Does Stocking Density Affect Growth Performance and Hematological Parameters of Juvenile Olive Flounder Paralichthys olivaceus in a Recirculating Aquaculture System?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental System Design and Culture Environment
2.2. Culture Management and Hematological Analyses
- Feed conversion = feed consumption/weight gain;
- Specific growth rate (%/day) = ((ln final fish weight–ln initial fish weight)/number of culture days) × 100;
- Daily feed intake rate (%/day) = specific growth rate × feed conversion;
- Survival rate (%) = (number of surviving fish/total number of initially stocked fish) × 100;
- Condition factor = (fish weight/length3) × 100.
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Piedrahita, R.H. Reducing the Potential Environmental Impact of Tank Aquaculture Effluents through Intensification and Recirculation. Aquaculture 2003, 226, 35–44. [Google Scholar] [CrossRef]
- Van Rijn, J. Waste Treatment in Recirculating Aquaculture Systems. Aquac. Eng. 2013, 53, 49–56. [Google Scholar] [CrossRef]
- Qu, J.; Zhang, Q.; Jia, C.; Liu, P.; Yang, M. The Study of Recirculating Aquaculture System in Pond and Its Purification Effect. IOP Conf. Ser. Earth Environ. Sci. 2017, 67, 012028. [Google Scholar] [CrossRef]
- Lin, Y.F.; Jing, S.R.; Lee, D.Y. The Potential Use of Constructed Wetlands in a Recirculating Aquaculture System for Shrimp Culture. Environ. Pollut. 2003, 123, 107–113. [Google Scholar] [CrossRef]
- Martins, C.I.M.; Eding, E.H.; Verdegem, M.C.J.; Heinsbroek, L.T.N.; Schneider, O.; Blancheton, J.P.; d’Orbcastel, E.R.; Verreth, J.A.J. New Developments in Recirculating Aquaculture Systems in Europe: A Perspective on Environmental Sustainability. Aquac. Eng. 2010, 43, 83–93. [Google Scholar] [CrossRef] [Green Version]
- Midilli, A.; Kucuk, H.; Dincer, I. Environmental and Sustainability Aspects of a Recirculating Aquaculture System. Environ. Prog. Sustain. Energy 2012, 31, 604–611. [Google Scholar] [CrossRef]
- Barak, Y.; Cytryn, E.; Gelfand, I.; Krom, M.; van Rijn, J. Phosphorus Removal in a Marine Prototype, Recirculating Aquaculture System. Aquaculture 2003, 220, 313–326. [Google Scholar] [CrossRef]
- Yogev, U.; Sowers, K.R.; Mozes, N.; Gross, A. Nitrogen and Carbon Balance in a Novel Near-Zero Water Exchange Saline Recirculating Aquaculture System. Aquaculture 2017, 467, 118–126. [Google Scholar] [CrossRef]
- Noble, A.C.; Summerfelt, S.T. Diseases Encountered in Rainbow Trout Cultured in Recirculating Systems. Annu. Rev. Fish Dis. 1996, 6, 65–92. [Google Scholar] [CrossRef]
- Conte, F.S. Stress and the Welfare of Cultured Fish. Appl. Anim. Behav. Sci. 2004, 86, 205–223. [Google Scholar] [CrossRef]
- Roque d’Orbcastel, E.; Person-Le Ruyet, J.; Le Bayon, N.; Blancheton, J.P. Comparative Growth and Welfare in Rainbow Trout Reared in Recirculating and Flow through Rearing Systems. Aquac. Eng. 2009, 40, 79–86. [Google Scholar] [CrossRef] [Green Version]
- Kolarevic, J.; Baeverfjord, G.; Takle, H.; Ytteborg, E.; Reiten, B.K.M.; Nergård, S.; Terjesen, B.F. Performance and Welfare of Atlantic Salmon Smolt Reared in Recirculating or Flow through Aquaculture Systems. Aquaculture 2014, 432, 15–25. [Google Scholar] [CrossRef]
- Colson, V.; Sadoul, B.; Valotaire, C.; Prunet, P.; Gaumé, M.; Labbé, L. Welfare Assessment of Rainbow Trout Reared in a Recirculating Aquaculture System: Comparison with a Flow-Through System. Aquaculture 2015, 436, 151–159. [Google Scholar] [CrossRef]
- Broom, D.M. Animal Welfare: Concepts and Measurement2. J. Anim. Sci. 1991, 69, 4167–4175. [Google Scholar] [CrossRef]
- Castanheira, M.F.; Conceição, L.E.C.; Millot, S.; Rey, S.; Bégout, M.L.; Damsgård, B.; Kristiansen, T.; Höglund, E.; Øverli, Ø.; Martins, C.I.M. Coping Styles in Farmed Fish: Consequences for Aquaculture. Rev. Aquac. 2017, 9, 23–41. [Google Scholar] [CrossRef] [Green Version]
- Ashley, P.J. Fish Welfare: Current Issues in Aquaculture. Appl. Anim. Behav. Sci. 2007, 104, 199–235. [Google Scholar] [CrossRef]
- Bergqvist, J.; Gunnarsson, S. Finfish Aquaculture: Animal Welfare, the Environment, and Ethical Implications. J. Agric. Environ. Ethics 2013, 26, 75–99. [Google Scholar] [CrossRef]
- Refstie, T. Effect of Density on Growth and Survival of Rainbow Trout. Aquaculture 1977, 11, 329–334. [Google Scholar] [CrossRef]
- Rowland, S.J.; Mifsud, C.; Nixon, M.; Boyd, P. Effects of Stocking Density on the Performance of the Australian Freshwater Silver Perch (Bidyanus Bidyanus) in Cages. Aquaculture 2006, 253, 301–308. [Google Scholar] [CrossRef]
- Kim, S.S.; Lee, J.H.; Kim, K.W.; Kim, K.D.; Lee, B.J.; Lee, K.J. Effects of Feed Particle Size, Stocking Density, and Dissolved Oxygen Concentration on the Growth of Olive Flounder Paralichthys olivaceus. Korean J. Fish. Aquat. Sci. 2015, 48, 314–321. [Google Scholar] [CrossRef]
- Holm, J.C.; Refstie, T.; Bø, S. The Effect of Fish Density and Feeding Regimes on Individual Growth Rate and Mortality in Rainbow Trout (Oncorhynchus Mykiss). Aquaculture 1990, 89, 225–232. [Google Scholar] [CrossRef]
- Björnsson, B. Effects of Stocking Density on Growth Rate of Halibut (Hippoglossus Hippoglossus L.) Reared in Large Circular Tanks for Three Years. Aquaculture 1994, 123, 259–270. [Google Scholar] [CrossRef]
- Iguchi, K.; Ogawa, K.; Nagae, M.; Ito, F. The Influence of Rearing Density on Stress Response and Disease Susceptibility of Ayu (Plecoglossus Altivelis). Aquaculture 2003, 220, 515–523. [Google Scholar] [CrossRef]
- Sulikowski, J.A.; Fairchild, E.A.; Rennels, N.; Howell, W.H.; Tsang, P.C.W. The Effects of Transport Density on Cortisol Levels in Juvenile Winter Flounder, Pseudopleuronectes americanus. J. World Aquac. Soc. 2006, 37, 107–112. [Google Scholar] [CrossRef]
- Oh, D.H.; Song, J.W.; Kim, M.G.; Lee, B.J.; Kim, K.W.; Han, H.S.; Lee, K.J. Effect of Food Particle Size, Stocking Density and Feeding Frequency on the Growth Performance of Juvenile Korean Rockfish Sebastes schlegelii. Korean J. Fish. Aquat. Sci. 2013, 46, 407–412. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.; Kim, S.; Yang, H. Culture of the Olive Flounder (Paralichthys olivaceus) in a Semi-closed Recirculating Seawater System. Korean J. Fish. Aquat. Sci. 1995, 28, 457–468. [Google Scholar]
- Bang, J.D.; Choi, Y.-S.; Seo, H.C. Culture of the Olive Flounder, Paralichthys olivaceus in a Marine Recirculating System. J. Fish Pathol. 2005, 18, 91–97. [Google Scholar]
- Li, Y.; Yang, Y.; Zheng, W.; Cheng, J. Genetic Parameters and Genotype by Environment Interactions for Growth Traits and Survival of Olive Flounder (Paralichthys Olivaceus) in Recirculating Aquaculture System and Flow-through System. Aquaculture 2019, 510, 56–60. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, S.K.; Hur, Y.B. Temperature-Mediated Changes in Stress Responses, Acetylcholinesterase, and Immune Responses of Juvenile Olive Flounder Paralichthys Olivaceus in a Bio-Floc Environment. Aquaculture 2019, 506, 453–458. [Google Scholar] [CrossRef]
- Takeuchi, T. Application of Recirculating Aquaculture Systems in Japan; Springer: Berlin/Heidelberg, Germany, 2017; ISBN 978-4-431-56583-3. [Google Scholar]
- Standard Methods for the Culture of Olive Flounder, Paralichthys Olivaceus; National Institute of Fisheries Sceince: Busan, Republic of Korea, 2016; ISBN 979-11-953957-6-7.
- Duan, Y.; Dong, X.; Zhang, X.; Miao, Z. Effects of Dissolved Oxygen Concentration and Stocking Density on the Growth, Energy Budget and Body Composition of Juvenile Japanese Flounder, Paralichthys Olivaceus (Temminck et Schlegel). Aquac. Res. 2011, 42, 407–416. [Google Scholar] [CrossRef]
- Yi, Y.; Lin, C.K.; Diana, J.S. Influence of Nile Tilapia (Oreochromis Niloticus) Stocking Density in Cages on Their Growth and Yield in Cages and in Ponds Containing the Cages. Aquaculture 1996, 146, 205–215. [Google Scholar] [CrossRef]
- Papoutsoglou, S.E.; Tziha, G.; Vrettos, X.; Athanasiou, A. Effects of Stocking Density on Behavior and Growth Rate of European Sea Bass (Dicentrarchus Labrax) Juveniles Reared in a Closed Circulated System. Aquac. Eng. 1998, 18, 135–144. [Google Scholar] [CrossRef]
- Aksungur, N.; Aksungur, M.; Akbulut, B.; Kutlu, İ. Effects of Stocking Density on Growth Performance, Survival and Food Conversion Ratio of Turbot (Psetta maxima) in the Net Cages on the Southeastern Coast of the Black Sea. Turk. J. Fish. Aquat. Sci. 2007, 7, 147–152. [Google Scholar]
- Tidwell, J.H.; Webster, C.D.; Clark, J.A.; Brunson, M. Pond culture of female green sunfish (Lepomis cyanellus) X male bluegill (L. macrochirus) hybrids stocked at two sizes and densities. Aquaculture 1994, 126, 305–313. [Google Scholar] [CrossRef]
- Tidwell, J.H.; Webster, C.D.; Coyle, S.D. Effects of dietary protein level on second year growth and water quality for largemouth bass (Micropterus salmoides) raised in ponds. Aquaculture 1996, 145, 213–223. [Google Scholar] [CrossRef]
- Tidwell, J.H.; Webster, C.D.; Coyle, S.D.; Schulmeister, G. Effect of stocking density on growth and water quality for largemouth bass Micropterus salmoides growout in ponds. J. World. Aquac. Soc. 1998, 29, 79–83. [Google Scholar] [CrossRef]
- Salas-Leiton, E.; Anguis, V.; Manchado, M.; Cañavate, J.P. Growth, Feeding and Oxygen Consumption of Senegalese Sole (Solea Senegalensis) Juveniles Stocked at Different Densities. Aquaculture 2008, 285, 84–89. [Google Scholar] [CrossRef]
- Jørgensen, E.H.; Christiansen, J.S.; Jobling, M. Effects of stocking density on food intake, growth performance and oxygen consumption in Arctic charr (Salbelinus alpinus). Aquaculture 1993, 110, 191–204. [Google Scholar] [CrossRef]
- Park, J.H.; Nilima, R.; Trevor, L.; Luke, A.R. The Effects of Biomass Density on Size Variability and Growth Performance of Juvenile Largemouth Bass, Micropterus salmoides, in a Semi-closed Recirculating System. J. World Aquac. Soc. 2015, 46, 283–290. [Google Scholar] [CrossRef]
- Lambert, Y.; Dutil, J.D. Food intake and growth of adult Atlantic cod (Gadus morhua L.) reared under different conditions of stocking density, feeding frequency and size-grading. Aquaculture 2001, 192, 233–247. [Google Scholar] [CrossRef]
- Irwin, S.; O’Halloran, J.; FitzGerald, R.D. Stocking density, growth and growth variation in juvenile turbot, Scophthalmus maximus. Aquaculture 1999, 178, 77–88. [Google Scholar] [CrossRef]
- Park, J.H.; Nilima, R.; Trevor, L.; Luke, A.R. Maximum yield approximation and size distribution patterns of stocker size largemouth bass, Micropterus salmoides reared in a semi-closed indoor system. Aquac. Res. 2017, 48, 780–791. [Google Scholar] [CrossRef]
- Danielssen, D.S.; Gulbrandsen, K.E. Growth rate of turbot (Scophthalmus maximus L.) and sole (Solea solea L.) based on dry pellets. Eur. Aquac. Soc. 1989, 1, 631–636. [Google Scholar]
- Martınes-Tapia, C.; Fernandez-Pato, C.A. Influence of Stock Density on Turbot (Scophthalmus maximus L.) Growth; ICES CM1991/F:20; Centro Oceanográfico de Santander: Santander, Spain, 1991. [Google Scholar]
- Picha, M.E.; Marc, J.T.; Brian, R.B.; Russell, J.B. Endocrine Biomarkers of Growth and Applications to Aquaculture: A Minireview of Growth Hormone, Insulin Like Growth Factor (IGF)-I, and IGF Binding Proteins as Potential Growth Indicators in Fish. N. Am. J. Aquac. 2008, 70, 196–211. [Google Scholar] [CrossRef]
- Dyer, A.R.; Upton, Z.; Stone, D.; Thomas, P.M.; Soole, K.L.; Higgs, N.; Quinn, K.; Carragher, J.F. Development and Validation of a Radioimmunoassay for Fish Insulin-like Growth Factor I (IGF-I) and the Effect of Aquaculture Related Stressors on Circulating IGF-I Levels. Gen. Comp. Endocrinol. 2004, 135, 268–275. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Fei, F.; Li, X.; Wang, X.; Huang, B. Effects of Stocking Density on Stress Response, Innate Immune Parameters, and Welfare of Turbot (Scophthalmus Maximus). Aquac. Int. 2019, 27, 1599–1612. [Google Scholar] [CrossRef]
- Liu, B.; Jia, R.; Zhao, K.; Wang, G.; Lei, J.; Huang, B. Stocking Density Effects on Growth And Stress Response of Juvenile Turbot (Scophthalmus maximus) Reared in Land-Based Recirculating Aquaculture System. Acta. Oceanol. Sin. 2017, 36, 31–38. [Google Scholar] [CrossRef]
- Swain, H.S.; Das, B.K.; Upadhyay, A.; Ramteke, M.H.; Kumar, V.; Meena, D.K.; Sarkar, U.K.; Chadha, N.K.; Rawat, K.D. Stocking Density Mediated Stress Modulates Growth Attributes in Cage Reared Labeo rohita Using Multifarious Biomarker Approach. Sci. Rep. 2022, 12, 9869. [Google Scholar] [CrossRef]
- Upadhyay, A.; Swain, H.S.; Das, B.K.; Ramteke, M.H.; Kumar, V.; Krishna, G.; Mohantyc, B.P.; Chadha, N.K.; Das, A.K. Stocking Density Matters in Open Water Cage Culture: Influence on Growth, Digestive Enzymes, Haematoimmuno and Stress Responses of Puntius sarana. Aquaculture 2021, 547, 737445. [Google Scholar] [CrossRef]
- Adineh, H.; Naderi, M.; Hamidi, M.K.; Harsij, M. Biofloc Technology Improves Growth, Innate Immune Responses, Oxidative Status, and Resistance to Acute Stress in Common Carp (Cyprinus carpio) Under High Stocking Density. Fish Shellfish Immunol. 2019, 95, 440–448. [Google Scholar] [CrossRef]
- Fazelan, Z.; Vatnikov, Y.A.; Kulikov, E.V.; Plushikov, V.G.; Yousef, M. Effects of Dietary Ginger (Zingiber ofcinale) Administration on Growth Performance and Stress, Immunological, and Antioxidant Responses Of Common Carp (Cyprinus carpio) Reared Under High Stocking Density. Aquaculture 2020, 518, 734–833. [Google Scholar] [CrossRef]
- Harsha, H.; Ajit, K.V.; Gaurav, R.; Chandra, P.; Paramita, B.S.; Asanaru, M.B.R. Enhanced growth and immuno-physiological response of genetically improved farmed Tilapia in indoor biofloc units at different stocking densities. Aquac. Res. 2017, 48, 4346–4355. [Google Scholar] [CrossRef]
- Ruane, N.M.; Carballo, E.C.; Komen, J. Increased Stocking Density Influences the Acute Physiological Stress Response of Common Carp Cyprinus carpio (L.). Aquac. Res. 2002, 33, 777–784. [Google Scholar] [CrossRef]
- Liu, G.; Yea, Z.; Liu, D.; Zhao, J.; Sivaramasamy, E.; Deng, Y.; Zhu, S. Influence of Stocking Density on Growth, Digestive Enzyme Activities, Immune Responses, Antioxidant of Oreochromis niloticus Fingerlings in Biofloc Systems. Fish Shellfish Immunol. 2018, 81, 416–422. [Google Scholar] [CrossRef]
- Varela, J.L.; Ruiz-Jarabo, I.; Vargas-Chacoff, L.; Arijo, S.; León-Rubio, J.M.; García-Millán, I.; Martín del Río, M.P.; Moriñigo, M.A.; Mancera, J.M. Dietary Administration of Probiotic Pdp11 Promotes Growth and Improves Stress Tolerance to High Stocking Density in Gilthead Seabream Sparus auratus. Aquaculture 2010, 309, 265–271. [Google Scholar] [CrossRef]
- Costas, B.; Aragão, C.; Dias, J.; Afonso, A.; Conceição, L.E.C. Interactive Effects of a High-Quality Protein Diet and High Stocking Density on the Stress Response and Some Innate Immune Parameters of Senegalese Sole Solea senegalensis. Fish Physiol. Biochem. 2013, 39, 1141–1151. [Google Scholar] [CrossRef]
- Long, L.; Zhang, H.; Ni, Q.; Liu, H.; Wu, F.; Wang, X. Effects of Stocking Density on Growth, Stress, and Immune Responses of Juvenile Chinese Sturgeon (Acipenser sinensis) in a Recirculating Aquaculture System. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2019, 219, 25–34. [Google Scholar] [CrossRef]
- Liu, Q.; Hou, Z.; Wen, H.; Li, J.; He, F.; Wang, J.; Guan, B.; Wang, Q. Effect of Stocking Density on Water Quality and (Growth, Body Composition and Plasma Cortisol Content) Performance of Pen-Reared Rainbow Trout (Oncorhynchus mykiss). J. Ocean Univ. China 2016, 15, 667–675. [Google Scholar] [CrossRef]
- Ghozlan, A.; Gaber, M.M.; Zaki, M.A.; Nour, A. Effect of Stocking Density on Growth Performance, Production Trait, Food Utilization and Body Composition, of Meagre (Argyrosomus regius). World J. Eng. Technol. 2018, 6, 37–47. [Google Scholar] [CrossRef]
Treatment | Treatment 1 | Treatment 2 | Treatment 3 | Treatment 4 |
---|---|---|---|---|
Number of fish | 50 | 75 | 100 | 125 |
Total weight (kg) | 2.97 ± 0.11 | 4.37 ± 0.11 | 6.44 ± 0.06 | 7.73 ± 0.17 |
Stocking density (kg/m2) | 3.29 ± 0.13 | 4.84 ± 0.12 | 7.14 ± 0.06 | 8.56 ± 0.19 |
Parameter | Treatment 1 | Treatment 2 | Treatment 3 | Treatment 4 | p |
---|---|---|---|---|---|
Initial biomass (kg) | 2.97 ± 0.11 d | 4.37 ± 0.11 c | 6.44 ± 0.06 b | 7.73 ± 0.17 a | 0.000 |
Initial stocking density (kg/m2) | 3.29 ± 0.13 d | 4.84 ± 0.12 c | 7.14 ± 0.06 b | 8.56 ± 0.19 a | 0.000 |
Midterm biomass (kg) | 4.25 ± 0.01 d | 7.97 ± 0.57 c | 12.79 ± 0.40 b | 14.88 ± 1.07 a | 0.000 |
Midterm stocking density (kg/m2) | 4.70 ± 0.51 d | 8.83 ± 0.63 c | 14.17 ± 0.44 b | 16.48 ± 1.19 a | 0.000 |
Feed conversion | 1.29 ± 0.27 a | 0.93 ± 0.04 b | 0.93 ± 0.03 b | 0.92 ± 0.06 b | 0.002 |
Specific growth rate (%/day) | 1.07 ± 0.09 c | 1.78 ± 0.16 b | 2.00 ± 0.01 a | 1.93 ± 0.09 a | 0.000 |
Daily feed intake rate (%/day) | 1.36 ± 0.19 c | 1.66 ± 0.21 b | 1.86 ± 0.05 a | 1.77 ± 0.04 a | 0.015 |
Survival rate (%) | 98.7 ± 1.2 | 97.8 ± 3.8 | 98.7 ± 2.3 | 97.9 ± 2.0 | 0.950 |
Condition factor | 0.84 ± 0.04 b | 0.92 ± 0.03 ab | 0.91 ± 0.02 ab | 0.93 ± 0.01 a | 0.027 |
Parameter | Treatment 1 | Treatment 2 | Treatment 3 | Treatment 4 | p |
---|---|---|---|---|---|
Initial biomass (kg) | 2.97 ± 0.11 d | 4.37 ± 0.11 c | 6.44 ± 0.06 b | 7.73 ± 0.17 a | 0.000 |
Initial stocking density (kg/m2) | 3.29 ± 0.13 d | 4.84 ± 0.12 c | 7.14 ± 0.06 b | 8.56 ± 0.19 a | 0.000 |
Final biomass (kg) | 6.93 ± 0.55 d | 11.98 ± 0.40 c | 18.20 ± 1.11 b | 20.88 ± 0.61 a | 0.000 |
Final stocking density (kg/m2) | 7.68 ± 0.61 d | 13.28 ± 0.44 c | 20.16 ± 1.23 b | 23.14 ± 0.68 a | 0.000 |
Feed conversion | 0.98 ± 0.16 | 0.92 ± 0.09 | 0.99 ± 0.03 | 0.98 ± 0.02 | 0.787 |
Specific growth rate (%/day) | 1.46 ± 0.11 b | 1.72 ± 0.07 ab | 1.75 ± 0.03 a | 1.67 ± 0.03 b | 0.020 |
Daily feed intake rate (%/day) | 1.41 ± 0.15 | 1.58 ± 0.20 | 1.73 ± 0.05 | 1.63 ± 0.02 | 0.071 |
Survival rate (%) | 96.0 ± 0.0 | 96.0 ± 3.5 | 97.3 ± 3.8 | 97.3 ± 1.2 | 0.858 |
Condition factor | 0.97 ± 0.02 | 0.98 ± 0.06 | 1.02 ± 0.05 | 1.02 ± 0.01 | 0.331 |
Parameter | Treatment 1 | Treatment 2 | Treatment 3 | Treatment 4 | p |
---|---|---|---|---|---|
Moisture (%) | 72.7 ± 1.2 | 73.6 ± 0.8 | 72.8 ± 0.3 | 72.8 ± 1.8 | 0.723 |
Crude ash (%) | 3.43 ± 0.09 | 3.71 ± 0.18 | 3.61 ± 0.23 | 3.67 ± 0.19 | 0.287 |
Crude fat (%) | 3.84 ± 1.05 | 4.24 ± 0.60 | 4.56 ± 1.07 | 4.14 ± 0.63 | 0.786 |
Crude protein (%) | 19.9 ± 0.6 b | 19.0 ± 0.5 b | 19.7 ± 0.6 b | 16.9 ± 1.2 a | 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seo, J.; Park, J. Does Stocking Density Affect Growth Performance and Hematological Parameters of Juvenile Olive Flounder Paralichthys olivaceus in a Recirculating Aquaculture System? Animals 2023, 13, 44. https://doi.org/10.3390/ani13010044
Seo J, Park J. Does Stocking Density Affect Growth Performance and Hematological Parameters of Juvenile Olive Flounder Paralichthys olivaceus in a Recirculating Aquaculture System? Animals. 2023; 13(1):44. https://doi.org/10.3390/ani13010044
Chicago/Turabian StyleSeo, Junhyuk, and Jeonghwan Park. 2023. "Does Stocking Density Affect Growth Performance and Hematological Parameters of Juvenile Olive Flounder Paralichthys olivaceus in a Recirculating Aquaculture System?" Animals 13, no. 1: 44. https://doi.org/10.3390/ani13010044
APA StyleSeo, J., & Park, J. (2023). Does Stocking Density Affect Growth Performance and Hematological Parameters of Juvenile Olive Flounder Paralichthys olivaceus in a Recirculating Aquaculture System? Animals, 13(1), 44. https://doi.org/10.3390/ani13010044