Effects of Temperature on Plasma Protein Binding Ratios (PPBRs) of Enrofloxacin and Ciprofloxacin in Yellow Catfish (Pelteobagrus fulvidraco), Grass Carp (Ctenopharyngodon idella), and Largemouth Bass (Micropterus salmoides)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Animals
2.3. Ultrafiltration Methodology
2.4. Sample Preparation
2.5. HPLC Analysis and Validation
2.6. Calculation of NSB and PPBR
2.7. Statistical Analysis
3. Results
3.1. HPLC Analysis
3.2. Non-Specific Absorption
3.3. PPBRs of EF and CF at Different Concentrations at the Same Temperature
3.4. PPBRs of EF and CF at Different Temperatures at the Same Concentration
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Yang, P.; Zhang, X.; Zhou, C.; Zhai, S.; Wang, C.; Yang, L. Determination of free and total meropenem levels in human plasma and its application for the consistency evaluation of generic drugs. Rapid Commun. Mass Spectrom. 2023, 37, e9460. [Google Scholar] [CrossRef] [PubMed]
- Bennett, R.C.; Hokkanen, J.; Raekallio, M.R.; Vainio, O.M. The impact of medetomidine on the protein-binding characteristics of MK-467 in canine plasma. J. Vet. Pharmacol. Ther. 2016, 39, 405–407. [Google Scholar] [CrossRef] [PubMed]
- Machado, M.C.; Yamamoto, P.A.; Pippa, L.F.; de Moraes, N.V.; Neves, F.M.; Portela, R.D.; Barrouin-Melo, S.M.; Hielm-Björkman, A.; Godoy, A.L.; Estrela-Lima, A. Pharmacokinetics of carboplatin in combination with low-dose cyclophosphamide in female dogs with mammary carcinoma. Animals 2022, 12, 3109. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Li, M.; Ai, X.; Lin, Z. Determination of pharmacokinetic and pharmacokinetic-pharmacodynamic parameters of doxycycline against Edwardsiella ictaluri in yellow catfish (Pelteobagrus fulvidraco). Antibiotics 2021, 10, 329. [Google Scholar] [CrossRef] [PubMed]
- Lees, P.; Toutain, P.L.; Elliott, J.; Giraudel, J.M.; Pelligand, L.; King, J.N. Pharmacology, safety, efficacy and clinical uses of the COX-2 inhibitor robenacoxib. J. Vet. Pharmacol. Ther. 2022, 45, 325–351. [Google Scholar] [CrossRef]
- Xu, N.; Li, M.; Lin, Z.; Ai, X. Comparative pharmacokinetics of sulfadiazine and its metabolite N4-acetyl sulfadiazine in grass carp (Ctenopharyngodon idella) at different temperatures after oral administration. Pharmaceutics 2022, 14, 712. [Google Scholar] [CrossRef]
- Uney, K.; Terzi, E.; Durna Corum, D.; Ozdemir, R.C.; Bilen, S.; Corum, O. Pharmacokinetics and pharmacokinetic/pharmacodynamic integration of enrofloxacin following single oral administration of different doses in brown trout (Salmo trutta). Animals 2021, 11, 3086. [Google Scholar] [CrossRef]
- Xu, N.; Cheng, B.; Yang, Y.; Liu, Y.; Dong, J.; Yang, Q.; Zhou, S.; Song, Y.; Ai, X. The plasma and tissue kinetics of sulfadiazine and its metabolite in Ictalurus punctatus after oral gavage at two temperatures. J. Vet. Pharmacol. Ther. 2023, 46, 125–135. [Google Scholar] [CrossRef]
- Correia, S.; Poeta, P.; Hébraud, M.; Capelo, J.L.; Igrejas, G. Mechanisms of quinolone action and resistance: Where do we stand? J. Med. Microbiol. 2017, 66, 551–559. [Google Scholar] [CrossRef]
- Varga, M. Chapter 3—Therapeutics. In Textbook of Rabbit Medicine, 3rd ed.; Varga, M., Ed.; Butterworth-Heinemann: Oxford, UK, 2014; pp. 137–177. [Google Scholar] [CrossRef]
- Papich, M.G. Enrofloxacin. In Saunders Handbook of Veterinary Drugs, 4th ed.; Papich, M.G., Ed.; W.B. Saunders: St. Louis, MI, USA, 2016; pp. 287–289. [Google Scholar] [CrossRef]
- Viel, A.; Antoine, R.; Morvan, M.-L.; Fournel, C.; Daniel, P.; Thorin, C.; Baron, S.; Sanders, P.; Calvez, S. Population pharmacokinetics/pharmacodynamics modelling of enrofloxacin for the three major trout pathogens Aeromonas salmonicida, Flavobacterium psychrophilum and Yersinia ruckeri. Aquaculture 2021, 545, 737119. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, N.; Dong, J.; Yang, Q.; Liu, Y.; Ai, X. Isolation and idenfication of Aeromonas veronii strain Zy01 from Taiwan Loach and its antibiotic sensitivity. Microbiol. China 2017, 44, 852–858. [Google Scholar] [CrossRef]
- Dong, J.; Ding, H.; Xu, N.; Liu, Y.; Yang, Y.; Yang, Q.; Song, Y.; Ai, X. Identification and synergistic susceptibility test of pathogenic Aeromonas veronii isolated from hybrid catfish. Chin. J. Prev. Vet. Med. 2017, 39, 897–901. [Google Scholar]
- Xu, L.; Quan, K.; Wang, H.; Hu, K.; Yang, X.; Lv, L. Medication regimen for prevention of drug resistance using enrofloxacin agaist Aeromonas hydrophilain crucian carp Carassius auratus. J. Fish. Sci. China 2013, 20, 635–643. [Google Scholar] [CrossRef]
- Idowu, O.R.; Peggins, J.O.; Cullison, R.; Bredow, J.v. Comparative pharmacokinetics of enrofloxacin and ciprofloxacin in lactating dairy cows and beef steers following intravenous administration of enrofloxacin. Res. Vet. Sci. 2010, 89, 230–235. [Google Scholar] [CrossRef]
- Messenger, K.M.; Papich, M.G.; Blikslager, A.T. Distribution of enrofloxacin and its active metabolite, using an in vivo ultrafiltration sampling technique after the injection of enrofloxacin to pigs. J. Vet. Pharmacol. Ther. 2012, 35, 452–459. [Google Scholar] [CrossRef]
- Bugyei, K.; Black, W.D.; McEwen, S. Pharmacokinetics of enrofloxacin given by the oral, intravenous and intramuscular routes in broiler chickens. Can. J. Vet. Res. 1999, 63, 193–200. [Google Scholar]
- Griffith, J.E.; Higgins, D.P.; Li, K.M.; Krockenberger, M.B.; Govendir, M. Absorption of enrofloxacin and marbofloxacin after oral and subcutaneous administration in diseased koalas (Phascolarctos cinereus). J. Vet. Pharmacol. Ther. 2010, 33, 595–604. [Google Scholar] [CrossRef]
- Srikanth, C.H.; Chaira, T.; Sampathi, S.; Sreekumar, V.B.; Bambal, R.B. Correlation of in vitro and in vivo plasma protein binding using ultracentrifugation and UPLC-tandem mass spectrometry. Analyst 2013, 138, 6106–6116. [Google Scholar] [CrossRef]
- Waters, N.J.; Jones, R.; Williams, G.; Sohal, B. Validation of a rapid equilibrium dialysis approach for the measurement of plasma protein binding. J. Pharm. Sci. 2008, 97, 4586–4595. [Google Scholar] [CrossRef]
- Toma, C.M.; Imre, S.; Vari, C.E.; Muntean, D.L.; Tero-Vescan, A. Ultrafiltration Method for Plasma Protein Binding Studies and Its Limitations. Processes 2021, 9, 382. [Google Scholar] [CrossRef]
- Dong, W.C.; Zhang, J.F.; Hou, Z.L.; Jiang, X.H.; Zhang, F.C.; Zhang, H.F.; Jiang, Y. The influence of volume ratio of ultrafiltrate of sample on the analysis of non-protein binding drugs in human plasma. Analyst 2013, 138, 7369–7375. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, K.; Ikawa, K.; Morikawa, N.; Ohge, H.; Sueda, T. Determination of total cefozopran concentrations in human peritoneal fluid by HPLC with cefepime as an internal standard: Comparative pharmacokinetics in the fluid and plasma. J. Pharm. Biomed. Anal. 2009, 49, 1075–1081. [Google Scholar] [CrossRef] [PubMed]
- CFFA. China Fishery Statistics Yearbook 2019; Chinese Fisheries and Fishery Administration, Ed.; China Agriculture Press: Beijing, China, 2021. [Google Scholar]
- Lee, K.J.; Mower, R.; Hollenbeck, T.; Castelo, J.; Johnson, N.; Gordon, P.; Sinko, P.J.; Holme, K.; Lee, Y.H. Modulation of nonspecific binding in ultrafiltration protein binding studies. Pharm. Res. 2003, 20, 1015–1021. [Google Scholar] [CrossRef] [PubMed]
- Bidgood, T.L.; Papich, M.G. Comparison of plasma and interstitial fluid concentrations of doxycycline and meropenem following constant rate intravenous infusion in dogs. Am. J. Vet. Res. 2003, 64, 1040–1046. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Sun, W.; Zhang, H.; Liu, Y.; Dong, J.; Zhou, S.; Yang, Y.; Yang, Q.; Ai, X. Plasma and tissue kinetics of enrofloxacin and its metabolite, ciprofloxacin, in yellow catfish (Pelteobagrus fulvidraco) after a single oral administration at different temperatures. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2023, 266, 109554. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Li, M.; Fu, Y.; Zhang, X.; Dong, J.; Liu, Y.; Zhou, S.; Ai, X.; Lin, Z. Effect of temperature on plasma and tissue kinetics of doxycycline in grass carp (Ctenopharyngodon idella) after oral administration. Aquaculture 2019, 511, 734204. [Google Scholar] [CrossRef]
- Xu, N.; Sun, W.; Gong, L.; Dong, J.; Zhou, S.; Liu, Y.; Yang, Y.; Yang, Q.; Ding, Y.; Ai, X. An improved withdrawal interval calculation and risk assessment of doxycycline in crayfish (Procambarus clarkii) in the natural cultured environment. Food Res. Int. 2023, 166, 112604. [Google Scholar] [CrossRef]
- Bohnert, T.; Gan, L.S. Plasma Protein Binding: From Discovery to Development. J. Pharm. Sci. 2013, 102, 2953–2994. [Google Scholar] [CrossRef]
- Dong, W.C.; Zhang, Z.Q.; Jiang, X.H.; Sun, Y.G.; Jiang, Y. Effect of volume ratio of ultrafiltrate to sample solution on the analysis of free drug and measurement of free carbamazepine in clinical drug monitoring. Eur. J. Pharm. Sci. 2013, 48, 332–338. [Google Scholar] [CrossRef]
- Mukker, J.K.; Singh, R.P.; Derendorf, H. Determination of atypical nonlinear plasma−protein-binding behavior of tigecycline using an in vitro microdialysis technique. J. Pharm. Sci. 2014, 103, 1013–1019. [Google Scholar] [CrossRef]
- Zhou, J.; Tran, B.T.; Tam, V.H. The complexity of minocycline serum protein binding. J. Antimicrob. Chemother. 2017, 72, 1632–1634. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Chang, C.; Xu, N.; Wu, J.; Liu, Y.; Dong, J.; Zhou, S.; Yang, Y.; Yang, Q.; Ai, X. Determination of doxycycline’s plasma protein binding rates in the plasma of grass carp (Ctenopharyngodon idella), yellow catfish (Pelteobagrus fulvidraco) and crayfish (Procambarus clarkii) by an ultrafiltration method at different temperatures with different concentrations. Aquac. Res. 2022, 53, 2865–2873. [Google Scholar] [CrossRef]
- Tesseromatis, C.; Alevizou, A. The role of the protein-binding on the mode of drug action as well the interactions with other drugs. Eur. J. Drug Metab. Pharmacokinet. 2008, 33, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Wosilait, W.D.; Ryan, M.P. The effects of oleic acid, tolbutamide, and oxyphenbutazone on the binding of warfarin by human serum albumin. Res. Commun. Chem. Pathol. Pharmacol. 1979, 25, 577–584. [Google Scholar]
- Poapolathep, S.; Giorgi, M.; Chaiyabutr, N.; Chokejaroenrat, C.; Klangkaew, N.; Phaochoosak, N.; Wongwaipairote, T.; Poapolathep, A. Pharmacokinetics of enrofloxacin and its metabolite ciprofloxacin in freshwater crocodiles (Crocodylus siamensis) after intravenous and intramuscular administration. J. Vet. Pharmacol. Ther. 2020, 43, 19–25. [Google Scholar] [CrossRef]
Drugs | Matrixes | Concentration Ranges (μg/mL) | Regressed Equations | Correlation Coefficients® |
---|---|---|---|---|
Enrofloxacin (EF) | Physiological saline | 0.01~1 | y = 0.7936x + 0.2670 | 0.9999 |
Yellow catfish | y = 0.7261x + 5.7537 | 0.9992 | ||
Grass carp | y = 0.9575x + 2.6615 | 0.9993 | ||
Largemouth bass | y = 0.960–x − 0.9355 | 0.9998 | ||
Ciprofloxacin (CF) | Physiological saline | y = 0.1387x + 0.4517 | 0.9999 | |
Yellow catfish | y = 0.1301x + 1.5801 | 0.9987 | ||
Grass carp | y = 0.181–x − 00.2204 | 0.9992 | ||
Largemouth bass | y = 0.175–x − 00.9423 | 0.9996 |
Drugs | Plasma | Spiked Concentrations (μg/mL) | Recoveries (%) | Intra-Day RSDs (%) | Inter-Day RSDs (%) |
---|---|---|---|---|---|
Enrofloxacin (EF) | Yellow catfish | 0.02 | 109.66 ± 5.65 | 2.10 | 9.32 |
0.1 | 90.17 ± 7.45 | 1.56 | 6.78 | ||
1 | 84.70 ± 1.79 | 2.28 | 2.59 | ||
Grass carp | 0.02 | 118.53 ± 2.30 | 1.02 | 9.78 | |
0.1 | 92.20 ± 2.33 | 0.47 | 2.90 | ||
1 | 93.18 ± 0.60 | 0.53 | 1.03 | ||
Largemouth bass | 0.02 | 90.09 ± 2.74 | 1.91 | 3.93 | |
0.1 | 91.36 ± 1.45 | 2.12 | 4.89 | ||
1 | 93.09 ± 0.40 | 2.11 | 2.80 | ||
Ciprofloxacin (CF) | Yellow catfish | 0.02 | 101.77 ± 7.24 | 2.23 | 5.67 |
0.1 | 97.82 ± 0.68 | 1.21 | 2.47 | ||
1 | 81.16 ± 0.69 | 2.43 | 4.60 | ||
Grass carp | 0.02 | 106.23 ± 0.58 | 3.29 | 4.06 | |
0.1 | 92.62 ± 1.43 | 2.21 | 2.30 | ||
1 | 94.72 ± 1.44 | 1.44 | 2.91 | ||
Largemouth bass | 0.02 | 87.75 ± 4.48 | 2.23 | 3.89 | |
0.1 | 94.20 ± 0.58 | 1.35 | 9.53 | ||
1 | 94.32 ± 1.27 | 1.90 | 2.83 |
Drug | Spiked Concentration (μg/mL) | No Pretreatment NSB (%) | Pretreatment NSB (%) |
---|---|---|---|
Enrofloxacin | 1 | 99.24 | 0.52 |
5 | 93.33 | 9.66 | |
10 | 82.05 | 16.14 | |
Ciprofloxacin | 1 | 98.21 | 4.08 |
5 | 91.06 | 8.02 | |
10 | 72.13 | 10.47 |
Drugs | Fish Species | Spiked Concentrations (μg/mL) | PPBRs (%) | ||
---|---|---|---|---|---|
15 °C | 20 °C | 25 °C | |||
Enrofloxacin (EF) | Yellow catfish | 1 | 37.71 ± 3.71 a | 46.10 ± 3.13 a | 43.90 ± 3.62 a |
5 | 22.53 ± 6.86 b | 21.24 ± 6.93 b | 17.29 ± 0.69 b | ||
10 | 9.66 ± 4.09 c | 13.52 ± 4.74 b | 4.36 ± 0.58 c | ||
Grass carp | 1 | 60.52 ± 0.99 a | 51.27 ± 1.56 a | 50.09 ± 2.06 a | |
5 | 33.77 ± 0.07 B | 22.07 ± 1.19 B | 23.36 ± 3.86 B | ||
10 | 16.95 ± 1.81 C | 8.34 ± 2.29 C | 5.52 ± 1.99 C | ||
Largemouth bass | 1 | 35.11 ± 5.18 a | 37.93 ± 6.11 a | 39.12 ± 1.72 a | |
5 | 14.39 ± 0.61 b | 17.46 ± 2.82 b | 23.20 ± 5.87 b | ||
10 | 9.30 ± 5.15 C | 10.84 ± 1.08 C | 7.77 ± 2.10 C | ||
Ciprofloxacin (CF) | Yellow catfish | 1 | 27.02 ± 2.31 a | 24.22 ± 0.91 a | 27.85 ± 2.14 a |
5 | 14.39 ± 1.03 b | 12.14 ± 0.36 b | 23.36 ± 0.96 a | ||
10 | 11.46 ± 1.35 b | 7.04 ± 1.36 b | 21.64 ± 3.34 a | ||
Grass carp | 1 | 28.30 ± 0.80 a | 27.69 ± 1.05 a | 28.09 ± 1.79 a | |
5 | 18.22 ± 4.13 b | 21.61 ± 1.00 a | 24.65 ± 1.95 a | ||
10 | 10.86 ± 2.85 b | 17.29 ± 1.15 a | 12.48 ± 1.07 b | ||
Largemouth bass | 1 | 21.64 ± 1.34 a | 24.21 ± 3.89 a | 33.72 ± 2.43 a | |
5 | 17.36 ± 2.70 b | 20.88 ± 3.35 b | 14.53 ± 2.30 b | ||
10 | 15.85 ± 2.43 b | 10.70 ± 4.09 b | 10.95 ± 3.91 b |
Drugs | Fish Species | Temperature (°C) | PPBRs (%) | ||
---|---|---|---|---|---|
1 μg/mL | 5 μg/mL | 10 μg/mL | |||
Enrofloxacin | Yellow catfish | 15 | 37.71 ± 3.71 b | 22.53 ± 6.86 a | 9.66 ± 4.09 ab |
20 | 46.10 ± 3.13 a | 21.24 ± 6.93 a | 13.52 ± 4.74 a | ||
25 | 43.90 ± 3.62 ab | 17.29 ± 0.69 a | 4.36 ± 0.58 b | ||
Grass carp | 15 | 60.52 ± 0.99 a | 33.77 ± 0.07 a | 16.95 ± 1.81 a | |
20 | 51.27 ± 1.56 b | 22.07 ± 1.19 b | 8.34 ± 2.29 b | ||
25 | 50.09 ± 2.06 b | 23.36 ± 3.86 a | 5.52 ± 1.99 B | ||
Largemouth bass | 15 | 35.11 ± 5.18 a | 14.39 ± 0.61 a | 9.30 ± 5.15 a | |
20 | 37.93 ± 6.11 a | 17.46 ± 2.82 ab | 10.84 ± 1.08 a | ||
25 | 39.12 ± 1.72 a | 23.20 ± 5.87 b | 7.77 ± 2.10 a | ||
Ciprofloxacin | Yellow catfish | 15 | 27.02 ± 2.31 a | 14.39 ± 1.03 b | 11.46 ± 1.35 b |
20 | 24.22 ± 0.91 a | 12.14 ± 0.36 b | 7.04 ± 1.36 b | ||
25 | 27.85 ± 2.14 a | 23.36 ± 0.96 a | 21.64 ± 3.34 a | ||
Grass carp | 15 | 28.30 ± 0.80 a | 18.22 ± 4.13 a | 10.86 ± 2.85 b | |
20 | 27.69 ± 1.05 a | 21.61 ± 1.00 a | 17.29 ± 1.15 a | ||
25 | 28.09 ± 1.79 a | 24.65 ± 1.95 a | 12.48 ± 1.07 b | ||
Largemouth bass | 15 | 21.64 ± 1.34 a | 17.36 ± 2.70 a | 15.85 ± 2.43 a | |
20 | 24.21 ± 3.89 a | 20.88 ± 3.35 a | 10.70 ± 2.09 a | ||
25 | 33.72 ± 2.43 a | 14.53 ± 2.30 b | 10.95 ± 3.91 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, N.; Sun, W.; Zhang, H.; Li, Z.; Luo, X.; Ai, X.; Ding, Y.; Cheng, B. Effects of Temperature on Plasma Protein Binding Ratios (PPBRs) of Enrofloxacin and Ciprofloxacin in Yellow Catfish (Pelteobagrus fulvidraco), Grass Carp (Ctenopharyngodon idella), and Largemouth Bass (Micropterus salmoides). Animals 2023, 13, 1749. https://doi.org/10.3390/ani13111749
Xu N, Sun W, Zhang H, Li Z, Luo X, Ai X, Ding Y, Cheng B. Effects of Temperature on Plasma Protein Binding Ratios (PPBRs) of Enrofloxacin and Ciprofloxacin in Yellow Catfish (Pelteobagrus fulvidraco), Grass Carp (Ctenopharyngodon idella), and Largemouth Bass (Micropterus salmoides). Animals. 2023; 13(11):1749. https://doi.org/10.3390/ani13111749
Chicago/Turabian StyleXu, Ning, Weiyu Sun, Huan Zhang, Zhi Li, Xiangzhong Luo, Xiaohui Ai, Yongzhen Ding, and Bo Cheng. 2023. "Effects of Temperature on Plasma Protein Binding Ratios (PPBRs) of Enrofloxacin and Ciprofloxacin in Yellow Catfish (Pelteobagrus fulvidraco), Grass Carp (Ctenopharyngodon idella), and Largemouth Bass (Micropterus salmoides)" Animals 13, no. 11: 1749. https://doi.org/10.3390/ani13111749
APA StyleXu, N., Sun, W., Zhang, H., Li, Z., Luo, X., Ai, X., Ding, Y., & Cheng, B. (2023). Effects of Temperature on Plasma Protein Binding Ratios (PPBRs) of Enrofloxacin and Ciprofloxacin in Yellow Catfish (Pelteobagrus fulvidraco), Grass Carp (Ctenopharyngodon idella), and Largemouth Bass (Micropterus salmoides). Animals, 13(11), 1749. https://doi.org/10.3390/ani13111749