Artificial Intelligence for Automatic Monitoring of Respiratory Health Conditions in Smart Swine Farming
Abstract
:Simple Summary
Abstract
1. Introduction
2. Importance of PRDC in the Swine Industry
3. Artificial Intelligence for Respiratory Disease Detection
3.1. Development of AI Technology for Cough Recognition
Extraction Technique | Classification Technique | Sound Dataset (N) | Accuracy | Recall | Precision | F1 | Literature |
---|---|---|---|---|---|---|---|
Acoustic (RMS, ZCR, MFCC, Centroid, Flatness, Bandwidth, Rolloff, & Chroma) & visual (LBP & HOG) | SVM | 3157 | 96.45 | 97.33 | 96.83 | 97.08 | Ji et al. [22] |
MFCC + ΔMFCC | Improved SE-DenseNet-121 | 1445 | 93.80 | 98.60 | 97.00 | 97.80 | Song et al. [25] |
Acoustic (RMS, ZCR, MFCC, Centroid, Flatness, Bandwidth, Rolloff, Contrast & Flux) & deep feature | SVM | 2546 | 97.35 | 96.51 | 98.41 | 97.46 | Shen et al. [24] |
STFT | Fine-tuned AlexNet | 4480 | 95.40 | 96.80 | 95.50 | 96.20 | Yin et al. [29] |
MFCC–CNN | SVM | 4551 | 96.68 | 97.72 | 96.81 | 97.26 | Shen et al. [23] |
Softmax | 95.82 | 95.51 | 97.33 | 96.41 | |||
PMFCC | SVM | 200 | 95.00 | Wang et al. [27] | |||
DNS | CNN | 96.57 | Choi et al. [26] | ||||
SVM | 95.15 | ||||||
KNN | 93.74 | ||||||
C4.5 | 85.10 | ||||||
MFCC | SVDD/SRC | 94.00 | 92.00 | 90.80 | Chung et al. [31] | ||
Average | 95.56 | 96.35 | 96.10 | 95.28 |
3.2. Feature Extraction and Fusion Techniques
3.3. Classification Techniques
Technique | Sensors | Number of Pigs Used (Head) | Objective | Findings | Literature |
---|---|---|---|---|---|
Vision | TIR camera (FLIR AX8) & RGB video camera (Raspberry Pi Camera Module V2.1) | 76 (9-week-old) | Utilizing computer-based methods, thermal infrared and conventional images are employed to gauge alterations in the temperature of pigs (through eye- and ear-based measurements) as well as their heart and respiration rates. |
| Joquera-Chavez et al. [1] |
TIR camera (FLIR Duo® Pro R) | 46 (9-week-old) | To assess the effectiveness of utilizing computer-based methods with RGB and thermal infrared imagery in measuring the heart rate and respiration rate of pigs and to explore the possibility of utilizing remote assessments of eye temperature, heart rate, and respiration rate as a means of identifying early indications of respiratory diseases in growing pigs that are group-housed and free-moving within a commercial piggery. |
| Joquera-Chavez et al. [21] | |
Audio | Piezoelectric sensor & MEMS microphone | 4 (5-week-old) | To propose a wireless system to record body-conducted sounds of pigs individually and a method of analysis for the early detection of respiratory diseases in infected pigs. |
| Narusawa et al. [35] |
Piezoelectric sensor & MEMS microphone | 4 (5-week-old) | To develop a system for early detection of respiratory diseases in pigs utilizing body-conducted sound. |
| Cheng et al. [34] | |
Piezoelectric sensor & MEMS microphone | 4 (5-week-old) | To develop a system for early detection of respiratory diseases in pigs utilizing body-conducted sound. |
| Tsuchiya et al. [37] | |
Directional cardioid microphone | NI (commercial farm) | To improve the recognition accuracy of pig coughs using a new fusion feature (MFCC–CNN). |
| Shen et al. [23] | |
Digital camcorder & CCTV with an audio sensor | 36 (25–35 kg) | To propose an efficient data-mining solution for the detection and recognition of pig wasting diseases using sound data in audio surveillance systems. |
| Chung et al. [31] | |
Omnidirectional electret microphone | 280 (8.5-week-old; 25 kg) | To identify the relationship between animal sounds and air quality of animals’ living environment. |
| Wang et al. [27] | |
Recording pen (Mrobo M66) | 10 (age & weight NI) | To propose DNN–HMM model to construct an acoustic model for continuous pig cough-sound recognition. |
| Zhao et al. [33] | |
Sound sensor (MAX9814) in ear tag | 2 (18 kg) | To propose a remote monitoring tool for the objective measurement of some behavioral indicators that may help in assessing health and welfare status—namely, posture, gait, vocalization, and external temperature. |
| Pandey et al. [36] | |
Audio sensor | 36 (25–35 kg) | To propose an economical and lightweight sound-based pig anomaly detection system that can be applicable even in small-scale farms. |
| Hong et al. [38] | |
Omnidirectional electret microphones (Panasonic, WM-61A) | 16 (age & weight NI) | To examine the correlations between the frequency of sneezing and various strains of influenza virus in domestic pigs. |
| Mito et al. [30] | |
Microphone (LIQI LM320E, Cardioid electret microphone) | 128 (17-week-old; 60 kg) | To propose a feature fusion method by combining acoustic and deep features from audio segments. |
| Shen et al. [24] | |
M260C Microphone Array with six SPA1687LR5H-1microphone components | 6 (age & weight NI) | To develop SE-DenseNet-121 model to recognize pig cough sounds. |
| Song et al. [25] | |
Microphone (LIQILM320E, Cardioid electret microphone) | 128 (17-week-old; 60 kg) | To propose a novel feature fusion method that fuses acoustic and visual features to achieve an enhanced pig cough recognition rate. |
| Ji et al. [22] | |
Digital camcorder (JVC GR-DVL520A) | 36 (25–30 kg) | To propose a noise-robust system for the classification of sound data. |
| Choi et al. [26] | |
Microphone (LIQI LM 320ECardioid electret microphone) | NI (commercial farm) | To provide a highly accurate pig cough recognition method for the respiratory disease alarm system using fine-tuned AlexNet model and spectrogram feature. |
| Yin et al. [29] | |
Vision & audio | CCTV with an audio sensor | NI (commercial farm) | To propose a method to detect wasting disease automatically using both audio and video data. |
| Kim et al. [32] |
Others | Recording pen (Lenovo B610) | NI (commercial farm) | To propose a pig sound classification method based on the dual role of signal spectrum and speech. |
| Wu et al. [39] |
Recording pen (Lenovo B610) | NI (commercial farm) | To propose a sound classification model called TransformerCNN, which combines the advantages of CNN spatial feature representation and the Transformer sequence coding to form a powerful global feature perception and local feature extraction capability. |
| Liao et al. [55] |
3.4. Performance Evaluation Metrics
4. Commercial Application
4.1. Features of SoundTalks
4.2. Research Using SoundTalks
5. Existing Technology: Limitations and Opportunities for Improvement
5.1. Farm-Dependent Coughing Threshold
5.2. Population-Dependent Coughing Threshold
5.3. Monitoring of Herd Respiratory Health Status
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jorquera-Chavez, M.; Fuentes, S.; Dunshea, F.R.; Warner, R.D.; Poblete, T.; Morrison, R.S.; Jongman, E.C. Remotely Sensed Imagery for Early Detection of Respiratory Disease in Pigs: A Pilot Study. Animals 2020, 10, 451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calderón Díaz, J.A.; Fitzgerald, R.M.; Shalloo, L.; Rodrigues da Costa, M.; Niemi, J.; Leonard, F.C.; Kyriazakis, I.; García Manzanilla, E. Financial Analysis of Herd Status and Vaccination Practices for Porcine Reproductive and Respiratory Syndrome Virus, Swine Influenza Virus, and Mycoplasma hyopneumoniae in Farrow-to-Finish Pig Farms Using a Bio-Economic Simulation Model. Front. Vet. Sci. 2020, 7, 556674. [Google Scholar] [CrossRef] [PubMed]
- Ruggeri, J.; Salogni, C.; Giovannini, S.; Vitale, N.; Boniotti, M.B.; Corradi, A.; Pozzi, P.; Pasquali, P.; Alborali, G.L. Association Between Infectious Agents and Lesions in Post-Weaned Piglets and Fattening Heavy Pigs with Porcine Respiratory Disease Complex (PRDC). Front. Vet. Sci. 2020, 7, 636. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Li, F.; Chen, Q.; Wu, J.; Duan, J.; Lei, X.; Zhang, Y.; Zhao, D.; Bu, Z.; Yin, H. Rapid Detection of African Swine Fever Virus Using Cas12a-Based Portable Paper Diagnostics. Cell Discov. 2020, 6, 18. [Google Scholar] [CrossRef] [Green Version]
- Clavijo, M.J.; Hu, D.; Krantz, S.; Cano, J.P.; Pereira Maróstica, T.; Henao-Diaz, A.; Poeta Silva, A.P.S.; Hemker, D.; Tapia, E.; Zimmerman, S.; et al. Mycoplasma hyopneumoniae Surveillance in Pig Populations: Establishing Sampling Guidelines for Detection in Growing Pigs. J. Clin. Microbiol. 2021, 59, e03051-20. [Google Scholar] [CrossRef]
- Shaikh, F.K.; Memon, M.A.; Mahoto, N.A.; Zeadally, S.; Nebhen, J. Artificial Intelligence Best Practices in Smart Agriculture. IEEE Micro 2022, 42, 17–24. [Google Scholar] [CrossRef]
- Ünal, Z. Smart Farming Becomes Even Smarter With Deep Learning—A Bibliographical Analysis. IEEE Access 2020, 8, 105587–105609. [Google Scholar] [CrossRef]
- Bao, J.; Xie, Q. Artificial Intelligence in Animal Farming: A Systematic Literature Review. J. Clean. Prod. 2022, 331, 129956. [Google Scholar] [CrossRef]
- Neethirajan, S.; Kemp, B. Digital Twins in Livestock Farming. Animals 2021, 11, 1008. [Google Scholar] [CrossRef]
- FAO. Agricultural Production Statistics. 2000–2020; FAOSTAT Analytical Brief Series No. 41; FAO: Rome, Italy, 2022; Available online: https://www.fao.org/3/cb9180en/cb9180en.pdf (accessed on 2 February 2023).
- Komarek, A.M.; Dunston, S.; Enahoro, D.; Godfray, H.C.J.; Herrero, M.; Mason-D’Croz, D.; Rich, K.M.; Scarborough, P.; Springmann, M.; Sulser, T.B.; et al. Income, Consumer Preferences, and the Future of Livestock-Derived Food Demand. Glob. Environ. Chang. 2021, 70, 102343. [Google Scholar] [CrossRef]
- Flay, K.J.; Yang, D.A.; Choi, S.C.; Ip, J.; Lee, S.H.; Pfeiffer, D.U. First Study to Describe the Prevalence of Porcine Reproductive and Respiratory Syndrome Virus and Porcine Circovirus Type 2 among the Farmed Pig Population in the Hong Kong Special Administrative Region. Vet. Sci. 2022, 9, 80. [Google Scholar] [CrossRef]
- Sun, Q.; Yu, X.; He, D.; Ku, X.; Hong, B.; Zeng, W.; Zhang, H.; He, Q. Investigation and Analysis of Etiology Associated with Porcine Respiratory Disease Complex in China from 2017 to 2021. Front. Vet. Sci. 2022, 9, 960033. [Google Scholar] [CrossRef]
- Cheong, Y.; Oh, C.; Lee, K.; Cho, K. Survey of Porcine Respiratory Disease Complex-Associated Pathogens among Commercial Pig Farms in Korea via Oral Fluid Method. J. Vet. Sci. 2017, 18, 283–289. [Google Scholar] [CrossRef]
- Arruda, A.G.; Poljak, Z.; Friendship, R.; Carpenter, J.; Hand, K. Descriptive Analysis and Spatial Epidemiology of Porcine Reproductive and Respiratory Syndrome (PRRS) for Swine Sites Participating in Area Regional Control and Elimination Programs from 3 Regions of Ontario. Can. J. Vet. Res. 2015, 79, 268–278. [Google Scholar]
- Assavacheep, P.; Thanawongnuwech, R. Porcine Respiratory Disease Complex: Dynamics of Polymicrobial Infections and Management Strategies after the Introduction of the African Swine Fever. Front. Vet. Sci. 2022, 9, 1048861. [Google Scholar] [CrossRef]
- Ruggeri, J.; Ferlazzo, G.; Boniotti, M.B.; Capucci, L.; Guarneri, F.; Barbieri, I.; Alborali, G.L.; Amadori, M. Characterization of the IgA Response to PRRS Virus in Pig Oral Fluids. PLoS ONE 2020, 15, e0229065. [Google Scholar] [CrossRef] [Green Version]
- Cohen, L.M.; Grøntvedt, C.A.; Klem, T.B.; Gulliksen, S.M.; Ranheim, B.; Nielsen, J.P.; Valheim, M.; Kielland, C. A Descriptive Study of Acute Outbreaks of Respiratory Disease in Norwegian Fattening Pig Herds. Acta Vet. Scand. 2020, 62, 35. [Google Scholar] [CrossRef]
- Haimi-Hakala, M.; Hälli, O.; Laurila, T.; Raunio-Saarnisto, M.; Nokireki, T.; Laine, T.; Nykäsenoja, S.; Pelkola, K.; Segales, J.; Sibila, M.; et al. Etiology of Acute Respiratory Disease in Fattening Pigs in Finland. Porc. Health Manag. 2017, 3, 19. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, S.; Silva, M.; Guarino, M.; Aerts, J.M.; Berckmans, D. Cough Sound Analysis to Identify Respiratory Infection in Pigs. Comput. Electron. Agric. 2008, 64, 318–325. [Google Scholar] [CrossRef]
- Jorquera-Chavez, M.; Fuentes, S.; Dunshea, F.R.; Warner, R.D.; Poblete, T.; Unnithan, R.R.; Morrison, R.S.; Jongman, E.C. Using Imagery and Computer Vision as Remote Monitoring Methods for Early Detection of Respiratory Disease in Pigs. Comput. Electron. Agric. 2021, 187, 106283. [Google Scholar] [CrossRef]
- Ji, N.; Shen, W.; Yin, Y.; Bao, J.; Dai, B.; Hou, H.; Kou, S.; Zhao, Y. Investigation of Acoustic and Visual Features for Pig Cough Classification. Biosyst. Eng. 2022, 219, 281–293. [Google Scholar] [CrossRef]
- Shen, W.; Tu, D.; Yin, Y.; Bao, J. A New Fusion Feature Based on Convolutional Neural Network for Pig Cough Recognition in Field Situations. Inf. Process. Agric. 2020, 8, 573–580. [Google Scholar] [CrossRef]
- Shen, W.; Ji, N.; Yin, Y.; Dai, B.; Tu, D.; Sun, B.; Hou, H.; Kou, S.; Zhao, Y. Fusion of Acoustic and Deep Features for Pig Cough Sound Recognition. Comput. Electron. Agric. 2022, 197, 106994. [Google Scholar] [CrossRef]
- Song, H.; Zhao, B.; Hu, J.; Sun, H.; Zhou, Z. Research on Improved DenseNets Pig Cough Sound Recognition Model Based on SENets. Electronics 2022, 11, 3562. [Google Scholar] [CrossRef]
- Choi, Y.; Atif, O.; Lee, J.; Park, D.; Chung, Y. Noise-Robust Sound-Event Classification System with Texture Analysis. Symmetry 2018, 10, 402. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zhao, X.; He, Y.; Wang, K. Cough Sound Analysis to Assess Air Quality in Commercial Weaner Barns. Comput. Electron. Agric. 2019, 160, 8–13. [Google Scholar] [CrossRef]
- Kawaguchi, J.; Matsumoto, M. Noise Reduction Combining a General Microphone and a Throat Microphone. Sensors 2022, 22, 4473. [Google Scholar] [CrossRef]
- Yin, Y.; Tu, D.; Shen, W.; Bao, J. Recognition of Sick Pig Cough Sounds Based on Convolutional Neural Network in Field Situations. Inf. Process. Agric. 2021, 8, 369–379. [Google Scholar] [CrossRef]
- Mito, M.; Aoki, T.; Mizutani, K.; Zempo, K.; Wakatsuki, N.; Maeda, Y.; Takemae, N.; Tsunekuni, R.; Saito, T. Frequency Analysis of the Sneeze Caused by Swine Influenza Virus Strains: Automatic Sneeze around-the-Clock Detection Using a Support Vector Machine. Comput. Electron. Agric. 2020, 179, 105789. [Google Scholar] [CrossRef]
- Chung, Y.; Oh, S.; Lee, J.; Park, D.; Chang, H.-H.; Kim, S. Automatic Detection and Recognition of Pig Wasting Diseases Using Sound Data in Audio Surveillance Systems. Sensors 2013, 13, 12929–12942. [Google Scholar] [CrossRef] [Green Version]
- Kim, H. Automatic Identification of a Coughing Animal Using Audio and Video Data. In Proceedings of the Fourth International Conference on Information Science and Cloud Computing—PoS(ISCC2015), Guangzhou, China, 18–19 December 2015; Sissa Medialab: Guangzhou, China, 2016; p. 8. [Google Scholar]
- Zhao, J.; Li, X.; Liu, W.; Gao, Y.; Lei, M.; Tan, H.; Yang, D. DNN-HMM Based Acoustic Model for Continuous Pig Cough Sound Recognition. Int. J. Agric. Biol. Eng. 2020, 13, 186–193. [Google Scholar] [CrossRef]
- Cheng, Y.; Narusawa, K.; Iijima, S.; Nakayama, M.; Ishimitsu, S.; Inoue, H.; Ishida, A.; Takagi, M.; Mikami, O. Development of an Early Detection System for Respiratory Diseases in Pigs. Int. J. Biomed. Soft Comput. Hum. Sci. Off. J. Biomed. Fuzzy Syst. Assoc. 2019, 24, 65–73. [Google Scholar]
- Narusawa, K.; Cheng, Y.; Ishimitsu, S.; Nakayama, M.; Iijima, S.; Mikami, O.; Takagi, M.; Inoue, H. Analysis of Body-Conducted Sound to Identify Infected Pigs. ICIC Express Lett. Part B Appl. 2020, 11, 735–741. [Google Scholar]
- Pandey, S.; Kalwa, U.; Kong, T.; Guo, B.; Gauger, P.C.; Peters, D.J.; Yoon, K.-J. Behavioral Monitoring Tool for Pig Farmers: Ear Tag Sensors, Machine Intelligence, and Technology Adoption Roadmap. Animals 2021, 11, 2665. [Google Scholar] [CrossRef]
- Tsuchiya, K.; Ishimitsu, S.; Morinaga, Y.; Cheng, Y.; Narusawa, K.; Nakayama, M.; Mikami, O.; Takagi, M.; Inoue, H. Study on Disease-Detection Methods Using Body-Conducted Sounds in Pigs. Int. J. Biomed. Soft Comput. Hum. Sci. Off. J. Biomed. Fuzzy Syst. Assoc. 2020, 25, 49–56. [Google Scholar] [CrossRef]
- Hong, M.; Ahn, H.; Atif, O.; Lee, J.; Park, D.; Chung, Y. Field-Applicable Pig Anomaly Detection System Using Vocalization for Embedded Board Implementations. Appl. Sci. 2020, 10, 6991. [Google Scholar] [CrossRef]
- Wu, X.; Zhou, S.; Chen, M.; Zhao, Y.; Wang, Y.; Zhao, X.; Li, D.; Pu, H. Combined Spectral and Speech Features for Pig Speech Recognition. PLoS ONE 2022, 17, e0276778. [Google Scholar] [CrossRef]
- Abdusalomov, A.B.; Safarov, F.; Rakhimov, M.; Turaev, B.; Whangbo, T.K. Improved Feature Parameter Extraction from Speech Signals Using Machine Learning Algorithm. Sensors 2022, 22, 8122. [Google Scholar] [CrossRef]
- Khalid, S.; Shehryar, T.; Nasreen, S. A Survey of Feature Selection and Feature Extraction Techniques in Machine Learning. In Proceedings of the 2014 Science and Information Conference, London, UK, 27–29 August 2014; pp. 372–378. [Google Scholar] [CrossRef]
- Lee, G.-T.; Nam, H.; Kim, S.-H.; Choi, S.-M.; Kim, Y.; Park, Y.-H. Deep Learning Based Cough Detection Camera Using Enhanced Features. Expert Syst. Appl. 2022, 206, 117811. [Google Scholar] [CrossRef]
- Zhao, Q.; Guo, F.; Zu, X.; Li, B.; Yuan, X. An Acoustic-Based Feature Extraction Method for the Classification of Moving Vehicles in the Wild. IEEE Access 2019, 7, 73666–73674. [Google Scholar] [CrossRef]
- Bansal, A.; Garg, N.K. Environmental Sound Classification: A Descriptive Review of the Literature. Intell. Syst. Appl. 2022, 16, 200115. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef] [Green Version]
- Lu, P.; Song, B.; Xu, L. Human Face Recognition Based on Convolutional Neural Network and Augmented Dataset. Syst. Sci. Control Eng. 2021, 9, 29–37. [Google Scholar] [CrossRef]
- Yamashita, R.; Nishio, M.; Do, R.K.G.; Togashi, K. Convolutional Neural Networks: An Overview and Application in Radiology. Insights Imaging 2018, 9, 611–629. [Google Scholar] [CrossRef] [Green Version]
- Miranda, I.D.S.; Diacon, A.H.; Niesler, T.R. A Comparative Study of Features for Acoustic Cough Detection Using Deep Architectures. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 2601–2605. [Google Scholar]
- Pahar, M.; Miranda, I.; Diacon, A.; Niesler, T. Deep Neural Network Based Cough Detection Using Bed-Mounted Accelerometer Measurements. In Proceedings of the ICASSP 2021—2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 6–11 June 2021; pp. 8002–8006. [Google Scholar]
- Evangeline, D.; Lohit, S.M.; Tarun, R.; Ujwal, K.C.; Sumanth, D.S.V. Detection of Covid-19 through Cough and Breathing Sounds Using CNN. Int. J. Adv. Comput. Sci. Appl. 2021, 12, 133–142. [Google Scholar]
- Fang, Z.; Yin, B.; Du, Z.; Huang, X. Fast Environmental Sound Classification Based on Resource Adaptive Convolutional Neural Network. Sci. Rep. 2022, 12, 6599. [Google Scholar] [CrossRef]
- Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.; Farhan, L. Review of Deep Learning: Concepts, CNN Architectures, Challenges, Applications, Future Directions. J. Big Data 2021, 8, 53. [Google Scholar] [CrossRef]
- Wolfe, J.; Jin, X.; Bahr, T.; Holzer, N. Application of Softmax Regression and Its Validation for Spectral-Based Land Cover Mapping. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLII-1/W1, 455–459. [Google Scholar] [CrossRef] [Green Version]
- Qi, X.; Wang, T.; Liu, J. Comparison of Support Vector Machine and Softmax Classifiers in Computer Vision. In Proceedings of the 2017 Second International Conference on Mechanical, Control and Computer Engineering (ICMCCE), Harbin, China, 8–10 December 2017; pp. 151–155. [Google Scholar]
- Liao, J.; Li, H.; Feng, A.; Wu, X.; Luo, Y.; Duan, X.; Ni, M.; Li, J. Domestic Pig Sound Classification Based on TransformerCNN. Appl. Intell. 2022, 53, 4907–4923. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Cristianini, N.; Shawe-Taylor, J. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods; Cambridge University Press: Cambridge, UK, 2000; ISBN 978-0-521-78019-3. [Google Scholar]
- Savas, C.; Dovis, F. The Impact of Different Kernel Functions on the Performance of Scintillation Detection Based on Support Vector Machines. Sensors 2019, 19, 5219. [Google Scholar] [CrossRef] [Green Version]
- Taunk, K.; De, S.; Verma, S.; Swetapadma, A. A Brief Review of Nearest Neighbor Algorithm for Learning and Classification. In Proceedings of the 2019 International Conference on Intelligent Computing and Control Systems (ICCS), Madurai, India, 15–17 May 2019; pp. 1255–1260. [Google Scholar]
- Lakshmi, B.N.; Indumathi, T.S.; Ravi, N. A Study on C.5 Decision Tree Classification Algorithm for Risk Predictions During Pregnancy. Procedia Technol. 2016, 24, 1542–1549. [Google Scholar] [CrossRef] [Green Version]
- Dikananda, A.R.; Jumini, S.; Tarihoran, N.; Christinawati, S.; Trimastuti, W.; Rahim, R. Comparison of Decision Tree Classification Methods and Gradient Boosted Trees. TEM J. 2022, 11, 316–322. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; Curran Associates, Inc.: Red Hook, NY, USA, 2015; Volume 28. [Google Scholar]
- De Diego, I.M.; Redondo, A.R.; Fernández, R.R.; Navarro, J.; Moguerza, J.M. General Performance Score for Classification Problems. Appl. Intell. 2022, 52, 12049–12063. [Google Scholar] [CrossRef]
- Puleko, I.; Svintsytska, O.; Chumakevych, V.; Ptashnyk, V. The Scalar Metric of Classification Algorithm Choice in Machine Learning Problems Based on the Scheme of Nonlinear Compromises. In Proceedings of the 6th International Conference on Computational Linguistics and Intelligent Systems, Gliwice, Poland, 12–13 May 2022. [Google Scholar]
- Pessoa, J.; Rodrigues da Costa, M.; García Manzanilla, E.; Norton, T.; McAloon, C.; Boyle, L. Managing Respiratory Disease in Finisher Pigs: Combining Quantitative Assessments of Clinical Signs and the Prevalence of Lung Lesions at Slaughter. Prev. Vet. Med. 2021, 186, 105208. [Google Scholar] [CrossRef]
- Silva, A.P.S.P.; Storino, G.Y.; Ferreyra, F.S.M.; Zhang, M.; Fano, E.; Polson, D.; Wang, C.; Derscheid, R.J.; Zimmerman, J.J.; Clavijo, M.J.; et al. Cough Associated with the Detection of Mycoplasma hyopneumoniae DNA in Clinical and Environmental Specimens under Controlled Conditions. Porc. Health Manag. 2022, 8, 6. [Google Scholar] [CrossRef]
- Cui, Z.Y.; Buyens, D.; Berckmans, D.; de Volder, I.; Degezelle, I.; Vranken, E. Technological tools for infection detection: Case studies with the SOMO respiratory distress monitor in Belgian pig farms. In Proceedings of the European Conference on Precision Livestock Farming, Cork, Ireland, 26–29 August 2019; pp. 292–297. [Google Scholar]
- Pessoa, J.; Camp Montoro, J.; Pina Nunes, T.; Norton, T.; McAloon, C.; Garcia Manzanilla, E.; Boyle, L. Environmental Risk Factors Influence the Frequency of Coughing and Sneezing Episodes in Finisher Pigs on a Farm Free of Respiratory Disease. Animals 2022, 12, 982. [Google Scholar] [CrossRef]
- Polson, D.; Playter, S.; Berckmans, D.; Cui, Z.; Quinn, B. Evaluation of an audio-based sensor platform to classify patterns of clinical respiratory episodes in large growing pig populations. In Proceedings of the European Conference on Precision Livestock Farming, Cork, Ireland, 26–29 August 2019; pp. 553–558. [Google Scholar]
Metrics | Definition | Formula |
---|---|---|
True Positive | The number of samples that are correctly classified as cough sounds | TP |
True Negative | The number of samples that are correctly classified as non-cough sounds | TN |
False Positive | The number of samples that are incorrectly classified as cough sounds | FP |
False Negative | The number of samples that are incorrectly classified as non-cough sounds | FN |
Accuracy | The ratio of correct predictions over the total number of dataset | |
Precision | The ratio of correctly classified cough-sound samples to the total samples classified as cough sounds | |
Recall | The ratio of correctly classified cough-sound samples to the total cough-sound dataset | |
Specificity | The ratio of correctly classified non-cough-sound samples to the total non-cough-sound dataset | |
F1 score | Combination of precision and recall |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lagua, E.B.; Mun, H.-S.; Ampode, K.M.B.; Chem, V.; Kim, Y.-H.; Yang, C.-J. Artificial Intelligence for Automatic Monitoring of Respiratory Health Conditions in Smart Swine Farming. Animals 2023, 13, 1860. https://doi.org/10.3390/ani13111860
Lagua EB, Mun H-S, Ampode KMB, Chem V, Kim Y-H, Yang C-J. Artificial Intelligence for Automatic Monitoring of Respiratory Health Conditions in Smart Swine Farming. Animals. 2023; 13(11):1860. https://doi.org/10.3390/ani13111860
Chicago/Turabian StyleLagua, Eddiemar B., Hong-Seok Mun, Keiven Mark B. Ampode, Veasna Chem, Young-Hwa Kim, and Chul-Ju Yang. 2023. "Artificial Intelligence for Automatic Monitoring of Respiratory Health Conditions in Smart Swine Farming" Animals 13, no. 11: 1860. https://doi.org/10.3390/ani13111860
APA StyleLagua, E. B., Mun, H. -S., Ampode, K. M. B., Chem, V., Kim, Y. -H., & Yang, C. -J. (2023). Artificial Intelligence for Automatic Monitoring of Respiratory Health Conditions in Smart Swine Farming. Animals, 13(11), 1860. https://doi.org/10.3390/ani13111860