Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (150,907)

Search Parameters:
Keywords = concentrations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1525 KiB  
Article
A Pilot 24-Week ‘Bulk and Cut’ Dietary Protocol Combined with Resistance Training Is Feasible and Improves Body Composition and TNF-α Concentrations in Untrained Adult Males
by Anthony J. Giannopoulos, Steve Kottaras, Bryan Allanigue, Jeremia M. Coish, David S. Ditor, Val A. Fajardo and Panagiota Klentrou
Nutrients 2025, 17(7), 1265; https://doi.org/10.3390/nu17071265 (registering DOI) - 4 Apr 2025
Abstract
Background/Objectives: This study piloted a 24-week bodybuilding program combining resistance training (RT) with a dietary bulk-and-cut protocol in middle-aged adult males. Methods: Seven untrained males (33 ± 3.0 years; BMI = 35.0 ± 4.6 kg/m2; body fat = 36 [...] Read more.
Background/Objectives: This study piloted a 24-week bodybuilding program combining resistance training (RT) with a dietary bulk-and-cut protocol in middle-aged adult males. Methods: Seven untrained males (33 ± 3.0 years; BMI = 35.0 ± 4.6 kg/m2; body fat = 36 ± 5%) completed a 24-week intervention combining RT with a dietary protocol consisting of 12-week cycles of caloric bulking (0–12 weeks) and cutting (12–24 weeks). The participant retention rate was 64%, while compliance with training was 96.7%, and adherence to dietary cycles was over 93%. To assess the preliminary efficacy of the intervention, venous blood samples and measurements of body composition (BodPod), muscle strength, and VO2max (cycle ergometer) were collected at baseline (week 0) and following the bulking (week 12) and cutting (week 24) cycles. Circulating lipids (triglycerides, total, low-density, and high-density cholesterol), C-reactive protein (CRP), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-10 (IL-10) were measured in serum. Results: The training led to significant increases in muscle strength, especially in the deadlift (+46%, p < 0.001) and squat (+65%, p < 0.001). Improvements in body composition were characterized by an increase in fat-free mass and a decrease in body fat percentage over the 24-week intervention (+3% and −6%, respectively, p < 0.05). Lipids, CRP, IL-6, and IL-10 did not change significantly, but there was a notable reduction in TNF-α (time effect p = 0.05, pη2 = 0.39), with 15% lower concentrations at week 24 compared to baseline, indicating reduced inflammation. Conclusions: Overall, the pilot intervention achieved high compliance and adherence rates, leading to improvements in body composition and lower resting TNF-α concentrations in a group of middle-aged males with obesity. Full article
(This article belongs to the Section Sports Nutrition)
Show Figures

Figure 1

13 pages, 2179 KiB  
Article
Epigenetic and Gene Expression Responses of Daphnia magna to Polyethylene and Polystyrene Microplastics
by Hyungjoon Im, Jieun Lee, Jeong-Eun Oh, Jinyoung Song and Sanghyun Jeong
Molecules 2025, 30(7), 1608; https://doi.org/10.3390/molecules30071608 (registering DOI) - 3 Apr 2025
Abstract
Microplastics (MPs), ubiquitous environmental pollutants, pose substantial threats to aquatic ecosystems and organisms, including the model species Daphnia magna. This study examined the effects of polyethylene (PE) and polystyrene (PS) MPs on D. magna, focusing on their ingestion, epigenetic alterations, and [...] Read more.
Microplastics (MPs), ubiquitous environmental pollutants, pose substantial threats to aquatic ecosystems and organisms, including the model species Daphnia magna. This study examined the effects of polyethylene (PE) and polystyrene (PS) MPs on D. magna, focusing on their ingestion, epigenetic alterations, and transcriptional responses. Exposure experiments revealed a concentration-dependent accumulation of MPs, with PS particles showing higher ingestion rates due to their higher density and propensity for aggregation. Epigenetic analyses demonstrated that exposure to PE MPs significantly reduced the global DNA methylation (5-mC) of Daphnia magna, suggesting hypomethylation as a potential stress response. Conversely, the DNA hydroxymethylation (5-hmC) of Daphnia magna displayed variability under PS exposure. Transcriptional analysis identified a marked downregulation of Vitellogenin 1 (v1) and upregulation of Ecdysone Receptor B (ecr-b), highlighting the occurrence of stress-related and adaptive molecular responses. These findings enhance our understanding of the molecular and epigenetic effects of MPs on aquatic organisms, offering critical insights for the development of effective environmental management and conservation strategies in the face of escalating MP pollution. Full article
Show Figures

Figure 1

43 pages, 8525 KiB  
Article
Enhanced Corrosion Protection as a Sustainable Approach for Nickel Using Novel FeL Salen Complex: Electrochemical Investigation and DFT Insights
by Hoda Abd El-Shafy Shilkamy, Mohamed Salaheldeen, Arcady Zhukov, R. A. El-Kasaby, Mehran Feizi-Dehnayebi, Mona M. A. Alharas, Hala M. Abo-Dief, Rafat M. El-Khatib and Ahmed M. Abu-Dief
Metals 2025, 15(4), 403; https://doi.org/10.3390/met15040403 (registering DOI) - 3 Apr 2025
Abstract
A novel tera-dentate salen ligand and its Fe(III) complex was synthesized and characterized via several spectroscopic and physicochemical techniques. The corrosion rate inhibition of nickel and its alloys inspired the utilization of the L ligand and its FeL complex as vital and eco-friendly [...] Read more.
A novel tera-dentate salen ligand and its Fe(III) complex was synthesized and characterized via several spectroscopic and physicochemical techniques. The corrosion rate inhibition of nickel and its alloys inspired the utilization of the L ligand and its FeL complex as vital and eco-friendly inhibitors. To assess their effectiveness, both Tafel plot analysis and electrochemical impedance spectroscopy were employed to examine the electrochemical properties of L and the FeL complex. The results show that corrosion current density (Icorr) steadily drops when the additive concentration is increased, but the inhibition efficiency increases. It has been observed that the efficiency of inhibition rises with temperature, particularly at high temperatures (55 °C) when 1 × 10−3 M of L and FeL are present as additives, with η = 90.5% and 92.7%, respectively. Additionally, the findings propose that the adsorption mechanism of both L and FeL additive reptiles follows the Langmuir design isotherm. Electrochemical impedance spectroscopy has also verified these findings. DFT calculations were employed to prove the structure of the investigated FeL complex and its activity as a corrosion inhibitor. Full article
13 pages, 2979 KiB  
Article
Growth and Properties of (Yb-Er) Co-Doped ZnO Thin Films Deposited via Spray Pyrolysis Technique
by Abderrahim El Hat, Imane Chaki, Rida Essajai, Abdelmajid Fakhim Lamrani, Boubker Fares, Mohammed Regragui, Aziz Dinia and Mohammed Abd-Lefdil
Optics 2025, 6(2), 14; https://doi.org/10.3390/opt6020014 (registering DOI) - 3 Apr 2025
Abstract
YbxEryZnO thin films with a low concentration (x = 5%, y = 0, 1, 3%) were made on glass substrates using the spray pyrolysis method. The films were characterized through the use of specific techniques to investigate their structural, [...] Read more.
YbxEryZnO thin films with a low concentration (x = 5%, y = 0, 1, 3%) were made on glass substrates using the spray pyrolysis method. The films were characterized through the use of specific techniques to investigate their structural, optical, and electrical properties. The XRD structural analysis of the films revealed that they are polycrystalline with a hexagonal wurtzite structure and a preferential orientation in the (002) direction. The optical characterization of the co-doped layers in the range of 200 to 800 nm revealed that co-doping had a significant impact on the values of transmission. A well-defined peak in the infrared domain centered around 980 nm was observed in photoluminescence measurements. This peak signifies the transition between the electronic levels 2F5/2 (ground state) and 2F7/2 (excited state), proving that photons are efficiently transferred between the ZnO matrix and the Yb3+ ion. All layers exhibited n-type conduction and an electrical resistivity decrease to 6.0 × 10−2 Ω cm according to Hall effect measurements at room temperature. Full article
(This article belongs to the Special Issue Optoelectronic Thin Films)
Show Figures

Figure 1

15 pages, 3077 KiB  
Article
Surface-Driven Phase Segregation in Conducting Polymer Thin Films Enables High Selectivity and Storage Stability of Chemiresistive Sensors in Humid Air
by Jianan Weng, Wei Wu, Minghao Qian, Jiarui Zhang, Shuhua Zhang, Zhi Geng and Bo Zhu
Polymers 2025, 17(7), 979; https://doi.org/10.3390/polym17070979 (registering DOI) - 3 Apr 2025
Abstract
Chemiresistive sensors integrated with functionalized conductive polymers have emerged as promising candidates for wearable applications, offering adequate protection against highly toxic and widely prevalent organophosphate compounds, due to their high sensitivity, room-temperature operation, and straightforward fabrication process. However, these chemiresistive sensors exhibit poor [...] Read more.
Chemiresistive sensors integrated with functionalized conductive polymers have emerged as promising candidates for wearable applications, offering adequate protection against highly toxic and widely prevalent organophosphate compounds, due to their high sensitivity, room-temperature operation, and straightforward fabrication process. However, these chemiresistive sensors exhibit poor resistance to water vapor due to the intrinsic properties of these conducting polymers, likely leading to false sensor alarms. In this study, we engineered a series of water-vapor-resistant, yet organophosphate-sensitive, conducting polymers by electro-copolymerizing hexafluoroisopropanol (HFIP)-grafted 3,4-ethylenedioxythiophene (EDOT-HFIP) with EDOT comonomers bearing hydrophobic alkyl groups of varying lengths (ethyl, butyl, and hexyl). The typical results indicated that increasing the alkyl length and alkyl-bearing EDOT comonomer composition significantly enhanced the water resistance of the EDOT-HFIP copolymers and the copolymer-integrated chemiresistive sensor, but this improvement came at the unacceptable cost of compromising the organophosphate sensitivity. To address this issue, we developed a surface-driven phase-segregation strategy to enrich the alkyl chains on the surface while concentrating the HFIP groups beneath it by treating the silica substrates using oxygen plasma before polymer spin coating, thus decoupling and optimizing the two mutually competing characteristics. Finally, the chemiresistive sensor integrated with the EDOT-HFIP copolymer containing 10% hexyl-grafted EDOT comonomer exhibited an organophosphate (DMMP) resistive response 657 times higher than that to water vapor, and more than two times that of a PEDOT-HFIP sensor, while preserving the original specific sensitivity of the PEDOT-HFIP sensor. Furthermore, it demonstrated a markedly improved shelf storage stability, being directly exposed to air for 14 days without any special protection. We envision that this surface-driven phase-segregation strategy could offer a promising solution to the significant challenge of air moisture interference in highly sensitive polymer sensors, promoting their practical use in real-world applications. Full article
Show Figures

Figure 1

14 pages, 1174 KiB  
Article
Assessment of Alternative Media Viability for Cell Growth Phase in the Lab-Scale Xanthan Pruni Production—Part I
by Isabel Santos Pedone, Fabíola Insaurriaga Aquino, Eduardo dos Santos Macedo Costa, Karine Laste Macagnan, Jéssica da Rosa Porto, Anderson Schwingel Ribeiro, Mariane Igansi Alves, Claire Tondo Vendruscolo and Angelita da Silveira Moreira
Fermentation 2025, 11(4), 191; https://doi.org/10.3390/fermentation11040191 (registering DOI) - 3 Apr 2025
Abstract
Xanthan is a highly relevant commercial microbial biopolymer. Its production occurs in two steps: the bacterium is cultivated in a nitrogen-rich medium for cell multiplication, and the obtained biomass is used as an inoculum for the polymer production phase. Different media compositions for [...] Read more.
Xanthan is a highly relevant commercial microbial biopolymer. Its production occurs in two steps: the bacterium is cultivated in a nitrogen-rich medium for cell multiplication, and the obtained biomass is used as an inoculum for the polymer production phase. Different media compositions for cell growth were investigated, seeking to reduce or replace the peptone used in the standard medium. Peptone (P), yeast extract (YE), and rice parboiling water (RPW) concentration combinations were tested in cultivating Xanthomonas arboricola pv. pruni 101. A CRD 23 design, performed in a shaker, was used to assess the effects of independent variables on xanthan pruni microbial growth, N consumption, yield, viscosity, pseudoplasticity, and xanthan mineral content. After 24 h an increase in N was observed, without any significant impact on cell growth. Xanthan yield increased as a result of the alternative treatments, with P and YE influencing positively. However, T1, with the lowest levels of P, YE, and RPW increased viscosity and pseudoplasticity of xanthan pruni. RPW increased phosphorus, silicon, calcium, and magnesium, and P and YE increased potassium. These results indicate that partial replacement of P by RPW and YE is an economically viable and sustainable approach for the xanthan pruni production. Full article
Show Figures

Figure 1

18 pages, 1984 KiB  
Article
Discovery of MAGL Inhibition by Lophine Derivatives: An Unexpected Finding from Chemiluminescent Assay Development
by Roberta Ottria, Silvana Casati, Ornella Xynomilakis, Aleksandar Veselinović and Pierangela Ciuffreda
Molecules 2025, 30(7), 1605; https://doi.org/10.3390/molecules30071605 (registering DOI) - 3 Apr 2025
Abstract
The inhibitory effects of two novel lophine derivatives were unexpectedly discovered during the development of a chemiluminescent monoacylglycerol lipase (MAGL) assay. The proposed lophine derivatives were found to exhibit concentration-dependent inhibitory effects on MAGL with the octanoic and palmitic acid esters of 2-(4-hydroxyphenyl)-4,5-diphenylimidazole [...] Read more.
The inhibitory effects of two novel lophine derivatives were unexpectedly discovered during the development of a chemiluminescent monoacylglycerol lipase (MAGL) assay. The proposed lophine derivatives were found to exhibit concentration-dependent inhibitory effects on MAGL with the octanoic and palmitic acid esters of 2-(4-hydroxyphenyl)-4,5-diphenylimidazole showing the strongest activity. Reversibility assays using a fluorometric method confirmed that these compounds interact with MAGL in a stable, irreversible manner. To further investigate their mode of interaction, docking studies were performed, supporting the hypothesis that compounds 3 and 4 may act as competitive and irreversible inhibitors. Lophine derivatives were initially designed and synthesized as potential chemiluminescence pro-enhancers. However, assay optimization revealed no signal production upon MAGL hydrolysis, precluding their use as chemiluminescent probes. These findings suggest that lophine is a promising candidate for the development of MAGL inhibitors, although further optimization is needed to enhance binding affinity and selectivity. Full article
(This article belongs to the Special Issue Synthesis of Bioactive Compounds, 3rd Edition)
Show Figures

Figure 1

15 pages, 1630 KiB  
Article
Chemical Profile Analysis of Prosopis laevigata Extracts and Their Topical Anti-Inflammatory and Antibacterial Activities
by Manasés González-Cortazar, David Osvaldo Salinas-Sánchez, Maribel Herrera-Ruiz, Paulina Hernández-Hernández, Alejandro Zamilpa, Enrique Jiménez-Ferrer, Beatriz E. Utrera-Hernández, Ma. Dolores Pérez-García, Ana S. Gutiérrez-Roman and Ever A. Ble-González
Plants 2025, 14(7), 1118; https://doi.org/10.3390/plants14071118 (registering DOI) - 3 Apr 2025
Abstract
There are two major global morbidity and mortality problems in the health sector: inflammation, which is the physiological process that, in acute and chronic conditions, gradually causes the loss of the body’s functionality, leading to severe damage to health; and microbial diseases, which [...] Read more.
There are two major global morbidity and mortality problems in the health sector: inflammation, which is the physiological process that, in acute and chronic conditions, gradually causes the loss of the body’s functionality, leading to severe damage to health; and microbial diseases, which are caused by pathogenic microorganisms such as bacteria. In the present study, the anti-inflammatory effects of three extracts of mesquite (Prosopis laevigata)n-hexane (PH), dichloromethane (PD), and methanol (PM)—were assessed in a mouse model of 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ear oedema, and the antimicrobial effects against 14 microorganisms were assessed using the broth microdilution method. The extracts inhibited ear oedema by 60.81% (PH), 75.96% (PD), and 60.29% (PM). The most active anti-inflammatory extract (PD) was fractionated through chromatography, and three fractions (PDR3, PDR6, and PDR7) were evaluated. One of the most active fractions (PDR7) was purified via column chromatography, and ethyl veratrate (VE, 1) was isolated and identified. VE inhibited ear oedema by 85.1%. The anti-inflammatory effect is evidenced by the quantification of two pro-inflammatory cytokines (IL-10 and TNF-α). The PD extract, the PDR7 fraction, and the compound present an IL-10 concentration of 11.8, 18.9, and 36.5 pg/mg of protein, values significantly higher than the group that received only phorbol ester (* p < 0.05). These treatments also significantly decreased the concentration of TNF-α (* p < 0.05) to 197.6, 241.9, and 247.0 pg/mg protein, respectively. The PM extract showed the most pronounced antimicrobial effect, with a minimum inhibitory concentration (MIC) of <12.5 µg/mL for almost all the 14 tested strains, followed by the PD and PH extracts. Chromatographic fractionation of the PM extract yielded the PMR6, PMR7, and PMR10 fractions that inhibited all tested microorganisms with a MIC between 6.25 and 200 µg/mL. Compound 1 was active on five strains, with a concentration between 2 and 8 µg/mL. High-performance liquid chromatography analysis and comparison with commercial standards allowed for the identification of rutin (2) and quercetin 3-O-glucoside (3). Gas chromatography–mass spectrometry analysis of the PH and PD extracts allowed for the identification of fatty acids, terpenes, and phenols. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Graphical abstract

15 pages, 4606 KiB  
Article
Clarification of Effluents Industry Using Nb2O5
by Gustavo Yuho Endo, Angelo M. Tusset, Lariana Negrão Beraldo de Almeida, Onélia A. A. dos Santos and Giane G. Lenzi
Sustainability 2025, 17(7), 3204; https://doi.org/10.3390/su17073204 (registering DOI) - 3 Apr 2025
Abstract
The effluent treatment from the packaging industry, particularly color removal, is strongly influenced by process interferences. High concentrations of dyes often make water reuse unfeasible. In this context, the present work aims to study the clarification of the dye used in the packaging [...] Read more.
The effluent treatment from the packaging industry, particularly color removal, is strongly influenced by process interferences. High concentrations of dyes often make water reuse unfeasible. In this context, the present work aims to study the clarification of the dye used in the packaging industry by the photocatalytic process. Niobium was used as a catalyst, which was characterized by different techniques. Before verifying the catalytic activity in the industrial effluent, tests were performed with synthetic dye solutions. As a characterization result, it was possible to identify typical characteristics of the semiconductor. The results with the synthetic effluent indicated that the photocatalytic reaction was adequate for the decolorization of the solution. The optimized conditions indicated pH conditions without adjustments (4.2) and a catalyst concentration of 1.0 g L−1, obtaining a decolorization of 98%. Tests with industrial effluent revealed that the optimum conditions were also obtained with an unadjusted pH (6.2) and catalyst concentration of 6.0 g L−1, obtaining, however, 42% discoloration. This result highlights the influence of the organic load and other interfering factors such as additives. However, the process is promising in the clarification of the effluent, which possibly, with a 42% reduction in color, can be reused in the process generating water sustainability. A curve adjustment was proposed to determine the best conditions obtained for both synthetic and industrial effluents. Full article
(This article belongs to the Special Issue Sustainable Waste Management Strategies for Circular Economy)
Show Figures

Figure 1

30 pages, 2577 KiB  
Article
Linking Household and Service Provisioning Assessments to Estimate a Metric of Effective Health Coverage: A Metric for Monitoring Universal Health Coverage
by Veenapani Rajeev Verma, Shyamkumar Sriram and Umakant Dash
Int. J. Environ. Res. Public Health 2025, 22(4), 561; https://doi.org/10.3390/ijerph22040561 (registering DOI) - 3 Apr 2025
Abstract
Background: The framework of measuring effective coverage is conceptually straightforward, yet translation into a single metric is quite intractable. An estimation of a metric linking need, access, utilization, and service quality is imperative for measuring the progress towards Universal Health Coverage. A coverage [...] Read more.
Background: The framework of measuring effective coverage is conceptually straightforward, yet translation into a single metric is quite intractable. An estimation of a metric linking need, access, utilization, and service quality is imperative for measuring the progress towards Universal Health Coverage. A coverage metric obtained from a household survey alone is not succinct as it only captures the service contact which cannot be considered as actual service delivery as it ignores the comprehensive assessment of provider–client interaction. The study was thus conducted to estimate a one-composite metric of effective coverage by linking varied datasets. Methods: The study was conducted in a rural, remote, and fragile setting in India. Tools encompassing a household survey, health facility assessment, and patient exit survey were administered to ascertain measures of contact coverage and quality. A gamut of techniques linking the varied surveys were employed such as (a) exact match linking and (b) ecological linking using GIS approaches via administrative boundaries, Euclidean buffers, travel time grid, and Kernel density estimates. A composite metric of effective coverage was estimated using linked datasets, adjusting for structural and process quality estimates. Further, the horizontal inequities in effective coverage were computed using Erreygers’ concentration index. The concordance between linkage approaches were examined using Wald tests and Lin’s concordance correlation. Results: A significantly steep decline in measurement estimates was found from crude coverage to effective coverage for an entire slew of linking approaches. The drop was more exacerbated for structural-quality-adjusted measures vis-à-vis process-quality-adjusted measures. Overall, the estimates for effective coverage and inequity-adjusted effective coverage were 36.4% and 33.3%, respectively. The composite metric of effective coverage was lowest for postnatal care (10.1%) and highest for immunization care (78.7%). A significant absolute deflection ranging from −2.1 to −5.5 for structural quality and −1.9 to −8.9 for process quality was exhibited between exact match linking and ecological linking. Conclusions: Poor quality of care was divulged as a major factor of decline in coverage. Policy recommendations such as bolstering the quality via the effective implementation of government flagship programs along with initiatives such as integrated incentive schemes to attract and retain workforce and community-based monitoring are suggested. Full article
17 pages, 866 KiB  
Article
Analysis of Pharmaceutical Active Compounds in Complex Water Samples: Sample Filtration as an Option
by Sofia Silva, João Rodrigues, Vitor V. Cardoso, Rui N. Carneiro and Cristina M. M. Almeida
Molecules 2025, 30(7), 1609; https://doi.org/10.3390/molecules30071609 (registering DOI) - 3 Apr 2025
Abstract
Sample pretreatment is one of the most important steps in guaranteeing the success of a chromatographic analysis. The selected methodology must ensure simultaneously that a sample is “clean” enough for analysis and that the target analytes are not removed in the process. This [...] Read more.
Sample pretreatment is one of the most important steps in guaranteeing the success of a chromatographic analysis. The selected methodology must ensure simultaneously that a sample is “clean” enough for analysis and that the target analytes are not removed in the process. This can be especially difficult when working with complex matrices such as natural waters and wastewater. For pharmaceutical active compounds (PhACs) analysis by solid-phase extraction (SPE) followed by ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS), and due to the high level of organic matter in wastewater, the water samples are filtered consecutively through three filters, a paper filter, a glass microfiber filter of 1 µm, and a Nylon filter of 0.45 µm. This filtration allows the sample’s passage through the SPE cartridge to be faster, and there is no cartridge clogging, allowing for greater efficiency in the adsorption process. The big question is whether the PhACs are eliminated during filtration, since they may be adsorbed to organic matter. This work aimed to determine if the best approach for quantifying PhACs in wastewater and surface waters would be to filter them prior or to perform SPE directly. Both approaches analyzed a total of 26 PhACs. Turbidity (TUR) and permanganate index (PI) were determined, and their values were high for samples with a high organic matter content. A statistical analysis was performed to determine the best approach to treat these water samples and whether any correlation existed between PhAC concentrations, PI, and TUR. The PhAC quantification shows a positive correlation with TUR and a negative correlation with PI for most of the target PhACs. However, there are not significantly different results for filtered and not-filtered wastewater samples. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Analytical Chemistry)
17 pages, 4274 KiB  
Article
Photomorphogenic and Biochemical Effects of Radiation and Nitrate Availability on the Red Alga Plocamium cartilagineum
by Bruna Rodrigues Moreira, Julia Vega, Marta García-Sánchez, Cristina González-Fernández, Antonio Avilés, José Bonomi-Barufi and Félix L. Figueroa
Plants 2025, 14(7), 1121; https://doi.org/10.3390/plants14071121 (registering DOI) - 3 Apr 2025
Abstract
Non-photosynthetic photoreceptors detecting different wavelength ranges in the UV and visible region of spectra may trigger algal acclimation and homeostasis. We studied Plocamium cartilagineum responses based on the saturation of photosynthesis by Amber light and supplementation by different light qualities, applying an experimental [...] Read more.
Non-photosynthetic photoreceptors detecting different wavelength ranges in the UV and visible region of spectra may trigger algal acclimation and homeostasis. We studied Plocamium cartilagineum responses based on the saturation of photosynthesis by Amber light and supplementation by different light qualities, applying an experimental design able to simulate a daily cycle in a fully automated system. Thalli were exposed to Amber, Amber + UV-A, Amber + Blue and Amber + Green radiation treatments under two nitrate levels (60 and 240 μM) for enrichment lasting two weeks. P. cartilagineum photosynthesis and biochemistry were measured during different experimental periods. Photosynthesis showed only slight variations, emphasizing that other response variations could be activated by photomorphogenic pathways. Nitrate assimilation was higher in the treatments containing blue and green lights, potentially caused by increasing nitrate reductase activity. Photosynthetic pigments and mycosporine-like amino acids were affected over the two weeks, being mostly influenced by UV-A and blue radiations with the highest nitrate concentration. The shinorine content of thalli under blue radiation with 240 μM of nitrate increased at day 7, possibly modulated by a blue light photoreceptor. The increase in the bioactive compounds in the short-term by specific light qualities under optimal photosynthetic performance was found to be a relevant biotechnological strategy. Full article
(This article belongs to the Special Issue Algal Growth and Biochemical Responses to Environmental Stress)
Show Figures

Figure 1

15 pages, 1335 KiB  
Article
Elucidating the Synergistic Effect of the PrimeC Combination for Amyotrophic Lateral Sclerosis in Human Induced Pluripotent Stem Cell-Derived Motor Neurons and Mouse Models
by Shiran Salomon-Zimri, Nitai Kerem, Gabriel R. Linares, Niva Russek-Blum, Justin K. Ichida and Ferenc Tracik
Pharmaceuticals 2025, 18(4), 524; https://doi.org/10.3390/ph18040524 (registering DOI) - 3 Apr 2025
Abstract
Background: Amyotrophic lateral sclerosis (ALS) is a multifactorial neurodegenerative disease characterized by the involvement of multiple pathways and mechanisms. The complexity of its pathophysiology is reflected in the diverse hypotheses relating to its underlying causes. Given this intricate interplay of processes, a combination [...] Read more.
Background: Amyotrophic lateral sclerosis (ALS) is a multifactorial neurodegenerative disease characterized by the involvement of multiple pathways and mechanisms. The complexity of its pathophysiology is reflected in the diverse hypotheses relating to its underlying causes. Given this intricate interplay of processes, a combination therapy approach offers a promising strategy. Combination therapies have demonstrated significant success in treating complex diseases, where they aim to achieve synergistic therapeutic effects and reduce drug dosage. PrimeC is an oral combination treatment composed of a patented novel formulation consisting of specific and unique doses of two well-characterized drugs (ciprofloxacin and celecoxib). It aims to synergistically inhibit the progression of ALS by addressing key elements of its pathophysiology. Objectives: Demonstrating the synergistic effect of the PrimeC combination compared to each of its individual components, celecoxib and ciprofloxacin, and assessing its ability to improve the drug concentration profile and efficacy. Methods: The efficacy of the PrimeC combination was assessed in a survival assay using human induced pluripotent stem cell (iPSC)-derived motor neurons. Additionally, a drug profiling study was conducted, measuring drug levels in the brain and serum of C57BL mice treated with a single compound versus the combination. Results: Motor neurons modeling ALS treated with the PrimeC combination exhibited better survival rates compared to treatment with either individual compound alone. The enhanced efficacy of the combination was further supported by a drug concentration profiling study in rodents, demonstrating that the PrimeC combination resulted in increased ciprofloxacin concentrations in both brain tissue and serum—highlighting the optimized interaction and synergistic potential of its two comprising agents. Conclusions: Our findings support the potential of combination therapy as an effective strategy for ALS treatment. Specifically, the PrimeC combination demonstrated promising therapeutic effects, providing a strong rationale for its ongoing development as a targeted treatment for ALS. Full article
Show Figures

Figure 1

27 pages, 2606 KiB  
Review
HDL-Cholesterol and Triglycerides Dynamics: Essential Players in Metabolic Syndrome
by Sebastià Alcover, Lisaidy Ramos-Regalado, Gabriela Girón, Natàlia Muñoz-García and Gemma Vilahur
Antioxidants 2025, 14(4), 434; https://doi.org/10.3390/antiox14040434 (registering DOI) - 3 Apr 2025
Abstract
Metabolic syndrome (MetS) is a complex cluster of interrelated metabolic disorders that significantly elevate the risk of cardiovascular disease, making it a pressing public health concern worldwide. Among the key features of MetS, dyslipidemia—characterized by altered levels of high-density lipoprotein cholesterol (HDL-C) and [...] Read more.
Metabolic syndrome (MetS) is a complex cluster of interrelated metabolic disorders that significantly elevate the risk of cardiovascular disease, making it a pressing public health concern worldwide. Among the key features of MetS, dyslipidemia—characterized by altered levels of high-density lipoprotein cholesterol (HDL-C) and triglycerides (TG)—plays a crucial role in the disorder’s progression. This review aims to elucidate the intricate interplay between HDL-C and TG within the context of lipid metabolism and cardiovascular health, while also addressing the detrimental impact of various cardiovascular risk factors and associated comorbidities. The dynamics of HDL-C and TG are explored, highlighting their reciprocal relationship and respective contributions to the pathophysiology of MetS. Elevated levels of TGs are consistently associated with reduced concentrations of HDL-C, resulting in a lipid profile that promotes the development of vascular disease. Specifically, as TG levels rise, the protective cardiovascular effects of HDL-C are diminished, leading to the increased accumulation of pro-atherogenic TG-rich lipoproteins and low-density lipoprotein particles within the vascular wall, contributing to the progression of atheromas, which can ultimately result in significant ischemic cardiovascular events. Ultimately, this paper underscores the significance of HDL and TG as essential targets for therapeutic intervention, emphasizing their potential in effectively managing MetS and reducing cardiovascular risk. Full article
(This article belongs to the Special Issue Antioxidant Role of High-Density Lipoprotein)
Show Figures

Figure 1

22 pages, 3342 KiB  
Article
Ensquared Energy and Optical Centroid Efficiency in Optical Sensors, Part 3: Optical Sensors
by Marija Strojnik and Yaujen Wang
Photonics 2025, 12(4), 344; https://doi.org/10.3390/photonics12040344 (registering DOI) - 3 Apr 2025
Abstract
We previously introduced the concepts of optical centroid efficiency (OCE) and enclosed energy within a rectangular pixel (EOD). We applied them to an ideal lens with and without a central obscuration for two different detector pixel sizes. Also, we [...] Read more.
We previously introduced the concepts of optical centroid efficiency (OCE) and enclosed energy within a rectangular pixel (EOD). We applied them to an ideal lens with and without a central obscuration for two different detector pixel sizes. Also, we analyzed the performance of OCE vs. EOD for the following three Seidel primary aberrations of an ideal lens: spherical, coma, and astigmatism, plus defocus. In this paper, we concentrate on three different optical remote sensing instrument configurations. We burden them with a set of aberrations to mimic realistic generalized error budgets that cover potential ground, lunch, and on-orbit environmental conditions. The shape of the OCE vs. EOD curve depends to a large degree on the dominant aberration. With the proper choice of detector pixel size, OCE increases with EOD when EOD is larger than 0.6. The increased detector pixel size is advantageous for structures that enhance diffraction effects, and for off-axis and asymmetrical configurations. Analytical and experimental tests are proposed for original critical cases. Furthermore, OCE and EOD, as functional figures of merit, may be effectively applied to instruments for monitoring tumors and their evolution to cancerous tissue, leading to timely diagnosis. Full article
Back to TopTop