Influence of Genotype on Productivity and Egg Quality of Three Hen Strains Included in a Biodiversity Program
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
- R-11: 804–900 birds including 84–100 roosters (21–25 each) and 720–800 hens (180–200 each);
- K-22: 1056 birds including 108 roosters (27 each) and 948 hens (237 each);
- A-33: 960 birds including 96 roosters (24 each) and 864 hens (216 each).
- Temperature: 32 °C during the first days of rearing, gradually decreasing as birds age to reach 16–20 °C after 35 days of age;
- Relative humidity: 65–70%;
- Lighting regime: 10–15 l×.
- Housing system: litter, stocking density of 5 birds/m2, and an enriched environment (perches, additional bales of straw, scratching areas, sand baths, claw-trimming areas, and grit).
- 1 day to 8 weeks: 18.04% total protein, 5.70% crude ash, 3.09% crude fat, 3.56 crude fiber, 0.90% calcium, and 0.63% phosphorus;
- 9–20 weeks: 17.05% total protein, 5.09% crude ash, 3.00% crude fat, 3.95 crude fiber, 0.76% calcium, and 0.57% phosphorus;
- 21–56 weeks: 16.93% total protein, 11.28% crude ash, 2.15% crude fat, 2.50% crude fiber, 3.55% calcium, and 0.50% phosphorus.
- Setting compartment, i.e., days 1–18 of incubation: 37.6–38.0 °C and 50–60% relative humidity, with the eggs rotated every hour through an angle of 90°.
- Hatching compartment, i.e., days 19–21 of incubation: 37.0–37.5 °C and 50–60% relative humidity after egg transfer and 75–80% during hatching of chicks.
- a—linear regression coefficient;
- x—time expressed in years (independent variable);
- b—the level of the trait in the zero period.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hoffmann, I. Livestock biodiversity and sustainability. Livest. Sci. 2011, 139, 69–79. [Google Scholar] [CrossRef]
- Romanov, M.N.; Wężyk, S.; Cywa-Benko, K.; Sakhatsky, N.I. Poultry genetic in the countries of Eastern Europe—History and current state. Poult. Avian Biol. 1996, 7, 1–29. [Google Scholar]
- Woelders, H.; Zuidberg, C.A.; Hiemstra, S.J. Animal Genetic Resources Conservation in the Netherlands and Europe. Poultry Perspective. Poult. Sci. 2006, 85, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Alderson, L. Native Breeds at Risk. Criteria and Classification. Report from a Seminar Held in London. 16–17 February 2010; pp. 1–14. Available online: https://www.regionalcattlebreeds.eu/livestock_biodiversity_workshop/documents/Alderson.pdf (accessed on 12 March 2023).
- Food and Agriculture Organization of the United Nations (FAO). Domestic Animal Diversity Information System (DAD-IS); FAO: Rome, Italy, 2020; Available online: http://www.fao.org/dad-is/en (accessed on 12 March 2023).
- Cywa-Benko, K. Genetic and phenotypic characteristic of native chicken breeds encompassed in biodiversity conservation program. Rocz. Nauk. Zoot. Rozpr. Hab. 2002, 15, 1–112. (In Polish) [Google Scholar]
- Calik, J. Native breeds/families of laying hens as decoration of farmsteads and a source of good quality products. In Book Conservation Breeds in Rural Development; Krawczyk, J., Ed.; IZ PIB: Drukmar, Poland, 2022; pp. 193–214. (In Polish) [Google Scholar]
- Padhi, M.K. Importance of indigenous breeds of chicken for rural economy and their improvements for higher production performance. Hindawi Pub. Corp. Scientif. 2016, 1, 2604685. [Google Scholar] [CrossRef]
- Abdelqader, A.; Wollny, C.B.A.; Gauly, M. Characterization of local chicken production systems and their potential under different levels of management practice in Jordan. Trop. Anim. Health Prod. 2007, 39, 155–164. [Google Scholar] [CrossRef]
- Mtileni, B.J.; Muchadeyi, F.C.; Maiwashe, A.; Chimonyo, M.; Dzama, K. Conservation and utilisation of chicken genetic resources in Southern Africa. World’s Poult. Sci. 2012, 68, 727–747. [Google Scholar] [CrossRef]
- Özdemir, E.R.; Marchi, M.D.; Cassandro, M. Conservation of Local Turkish and Italian Chicken Breeds: A Case Study. Ital. J. Anim. Sci. 2013, 12, 313–319. [Google Scholar] [CrossRef]
- Pham, M.H.; Tran, X.H.; Berthouly-Salazar, C.; Tixier-Boichard, M.; Chen, C.F.; Lee, Y.P. Monitoring of genetic diversity in Taiwan conserved chickens assessed by pedigree and molecular data. Livest. Sci. 2016, 184, 85–91. [Google Scholar] [CrossRef]
- Fathi, M.M.; Al-Homidan, I.; Abou-Emera, O.K.; Al-Moshawah, A. Characterisation of Saudi native chicken breeds: A case study of morphological and productive traits. World’s Poult. Sci. 2017, 73, 916–927. [Google Scholar] [CrossRef]
- Vostrý, L.; Vostrá-Vydrová, H.; Moravčíková, N.; Hofmanová, B.; Rychtářová, J.; Machová, K.; Brzáková, M.; Kasarda, R. Monitoring of genetic diversity in autochthonous Czech poultry breeds assessed by genealogical data. Czech J. Anim. Sci. 2020, 65, 224–231. [Google Scholar] [CrossRef]
- Castillo, A.; Gariglio, M.; Franzoni, A.; Soglia, D.; Sartore, S.; Buccioni, A.; Mannelli, F.; Cassandro, M.; Cendron, F.; Castellini, C.; et al. Overview of Native Chicken Breeds in Italy: Conservation Status and Rearing Systems in Use. Animals 2021, 11, 490. [Google Scholar] [CrossRef] [PubMed]
- Obrzut, J.; Calik, J.; Krawczyk, J. Temporal trends in performance and hatchability traits of eight strains of hens covered by the gene pool protection programme in Poland. Ann. Anim. Sci. 2021, 21, 1347–1366. [Google Scholar] [CrossRef]
- World Watch List for Domestic Animal Diversity, FAO/UNEP, Roma. 2000. Available online: https://www.fao.org/3/x8750e/x8750e00.pdf (accessed on 12 March 2023).
- Polak, G.; Krupiński, J.; Martyniuk, E.; Calik, J.; Kawęcka, A.; Krawczyk, J.; Majewska, A.; Sikora, J.; Sosin-Bzducha, E.; Szyndler-Nędza, M.; et al. Assessment of risk status of polish local breeds under conservation programmes. Ann. Anim. Sci. 2021, 21, 125–140. [Google Scholar] [CrossRef]
- Wężyk, S.; Cywa-Benko, K.; Siwek, M.; Bednarczyk, M.; Calik, J. Studies on genetic differences in genetic reserve breeds of hens. Rocz. Nauk. Zoot. 2020, 27, 115–127. (In Polish) [Google Scholar]
- Brodacki, A.; Zięba, G.; Cywa-Benko, K. Genetic distance between selected breeds and lines of laying hens. Electron. J. Pol. Agric. Univ. Anim. Husb. 2001, 4, 1–4. [Google Scholar]
- Semik, E.; Krawczyk, J. The state of poultry genetic resources and genetic diversity of hen populations. Ann. Anim. Sci. 2011, 11, 181–191. [Google Scholar]
- Puchała, M.; Krawczyk, J.; Calik, J. Influence of origin of laying hens on the quality of their carcasses and meat after the first laying period. Ann. Anim. Sci. 2014, 3, 685–696. [Google Scholar] [CrossRef]
- Puchała, M.; Krawczyk, J.; Sokołowicz, Z.; Utnik-Banaś, K. Effect of breed and production system on physicochemical characteristics of meat from multipurpose hens. Ann. Anim. Sci. 2015, 15, 247–261. [Google Scholar] [CrossRef]
- Calik, J.; Krawczyk, J.; Świątkiewicz, S.; Gąsior, R.; Wojtycza, K.; Połtowicz, K.; Obrzut, J.; Puchała, M. Comparison of the physicochemical and sensory characteristics of Rhode Island Red (R-11) capons and cockerels. Ann. Anim. Sci. 2017, 17, 903–917. [Google Scholar] [CrossRef]
- Calik, J. Analysis of some genetic and productive parameters and egg quality of hens from RIW (A-33) and RIR (K-22) conservation lines. Ann. Anim. Sci. 2018, 8, 113–119. [Google Scholar]
- Krawczyk, J.; Calik, J. Comparison of performance in five generations of laying hens from Polish conservation flocks. Rocz. Nauk. Zoot. 2010, 37, 41–54. (In Polish) [Google Scholar]
- Calik, J. Assessment of Content of Selected Chemical Components in Hen Eggs Depending on Their Production Cycle. Żywn. Nauk. Technol. Jakość 2016, 3, 54–63. [Google Scholar] [CrossRef]
- Krawczyk, J.; Calik, J. Quality Assessment of Eggs Laid by Hens Included in Programmes for the Conservation of Animal Genetic Resources. Żywn. Nauk. Technol. Jakość 2018, 25, 140–150. [Google Scholar]
- Basmacioglu, H.; Ergul, M. Characteristic of egg in laying hens. The effect of genotype and rearing system. Turk. J. Vet. Anim. Sci. 2005, 29, 157–164. [Google Scholar]
- Czaja, L.; Gornowicz, E. Effect of genome and hen’s age on table egg quality. Rocz. Nauk. Zoot. 2006, 33, 59–70. [Google Scholar]
- Tůmova, E.; Zita, L.; Hubený, M.; Skřivan, M.; Ledvinka, Z. The effect of oviposition time and genotype on egg quality characteristics in egg type hens. Czech J. Anim. Sci. 2007, 52, 26–30. [Google Scholar] [CrossRef]
- Tůmova, E.; Skřivan, M.; Englmaierová, M.; Zita, L. The effect of genotype, housing system and egg collection time on egg quality in egg type hens. Czech J. Anim. Sci. 2009, 54, 17–23. [Google Scholar] [CrossRef]
- Biesiada-Drzazga, B.; Janocha, A. Impact of hen breed and rearing system on the quality of eggs for consumption. Żywn. Nauk. Technol. Jakość 2009, 3, 67–74. [Google Scholar]
- Krawczyk, J.; Sokołowicz, Z.; Szymczyk, B. Effect of housing system on cholesterol, vitamin and fatty acid content of yolk and physical characteristics of eggs from Polish native hens. Arch. Geflügelkd. 2011, 75, 151–157. [Google Scholar]
- Filipiak-Florkiewicz, A.; Deren, K.; Florkiewicz, A.; Topolska, K.; Juszczak, L.; Cieślik, W. The quality of eggs (organic and nutraceutical vs. conventional) and their technological properties. Poult. Sci. 2017, 96, 2480–2490. [Google Scholar] [CrossRef] [PubMed]
- Sokołowicz, Z.; Krawczyk, J.; Dykiel, M. The effect of the type of alternative housing system, genotype and age of laying hens on egg quality. Ann. Anim. Sci. 2018, 18, 541–555. [Google Scholar] [CrossRef]
- Krawczyk, J.; Lewko, L.; Calik, J. Effect of laying hen genotype, age and some interior egg quality traits on lysozyme content. Ann. Anim. Sci. 2021, 21, 1119–1132. [Google Scholar] [CrossRef]
- Nolte, T.; Jansen, S.; Weigend, S.; Moerlein, D.; Halle, I.; Simianer, H.; Sharifi, A.R. Genotypic and Dietary Effects on Egg Quality of Local Chicken Breeds and Their Crosses Fed with Faba Beans. Animals 2021, 11, 1947. [Google Scholar] [CrossRef]
- Campbell, D.L.M.; Lee, C.; Hinch, G.N.; Roberts, J.R. Egg production and egg quality in free-rage laying hens housed at different outdoor stocking densities. Poult. Sci. 2017, 96, 3128–3137. [Google Scholar] [CrossRef]
- Hunton, P. Research on eggshell structure and quality: An historical overview. Braz. J. Poult. Sci. 2005, 7, 67–71. [Google Scholar] [CrossRef]
- Roberts, J.R. Factors affecting egg internal quality and egg shell quality in laying hens. Poult. Sci. J. 2004, 41, 161–177. [Google Scholar] [CrossRef]
- Wright, S. Evaluation in Mendelian populations. Genetics 1931, 14, 97–159. [Google Scholar] [CrossRef]
- Statistica (Data Analysis Software System), Version 13.3; TIBCO Software Inc.: Palo Alto, CA, USA, 2017. Available online: http://statistica.io (accessed on 12 March 2023).
- Spalona, A.; Ranving, H.; Cywa-Benko, K.; Zanon, A.; Sabbioni, A.; Szalay, I.; Benkova, J.; Baumgartner, J.; Szwaczkowski, T. Population size in conservation of local chicken breeds in chosen European countries. Arch. Geflügelkd. 2007, 71, 49–55. [Google Scholar]
- Calik, J. The relationships between body weight of hen and egg weight. Rocz. Nauk. Zoot. Supl. 2002, 16, 95–102. (In Polish) [Google Scholar]
- Krawczyk, J. Determination of egg production profitability based on the relationship between chicken’s body weight and egg weight. Rocz. Nauk. Zoot. 2006, 33, 255–262. (In Polish) [Google Scholar]
- Szwaczkowski, T. Use of mixed model methodology in poultry breeding: Estimation of genetic parameters. Poult. Genet. Breed. Biotechnol. 2003, 165–203. [Google Scholar] [CrossRef]
- Gryzińska, M.; Batkowska, J.; Al-Shammari, K.; Ambrożkiewicz, J.; Jeżewska-Witkowska, G. Hatchability of selected breeds of hens maintained as Polish conservation flocks. Elect. J. Pol. Agric. Univ. Ser. Anim. Husb. 2015, 18, 1–8. [Google Scholar]
- Borzemska, W.B.; Kosowska, G. Major problems of pathology in poultry hatch. Zesz. Nauk. Przegl. Hod. 1997, 3, 25–31. (In Polish) [Google Scholar]
- Rizzi, C.; Marangon, A. Quality of organic eggs of hybrid and Italian breed hens. Poult. Sci. 2012, 91, 2330–2340. [Google Scholar] [CrossRef] [PubMed]
- Nikolova, N.; Kocevski, D. Forming egg shape index as influence by ambient temperatur es and age of hens. Biotechnol. Anim. Husb. 2006, 22, 119–125. [Google Scholar] [CrossRef]
- Nedup, D.; Phurba, K. Evaluation of egg quality parameters in Bhutanese indigenous chickens vis-avis exotic chicken. Indian J. Anim. Sci. 2014, 84, 884–890. [Google Scholar]
- Drabik, K.; Karwowska, M.; Wengerska, K.; Próchniak, T.; Adamczuk, A.; Batkowska, J. The Variability of Quality Traits of Table Eggs and Eggshell Mineral Composition Depending on Hens’ Breed and Eggshell Color. Animals 2021, 11, 1204. [Google Scholar] [CrossRef]
- Premavalli, K.; Viswanagthan, K. Influence of age on the egg quality characteristics of commercial white leghorn chicken. Indian Vet. J. 2004, 81, 1243–1247. [Google Scholar]
- Biesiada-Drzazga, B.; Banaszewska, D.; Kaim-Mirowski, S. Analysis of selected external and internal characteristics of the eggs of Hy-Line Brown hens in relation to their age. Anim. Sci. Genet. 2022, 18, 45–56. [Google Scholar]
- Lewko, L.; Krawczyk, J.; Calik, J. Effect of genotype and some shell quality traits on lysozyme content and activity in the albumen of eggs from hens under the biodiversity conservation program. Poult. Sci. 2021, 100, 100863. [Google Scholar] [CrossRef] [PubMed]
- Lichovniková, M.; Zeman, L. Effect of housing system on the calcium requirement of laying hens and on eggshell quality. Czech J. Anim. Sci. 2008, 53, 162–168. [Google Scholar] [CrossRef]
Strains | Generations | Number of Birds | Ne | Fx | Mortality and Health-Related Deaths (%) | ||||
---|---|---|---|---|---|---|---|---|---|
Rearing Period | Production Period | ||||||||
♂ | ♀ | ♂ | ♀ | ♂ | ♀ | ||||
R-11 | 1 | 84 | 720 | 300.90 | 0.17 | 1.00 | 2.38 | 0.00 | 0.69 |
2 | 84 | 720 | 300.90 | 0.17 | 0.00 | 0.75 | 0.00 | 0.14 | |
3 | 100 | 800 | 355.56 | 0.14 | 1.00 | 1.75 | 0.00 | 1.11 | |
4 | 84 | 720 | 300.90 | 0.17 | 1.00 | 2.75 | 0.00 | 0.42 | |
5 | 84 | 720 | 300.90 | 0.17 | 3.00 | 2.75 | 0.00 | 1.25 | |
x | 87.2 | 736 | 311.83 | 0.16 | 1.20 | 2.08 | 0.00 | 0.72 | |
K-22 | 1 | 108 | 948 | 387.82 | 0.13 | 0.83 | 1.00 | 0.00 | 0.42 |
2 | 108 | 948 | 387.82 | 0.13 | 0.00 | 0.82 | 0.93 | 0.21 | |
3 | 108 | 948 | 387.82 | 0.13 | 0.00 | 0.45 | 0.93 | 0.84 | |
4 | 108 | 948 | 387.82 | 0.13 | 1.67 | 2.18 | 0.00 | 0.84 | |
5 | 108 | 948 | 387.82 | 0.13 | 0.84 | 1.09 | 1.85 | 0.84 | |
x | 108.0 | 948 | 387.82 | 0.13 | 0.67 | 1.11 | 0.74 | 0.63 | |
A-33 | 1 | 96 | 864 | 345.60 | 0.14 | 0.00 | 3.80 | 1.04 | 0.93 |
2 | 96 | 864 | 345.60 | 0.14 | 0.00 | 0.20 | 0.00 | 0.23 | |
3 | 96 | 864 | 345.60 | 0.14 | 0.83 | 1.60 | 1.04 | 1.50 | |
4 | 96 | 864 | 345.60 | 0.14 | 2.50 | 2.40 | 1.04 | 1.04 | |
5 | 96 | 864 | 345.60 | 0.14 | 0.00 | 2.20 | 0.00 | 1.16 | |
x | 96.0 | 864 | 345.60 | 0.14 | 0.67 | 2.04 | 0.62 | 0.97 |
Item | Breed (A) | Age (Weeks) (B) | A × B | SEM | Interactions | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R-11 | K-22 | A-33 | 33 | 53 | 33 | 53 | A | B | A × B | ||||||
R-11 | K-22 | A-33 | R-11 | K-22 | A-33 | ||||||||||
Shape index % | 76.13 a | 75.03 b | 76.03 a | 76.72 | 74.74 | 78.07 A | 75.19 B | 76.92 B | 74.19 B | 74.87 A | 75.14 B | 0.218 | 0.045 | <0.001 | 0.001 |
Egg weight g | 60.35 Bb | 61.82 a | 62.34 A | 57.50 | 65.51 | 56.08 ab | 58.71 ab | 57.71 ab | 64.63 ab | 64.94 b | 66.98 a | 0.384 | <0.01 | <0.01 | 0.031 |
Shell color % | 48.97 A | 36.83 B | 34.85 C | 38.40 | 42.03 | 47.47 B | 33.23 D | 34.50 D | 50.46 A | 40.43 C | 35.2 D | 0.568 | <0.001 | <0.001 | <0.001 |
Shell weight g | 6.12 Bb | 6.35 a | 6.46 A | 5.95 | 6.68 | 5.77 | 5.90 | 6.17 | 6.47 | 6.80 | 6.76 | 0.051 | <0.01 | <0.001 | 0.311 |
Shell thickness μm | 318 A | 316 AB | 295 B | 336 | 284 | 346 | 344 | 318 | 291 | 289 | 269 | 0.003 | <0.001 | <0.001 | 0.693 |
Shell density mg/cm2 | 79.49 | 80.29 | 81.04 | 82.17 | 78.38 | 81.54 | 82.65 | 82.31 | 77.44 | 77.93 | 79.77 | 0.532 | 0.474 | <0.001 | 0.676 |
Shell strength N | 43.17 A | 43.21 A | 35.02 B | 42.85 | 38.08 | 45.06 | 45.32 | 38.16 | 41.26 | 41.10 | 31.88 | 0.765 | <0.001 | <0.001 | 0.741 |
Item | Breed (A) | Age (Weeks) (B) | A × B | SEM | Interactions | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R-11 | K-22 | A-33 | 33 | 53 | 33 | 53 | A | B | A × B | ||||||
R-11 | K-22 | A-33 | R-11 | K-22 | A-33 | ||||||||||
Yolk weight g | 17.37 | 17.66 | 17.79 | 15.25 | 19.97 | 15.28 C | 15.57 C | 14.88 C | 19.45 B | 19.75 B | 20.70 A | 0.198 | 0.191 | <0.001 | <0.001 |
Yolk content % | 28.73 | 28.47 | 28.39 | 26.56 | 30.49 | 27.29 B | 26.54 BC | 25.85 C | 30.16 A | 30.40 A | 30.93 A | 0.202 | 0.584 | <0.001 | <0.001 |
Yolk color pts | 5.30 A | 4.67 B | 4.60 B | 4.03 | 5.68 | 4.40 | 4.00 | 3.70 | 6.20 | 5.33 | 5.50 | 0.082 | <0.001 | <0.001 | 0.104 |
Albumen height mm | 8.56 | 8.72 | 8.88 | 9.19 | 8.24 | 9.04 | 9.24 | 9.31 | 8.08 | 8.19 | 8.44 | 0.117 | 0.522 | <0.01 | 0.948 |
Haugh units jH | 91.31 | 92.08 | 92.00 | 95.31 | 88.24 | 94.48 | 95.61 | 95.84 | 88.13 | 88.55 | 88.16 | 0.642 | 0.845 | <0.001 | 0.902 |
Blood stains % | 1.56 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 3.12 | 0.00 | 0.00 | - | - | - | - |
Meat stains % | 3.12 | 0.00 | 0.00 | 0.00 | 2.08 | 0.00 | 0.00 | 0.00 | 6.25 | 0.00 | 0.00 | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calik, J.; Obrzut, J. Influence of Genotype on Productivity and Egg Quality of Three Hen Strains Included in a Biodiversity Program. Animals 2023, 13, 1848. https://doi.org/10.3390/ani13111848
Calik J, Obrzut J. Influence of Genotype on Productivity and Egg Quality of Three Hen Strains Included in a Biodiversity Program. Animals. 2023; 13(11):1848. https://doi.org/10.3390/ani13111848
Chicago/Turabian StyleCalik, Jolanta, and Joanna Obrzut. 2023. "Influence of Genotype on Productivity and Egg Quality of Three Hen Strains Included in a Biodiversity Program" Animals 13, no. 11: 1848. https://doi.org/10.3390/ani13111848
APA StyleCalik, J., & Obrzut, J. (2023). Influence of Genotype on Productivity and Egg Quality of Three Hen Strains Included in a Biodiversity Program. Animals, 13(11), 1848. https://doi.org/10.3390/ani13111848