Holanda, 2008; pp. 155–171. [Google Scholar] [CrossRef]
- Kiani, A.; Alstrup, L.; Nielsen, M.O. Differential metabolic and endocrine adaptations in llamas, sheep, and goats fed high-and low-protein grass-based diets. Domest. Anim. Endocrinol. 2015, 53, 9–16. [Google Scholar] [CrossRef]
- Fujihara, T.; Ørskov, E.R.; Reeds, P.J.; Kyle, D.J. The effect of protein infusion on urinary excretion of purine derivatives in ruminants nourished by intragastric nutrition. J. Agric. Sci. 1987, 109, 7–12. [Google Scholar] [CrossRef]
- Balcells, J.; Guada, J.A.; Castrillo, C.; Gasa, J. Urinary excretion of allantoin and allantoin precursors by sheep after different rates of purine infusion into the duodenum. J. Agric. Sci. 1991, 116, 309–317. [Google Scholar] [CrossRef]
- Braun, J.P.; Trumel, C.; Bézille, P. Clinical biochemistry in sheep: A selected review. Small Rumin. Res. 2010, 92, 10–18. [Google Scholar] [CrossRef]
- Zoccali, C.; D’arrigo, G.; Leonardis, D.; Pizzini, P.; Postorino, M.; Tripepi, G.; Mallamaci, F. Neuropeptide Y and chronic kidney disease progression: A cohort study. Nephrol. Dial. Transpl. 2018, 33, 1805–1812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stricker-Krongrada, A.; Cumin, F.; Burlet, C.; Beck, B. Hypothalamic neuropeptide Y and plasma leptin after long-term high-fat feeding in the rat. Neurosci. Lett. 1998, 254, 157–160. [Google Scholar] [CrossRef]
- George, S.K.; Dipu, M.T.; Mehra, U.R.; Verma, A.K.; Singh, P. Influence of level of feed intake on concentration of purine derivatives in urinary spot samples and microbial nitrogen supply in crossbred bulls. Asian-Australas. J. Anim. Sci. 2006, 19, 1291–1297. [Google Scholar] [CrossRef]
- Nsahlai, I.V.; Osuji, P.O.; Umunna, N.N. Effect of form and of quality of feed on the concentrations of purine derivatives in urinary spot samples, daily microbial N supply and predictability of intake. Anim. Feed Sci. Technol. 2000, 85, 223–238. [Google Scholar] [CrossRef]
- Santos, A.B.; Pereira, M.L.A.; Silva, H.G.O.; Carvalho, G.G.P.; Ribeiro, L.S.O.; Pereira, T.C.J.; Almeida, P.J.P. Nitrogen metabolism in lambs fed diets containing peach palm meal. Trop. Anim. Health Prod. 2016, 48, 1491–1495. [Google Scholar] [CrossRef]
- Kozloski, G.V.; Stefanello, C.M.; Oliveira, L.; Filho, H.R.; Klopfenstein, T.J. Evaluation of urinary purine derivatives in comparison with duodenal purines for estimating rumen microbial protein supply in sheep. J. Anim. Sci. 2017, 95, 884–891. [Google Scholar] [CrossRef]
- Cutrignelli, M.I.; Piccolo, G.; D’Urso, S.; Calabrò, S.; Bovera, F.; Tudisco, R.; Infascelli, F. Urinary excretion of purine derivatives in dry buffalo and Fresian cows. Ital. J. Anim. Sci. 2007, 6 (Suppl. S2), 563–566. [Google Scholar] [CrossRef] [Green Version]
- Thanh, V.T.; Phuong, D.T.; Hong, T.T.; Luu, P.T.; Dung, N.M.; Hung, H.Q. Comparison of purine derivatives and creatinine in plasma and urine between local cattle and buffaloes in Vietnam. In Estimation of Microbial Protein Supply in Ruminants Using Urinary Purine Derivatives; Makkar, H.P.S., Chen, X.B., Eds.; Kluwer Academic Publishers: Hue, Vietname, 2004; pp. 75–85. [Google Scholar]
- Pereira, M.L.A.; Pereira, T.C.J.; Silva, H.G.O.; Cruz, J.F.; Almeida, P.J.P.; Santos, A.B.; Santos, E.J.; Peixoto, C.A.M. Substitution of corn by mesquite pod meal in pellet diets for lambs: Nitrogen compounds metabolism. In 4th International Symposium on Energy and Protein Metabolism and Nutrition in Sustainable Animal Production; EAAP Publication: Sacramento, CA, USA, 2013; Volume 134, pp. 93–94. [Google Scholar] [CrossRef]
- Chen, X.B.; Mejia, A.T.; Kyle, D.J.; Ørskov, E.R. Evaluation of the use of the purine derivative: Creatinine ratio in spot urine and plasma samples as an index of microbial protein supply in ruminants: Studies in sheep. J. Agric. Sci. 1995, 125, 137–143. [Google Scholar] [CrossRef]
Replacing Level, % of DM | ||||||||
---|---|---|---|---|---|---|---|---|
Ingredient compostion | 0 | 10 | 40 | 60 | 85 | |||
Tifton 85 hay | 300 | 300 | 300 | 300 | 300 | |||
Maize meal | 508 | 457 | 298 | 204 | 77 | |||
Peach palm meal | 0 | 51 | 210 | 304 | 431 | |||
Soybean meal | 177 | 177 | 177 | 177 | 177 | |||
Mineral salt 1 | 15 | 15 | 15 | 15 | 15 | |||
Chemical composition | Tifton 85 hay | Peach palm meal | Experimental Diets | |||||
0 | 10 | 40 | 60 | 85 | ||||
DM | 921 | 926 | 929 | 925 | 928 | 922 | 927 | |
OM | 920 | 968 | 935 | 931 | 935 | 932 | 935 | |
Ash | 80 | 32 | 65 | 69 | 65 | 68 | 65 | |
CP | 55 | 80 | 135 | 135 | 139 | 137 | 149 | |
NDIP | 308 | 116 | 316 | 325 | 295 | 313 | 268 | |
ADIP | 229 | 201 | 206 | 200 | 212 | 209 | 179 | |
EE | 20 | 136 | 42 | 37 | 50 | 54 | 65 | |
TC | 839 | 752 | 752 | 746 | 734 | 740 | 725 | |
NFC | 24 | 624 | 288 | 317 | 327 | 368 | 366 | |
NDF | 762 | 116 | 464 | 430 | 407 | 372 | 359 | |
ADF | 470 | 68 | 224 | 224 | 214 | 233 | 231 | |
LIG | 103 | 10 | 33 | 33 | 34 | 33 | 41 | |
TDN a | 477 | 809 | 763 | 710 | 778 | 749 | 779 | |
ME, MJ kg−1 DM b | -- | 9.6 | 11.79 | 11.68 | 12.36 | 12.81 | 12.65 |
Item | Replacing Level, % of DM | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|
0 | 10 | 40 | 60 | 85 | D | L | Q | ||
g d−1 | |||||||||
DMI 1 | 858.0 | 752.0 | 666.0 | 576.0 | 538.0 | 47.7 | 0.029 | 0.002 a | 0.601 |
CPI 2 | 120.0 | 102.0 | 94.0 | 82.2 | 84.0 | 6.65 | 0.059 | 0.006 b | 0.288 |
EEI 3 | 22.52 | 23.34 | 38.22 | 22.82 | 37.79 | 2.56 | 0.805 | 0.807 | 0.627 |
TDNI 4 | 626.0 | 556.0 | 514.0 | 454.0 | 416.0 | 0.04 | 0.098 | 0.008 c | 0.819 |
MJ d−1 | |||||||||
MEI 5 | 9.90 | 7.05 | 8.69 | 4.08 | 6.76 | 0.59 | 0.125 | 0.012 d | 0.786 |
g kg BW−0.75 | |||||||||
DMI 1 | 79.0 | 68.4 | 62.5 | 51.3 | 52.1 | 3.36 | 0.007 | 0.005 e | 0.346 |
CPI 2 | 14.47 | 8.40 | 8.32 | 4.78 | 8.06 | 0.51 | 0.063 | 0.010 f | 0.245 |
EEI 3 | 2.80 | 2.34 | 3.80 | 2.68 | 3.72 | 0.19 | 0.633 | 0.478 | 0.492 |
TDNI 4 | 58.04 | 50.42 | 48.04 | 40.58 | 40.36 | 0.05 | 0.042 | 0.004 g | 0.526 |
MJ kg BW−0.75 | |||||||||
MEI 5 | 1.23 | 0.71 | 0.87 | 0.48 | 0.65 | 0.04 | 0.084 | 0.010 h | 0.540 |
Item | Replacing Level, % of DM | SEM | p-Value | Length of Urine Collection | p-Value | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 10 | 40 | 60 | 85 | D | Linear | Quadratic | 24 h (Day 1) | 48 h (Day 2) | 72 h (Day 3) | 96 h (Day 4) | C | D × C | ||
Urine, L d−1 | 0.90 | 0.82 | 0.55 | 1.06 | 0.86 | 0.10 | 0.008 | 0.614 | 0.008 a | 0.87 | 0.82 | 0.83 | 0.83 | 0.980 | 0.990 |
CC 1 | |||||||||||||||
ml min−1 | 70.8 | 56.2 | 45.9 | 47.4 | 38.7 | 2.18 | <0.0001 | <0.0001 b | 0.071 | 53.8 | 59.4 | 46.9 | 46.8 | 0.032 c | 0.984 |
mL kg BW−0.75 min−1 | 6.66 | 5.37 | 4.33 | 4.31 | 3.64 | 0.20 | <0.0001 | <0.0001 d | 0.099 | 4.99 | 5.55 | 4.45 | 4.48 | 0.038 e | 0.968 |
Creatinine | |||||||||||||||
plasma, mg dl−1 | 0.72 | 0.78 | 0.89 | 0.97 | 1.30 | 0.07 | 0.095 | 0.011 f | 0.358 | ||||||
urine, mg kg BW−1 | 30.5 | 27.9 | 25.9 | 27.9 | 28.4 | 0.49 | 0.016 | 0.125 | 0.004 g | 27.8 | 29.4 | 27.9 | 27.3 | 0.280 | 0.990 |
mmol kg BW−0.75 d−1 | 0.59 | 0.54 | 0.50 | 0.54 | 0.55 | 0.01 | 0.011 | 0.150 | 0.003 h | 0.54 | 0.57 | 0.54 | 0.53 | 0.260 | 0.990 |
Purine derivatives | |||||||||||||||
plasma, mmol L−1 | 1.84 | 1.89 | 1.63 | 1.36 | 1.89 | 0.19 | 0.818 | 0.718 | 0.515 | ||||||
urine, mmol d−1 | 9.79 | 9.50 | 7.76 | 8.13 | 7.20 | 0.31 | <0.0001 | <0.0001 i | 0.562 | 8.28 | 8.55 | 8.58 | 8.51 | 0.919 | 0.986 |
mmol kg BW−0.75 d−1 | 0.89 | 0.88 | 0.73 | 0.72 | 0.70 | 0.02 | <0.0001 | <0.0001 j | 0.304 | 0.77 | 0.79 | 0.79 | 0.78 | 0.971 | 0.972 |
PDC index 1 | 16.9 | 18.8 | 16.5 | 15.6 | 14.2 | 0.75 | 0.139 | 0.034 | 0.271 | 15.3 | 15.2 | 17.1 | 17.9 | 0.241 | 0.873 |
Item | Replacing Level, % of DM | SEM | p-Value | Time of Urine Collection, h | Day1 | SEM | p-Value | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 10 | 40 | 60 | 85 | D | 4 | 8 | 12 | 16 | 20 | 24 | T | D × T | ||||
Urine1, L d−1 | 1.30 | 0.85 | 0.71 | 1.43 | 1.08 | 0.11 | 0.009 a | 1.11 | 1.08 | 1.13 | 1.35 | 0.88 | 0.88 | 0.87 | 0.07 | 0.314 | 0.911 |
Purine derivatives 1 | |||||||||||||||||
mmol d−1 | 9.51 | 12.52 | 9.96 | 8.05 | 8.37 | 0.61 | 0.0001 b | 9.73 | 8.39 | 9.29 | 10.91 | 9.36 | 10.41 | 8.28 | 0.34 | 0.132 | 0.762 |
mmolkgBW−0.75 d−1 | 0.88 | 1.16 | 0.93 | 0.74 | 0.80 | 0.05 | 0.0002 c | 0.94 | 0.77 | 0.87 | 0.99 | 0.87 | 0.96 | 0.77 | 0.03 | 0.138 | 0.805 |
PDC index 2 | 18.0 | 22.4 | 17.6 | 14.3 | 16.3 | 1.40 | 0.004 d | 19.9 | 15.3 | 16.5 | 19.5 | 16.6 | 18.4 | 16.2 | 0.68 | 0.282 | 0.937 |
Item | Replacing Level, % of DM | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|
0 | 10 | 40 | 60 | 85 | D | Linear | Quadratic | ||
Purine Derivatives 1 | |||||||||
mmol d−1 | 13.1 | 11.9 | 9.5 | 7.8 | 6.3 | 0.87 | 0.054 | 0.004 a | 0.987 |
mmol kg BW−0.75 d−1 | 1.29 | 1.12 | 0.90 | 0.72 | 0.62 | 0.09 | 0.038 | 0.003 b | 0.734 |
PDC index 2 | 21.3 | 24.9 | 16.7 | 13.4 | 23.3 | 0.68 | 0.636 | 0.698 | 0.445 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, T.C.d.J.; Pereira, M.L.A.; Carvalho, G.G.P.d.; Silva, H.G.d.O.; dos Santos, A.B.; Pina, D.d.S.; Sousa, L.B. Creatinine as a Urinary Marker of the Purine Derivatives Excretion in Urine Spot Samples of Lambs Fed Peach Palm Meal. Animals 2022, 12, 1195. https://doi.org/10.3390/ani12091195
Pereira TCdJ, Pereira MLA, Carvalho GGPd, Silva HGdO, dos Santos AB, Pina DdS, Sousa LB. Creatinine as a Urinary Marker of the Purine Derivatives Excretion in Urine Spot Samples of Lambs Fed Peach Palm Meal. Animals. 2022; 12(9):1195. https://doi.org/10.3390/ani12091195
Chicago/Turabian StylePereira, Taiala Cristina de Jesus, Mara Lúcia Albuquerque Pereira, Gleidson Giordano Pinto de Carvalho, Herymá Giovane de Oliveira Silva, Alana Batista dos Santos, Douglas dos Santos Pina, and Leandro Borges Sousa. 2022. "Creatinine as a Urinary Marker of the Purine Derivatives Excretion in Urine Spot Samples of Lambs Fed Peach Palm Meal" Animals 12, no. 9: 1195. https://doi.org/10.3390/ani12091195
APA StylePereira, T. C. d. J., Pereira, M. L. A., Carvalho, G. G. P. d., Silva, H. G. d. O., dos Santos, A. B., Pina, D. d. S., & Sousa, L. B. (2022). Creatinine as a Urinary Marker of the Purine Derivatives Excretion in Urine Spot Samples of Lambs Fed Peach Palm Meal. Animals, 12(9), 1195. https://doi.org/10.3390/ani12091195