Effects of Supplementation with an Herbal Mixture on the Antioxidant Capacity of Milk
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Material
2.2. Analysis of the Chemical Composition and Nutritional Value of Fodder
2.3. Analyses of Milk
2.3.1. Determination of Protein
2.3.2. Determination of Vitamins
2.3.3. Determination of Antioxidant Capacity
2.3.4. Determination of Cholesterol
2.3.5. Determination of Degree of Antioxidant Protection
2.3.6. Statistical Analysis
3. Results and Discussion
3.1. Milk Yield and Basic Physico-Chemical Parameters in Milk
3.2. Bioactive Proteins in Milk
3.3. Lipophilic Vitamins in Milk
3.4. Antioxidant Capacity of Milk
3.5. Degree of Antioxidant Protection of Milk
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Paskudska, A.; Kołodziejczyk, D.; Socha, S. The use of herbs in animal nutrition. Acta Sci. Pol. Zootech. 2018, 17, 3–14. [Google Scholar] [CrossRef]
- Odhaib, K.J.; Al-Hajjar, Q.N.; Alallawee, M.H.A. Incorporation of herbal plants in the diet of ruminants: Effect on meat quality. Iraqi J. Vet. Med. 2021, 45, 22–30. [Google Scholar] [CrossRef]
- Sakowski, T.; Metera, E.; Puppel, K.; Kuczyńska, B. Feed Additives Improving the Chemical Composition of Milk and the Metabolic Status of Cows in Organic and Low-Input Farms; Mat. XXIII Szkoły Zimowej Hodowców Bydła: Zakopane, Poland, 2015; pp. 45–51. ISBN 978-83-926689-1-6. (In Polish) [Google Scholar]
- Hashemzadeh-Cigari, F.; Khorvash, M.; Ghorbani, G.R.; Kadivar, M.; Riasi, A.; Zebel, Q. Effects of supplementation with a phytobiotics-rich herbal mixture on performance, udder health, and metabolic status of Holstein cows with various levels of milk somatic cell counts. J. Dairy Sci. 2014, 97, 7487–7497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rochfort, S.; Parker, A.J.; Dunshea, F.R. Plant bioactives for ruminant health and productivity. Phytochemistry 2008, 69, 299–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maksymiec, N. Positive aspects of application of herbs in cattle nutrition. Anim. Prod. Rev. 2012, 1, 9–11. (In Polish) [Google Scholar]
- Klebaniuk, R.; Kochman, G.; Kowalczuk-Vasiliev, E.; Grela, E.R.; Kolwaczyk-Pecka, D.; Bąkowski, M. Dietary supplementation with glucogenic precusors and fatty acids improves performance and health of periparturient dairy cows. Anim. Prod. Sci. 2017, 59, 109–121. [Google Scholar] [CrossRef]
- Sunarić, S.; Živković, J.; Pavlović, R.; Kocić, G.; Trutić, N.; Živanović, S. Assessment of α-tocopherol content in cow and goat milk from the Serbian market. Hem. Ind. 2012, 66, 559–566. [Google Scholar] [CrossRef]
- Cichosz, G.; Czeczot, H.; Ambroziak, A.; Bielecka, M.M. Natural antioxidants in milk and dairy products. Int. J. Dairy Technol. 2017, 70, 165–178. [Google Scholar] [CrossRef]
- Torre-Santos, S.; Royo, L.J.; Martínez-Fernández, A.; Chocarro, C.; Vicente, F. The mode of grass supply to dairy cows impacts on fatty acid and antioxidant profile of milk. Foods 2020, 9, 1256. [Google Scholar] [CrossRef]
- Brodziak, A.; Król, J.; Litwińczuk, Z.; Barłowska, J. Differences in bioactive protein and vitamin status of milk from certified organic and conventional farms. J. Dairy Technol. 2018, 71, 321–332. [Google Scholar] [CrossRef]
- Puppel, K.; Sakowski, T.; Kuczyńska, B.; Grodkowski, G.; Gołębiewski, M.; Barszczewski, J.; Wróbel, B.; Budziński, A.; Kapusta, A.; Balcerak, M. Degrees of antioxidant protection: A 2-Year study of the bioactive properties of organic milk in Poland. J. Food Sci. 2017, 82, 523–528. [Google Scholar] [CrossRef]
- Nielsen, N.I.; Ingvartsen, K.L. Propylene glycol for dairy cows: A review of the metabolism of propylene glycol and its effects on physiological parameters, feed intake, milk production and risk of ketosis. Anim. Feed Sci. Technol. 2004, 115, 191–213. [Google Scholar] [CrossRef]
- Alves, S.P.; Cabrita, A.R.J.; Jerónimo, E.; Bessa, R.J.B.; Fonseca, A.J.M. Effect of ensiling and silage additives on fatty acid composition of ryegrass and corn experimental silages. J. Anim. Sci. 2011, 89, 2537–2545. [Google Scholar] [CrossRef] [Green Version]
- Dunne, J.; Clark, M.W.; Corstanje, R.; Reddy, K.R. Legacy phosphorus in subtropical wetland soils: Influence of dairy, improved and unimproved pasture land use. Ecol. Eng. 2011, 37, 1481–1491. [Google Scholar] [CrossRef]
- Embuscado, M.E. Spices and herbs: Natural sources of antioxidants e a mini review. J. Funct. Food. 2015, 18, 811–819. [Google Scholar] [CrossRef]
- Bąkowski, M.; Kiczorowska, B. Probiotic microorganisms and herbs in ruminant nutrition as natural modulators of health and production efficiency—A review. Ann. Anim. Sci. 2021, 21, 3–28. [Google Scholar] [CrossRef]
- Bichra, M.; El-Modafar, C.; El-Abbassi, A.; Bouamama, H.; Benkhalti, F. Antioxidant activities and phenolic profile of six Moroccan selected herbs. J. Microbiol. Biotechnol. Food Sci. 2013, 2, 2320–2338. [Google Scholar]
- Reddy, P.R.K.; Elghandour, M.M.M.Y.; Salem, A.Z.M.; Yasaswini, D.; Reddy, P.P.R.; Reddy, A.N.; Hyder, I. Plant secondary metabolites as feed additives in calves for antimicrobial stewardship. Anim. Feed Sci. Technol. 2020, 264, 114469. [Google Scholar] [CrossRef]
- Janani, T. Herbs as Antioxidants in Oxidation of Marine Lipids. Master’s Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2013. [Google Scholar]
- Odhaib, K.J.; Ali Alallawe, M.H.; AL-Mousawi, Z.A.H. Utilization of herbal remedies to improve ruminant performance: A review. J. Vet. Sci. 2021, 14, 14–28. [Google Scholar]
- El-Sayed, S.M.; Youssef, A.M. Potential application of herbs and spices and their effects in functional dairy products. Heliyon 2019, 5, e01989. [Google Scholar] [CrossRef] [Green Version]
- Ulewicz-Magulska, B.; Wesołowski, M. Total Phenolic Contents and Antioxidant Potential of Herbs Used for Medical and Culinary Purposes. Plant Foods Hum. Nutr. 2019, 74, 61–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sotek, Z.; Białecka, B.; Pilarczyk, B.; Kruzhel, B.; Drozd, R.; Pilarczyk, R.; Tomza- Marciniak, A.; Lysak, H.; Bąkowska, M.; Vovk, S. The content of selenium, polyphenols and antioxidative activity in selected medicinal plants from Poland and Western Ukraine. Acta Pol. Pharm. Drug Res. 2018, 75, 1107–1116. [Google Scholar] [CrossRef]
- Kolling, G.J.; Stivanin, S.C.B.; Gabbi, A.M.; Machado, F.S.; Ferreira, A.L.; Campos, M.M.; Tomich, T.R.; Cunha, C.S.; Klein, C.P.; August, P.M.; et al. Milk production and hematological and antioxidant profiles of dairy cows supplemented with oregano and green tea extracts as feed additives. Rev. Bras. Zootec. 2022, 51, e20210150. [Google Scholar] [CrossRef]
- Vizzotto, E.F.; Stivanin, S.C.B.; de Paris, M.; Passos, L.T.; Werncke, D.; Klein, C.P.; Stone, V.; Matté, C.; Zanela, M.B.; Fischer, V. Supplementation with green tea and oregano extracts on productive characteristics, blood metabolites, and antioxidant status of Jersey cows during the transition period. Animal 2021, 15, 100032. [Google Scholar] [CrossRef]
- Panchasara, H.H.; Chaudhari, A.B.; Patel, D.A.; Gami, Y.M.; Patel, M.P. Effect of Herbal Galactogogue (Sanjivani biokseera) on milk yield and milk constituents in lactating kankrej cattle at organised farm. Ind. J. Vet. Sci. Biotech. 2019, 15, 39–41. [Google Scholar] [CrossRef]
- Kraszewski, J.; Wawrzyńskim, M.; Radeckim, P. Effect of herb supplementation of cow feeds on udder health ans cytological and microbiological picture of milk. Wiad. Zoot. 2008, 3, 3–7. (In Polish) [Google Scholar]
- Greathead, H. Plants and plants extracts for improving animal productivity. Proc. Nutr. Soc. 2003, 62, 279–290. [Google Scholar] [CrossRef] [Green Version]
- Wawrzyńczak, S.; Kraszewski, J.; Wawrzyński, M.; Kozłowski, J. Effect of herb mixture feeding on rearing performance of calves. Ann. Anim. Sci. 2000, 27, 133–142. [Google Scholar]
- Cardozo, P.W.; Calsamiglia, S.; Ferret, A.; Kamel, C. Effects of alfalfa extract, anise, capsicum, and a mixture of innamaldehyde and eugenol on ruminal fermentation and protein degradation in beef heifers fed a high-concentrate diet. J. Anim. Sci. 2006, 84, 2801–2808. [Google Scholar] [CrossRef] [Green Version]
- Grabowicz, M.; Doroszewski, P.; Szterek, P.; Mikołajaczek, J.; Piłat, J. lnfluence of whole crop milk thistle silage on cows’ metabolism in a transition period. Med. Weter. 2004, 60, 759–762. (In Polish) [Google Scholar]
- Prayitno, C.H.; Suwarno, A.S.; Jayanegara, A. Effect of garlic extract and organic mineral supplementation on feed intake, digestibility and milk yield of lactating dairy cows. Asian J. Anim. Sci. 2016, 10, 213–218. [Google Scholar] [CrossRef] [Green Version]
- Hassan, F.; Tang, Z.; Ebeid, H.M.; Li, M.; Peng, K.; Liang, X.; Yang, C. Consequences of herbal mixture supplementation on milk performance, ruminal fermentation, and bacterial diversity in water buffaloes. PeerJ 2021, 9, e11241. [Google Scholar] [CrossRef]
- Oh, J.; Wall, E.H.; Bravo, D.M.; Hristov, A.N. Host-mediated effects of phytonutrients in ruminants: A review. J. Dairy Sci. 2017, 100, 5974–5983. [Google Scholar] [CrossRef] [Green Version]
- Vanitcharoen, S.; Tangsuphoom, N.; Suthisansanee, U.; Santivarangkana, C. Effect of protein hydrolysis on physical properties and antioxidant activities of cow’s milk. J. Food Sci. Agric. Technol. 2018, 4, 105–110. [Google Scholar]
- Puppel, K.; Kapusta, A.; Kuczyńska, B. The etiology of oxidative stress in the various species of animals, a review. J. Sci. Food Agric. 2015, 95, 2179–2184. [Google Scholar] [CrossRef]
- Mavangira, V.; Sordillo, L.M. Role of lipid mediators in the regulation of oxidative stress and inflammatory responses in dairy cattle. Res. Vet. Sci. 2018, 116, 4–14. [Google Scholar] [CrossRef]
- Stobiecka, M.; Król, J.; Brodziak, A. Antioxidant activity of milk and dairy products. Animals 2022, 12, 245. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 18th ed.; Revision 4; Horowitz, W., Latimer, G.W., Jr., Eds.; AOAC International: Gaithersburg, MD, USA, 2011. [Google Scholar]
- Polish Pharmaceutical Society. Polish Pharmacopoeia VI; Polish Pharmaceutical Society: Warsaw, Poland, 2002. [Google Scholar]
- WINWAR 2.1.3.13. 2007. Available online: http://www.djgroup.com.pl/index.php?p=6 (accessed on 20 May 2023).
- Strzetelski, J.A.; Brzóska, F.; Kowalski, Z.M.; Osięgłowski, S. Nutritional Recommendations for Ruminants and Feed Value Tables; National Research Institute of Animal Production: Krakow, Poland, 2014. (In Polish) [Google Scholar]
- AOAC. Official Methods of Analysis, No. 998.06, 17th ed.; AOAC International: Arlington, VA, USA, 2000; Available online: http://m.wdfxw.net/goDownFiles.aspx?key=12212363 (accessed on 15 May 2023).
- Brodziak, A.; Barłowska, J.; Król, J.; Litwińczuk, Z. Effect of breed and feeding system on content of selected whey proteins in cow’s milk in spring-summer and autumn-winter seasons. Ann. Anim. Sci. 2012, 12, 261–269. [Google Scholar] [CrossRef] [Green Version]
- Romero, C.; Perez-Andujar, O.; Jimenes, S. Detection of cow’s milk in ewe’s or goat’s milk by HPLC. Chromatographia 1996, 42, 181–184. [Google Scholar] [CrossRef] [Green Version]
- Hewavitharana, A.K.; van Brakel, A.S.; Harnett, M. Simultaneous liquid chromatographic determination of vitamins A, E and β-carotene in common dairy foods. Int. Dairy J. 1996, 6, 613–624. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Sahin, S.; Isik, E.; Aybastier, O.; Demir, C. Orthogonal signal correction-based prediction of total antioxidant activity using partial least squares regression from chromatograms. J. Chemometr. 2012, 26, 390–399. [Google Scholar] [CrossRef]
- Pizzoferrato, L.; Manzi, P.; Marconi, S.; Fedele, V.; Claps, S.; Rubino, R. Degree of antioxidant protection: A parameter to trace the origin and quality of goat’s milk and cheese. J. Dairy Sci. 2007, 90, 4569–4574. [Google Scholar] [CrossRef]
- Kalaitsidis, K.; Sidiropoulou, E.; Tsiftsoglou, O.; Mourtzinos, I.; Moschakis, T.; Basdagianni, Z.; Vasilopoulos, S.; Chatzigavriel, S.; Lazari, D.; Giannenas, I. Effects of cornus and its mixture with oregano and thyme essential oils on dairy sheep performance and milk, yoghurt and cheese quality under heat stress. Animals 2021, 11, 1063. [Google Scholar] [CrossRef]
- Lacerda, E.C.Q.; Bauer, L.C.; Oliveira, J.S.; Silva, F.F.; Carvalho, S.A.; Macedo, M.S.; de Souza, N.E.; Simionato, J.I. Effect of the dietary inclusion of dried oregano (Origanum vulgare L.) on the characteristics of milk from Holstein × Zebu cows. Anim. Feed. Sci. Technol. 2014, 192, 101–105. [Google Scholar] [CrossRef]
- Kolling, G.J.; Stivanin, S.C.B.; Gabbi, A.M.; Machado, F.S.; Ferreira, A.L.; Campos, M.M.; Tomich, T.R.; Cunha, C.S.; Dill, S.W.; Pereira, L.G.R.; et al. Performance and methane emissions in dairy cows fed oregano and green tea extracts as feed additives. J. Dairy Sci. 2018, 101, 4221–4234. [Google Scholar] [CrossRef] [Green Version]
- Benchaar, C. Feeding oregano oil and its main component carvacrol does not affect ruminal fermentation, nutrient utilization, methane emissions, milk production, or milk fatty acid composition of dairy cows. J. Dairy Sci. 2020, 103, 1516–1527. [Google Scholar] [CrossRef]
- Olijhoek, D.W.; Hellwing, A.L.F.; Grevsen, K.; Haveman, L.S. Effect of dried oregano (Origanum vulgare L.) plant material in feed on methane production, rumen fermentation, nutrient digestibility, and milk fatty acid composition in dairy cows. J. Dairy Sci. 2019, 102, 9902–9918. [Google Scholar] [CrossRef]
- Węglarzy, K.; Klęczek, C.; Bereza, M.; Pellar, A. Importance of Supplementation of Fresh Herbs in Dairy Cattle Nutrition; Mat. XVIII Szkoły Zimowej Hodowców Bydła: Zakopane, Poland, 2010; pp. 218–227. (In Polish) [Google Scholar]
- Ghafari, M.; Foroozandeh, S.A.D.; Nasrollahi, S.M.; Amini, H.R.; Beauchemin, K.A. Cumin seed improves nutrient intake and milk production by dairy cows. Anim. Feed Sci. Technol. 2015, 210, 276–280. [Google Scholar] [CrossRef]
- Grega, T.; Sady, M.; Kraszewski, J. Effect of herb mixture supplementation in ratio on milk yield, milk composition and its technological suitability. Biotechnol. Anim. Husband. 2002, 18, 15–20. [Google Scholar] [CrossRef] [Green Version]
- Modi, C.P.; Patil, S.S.; Pawar, M.M.; Chaudhari, A.B.; Chauhan, H.D.; Ashwar, B.K. Effect of cumin (Cuminum cyminum) seed supplementation on production performance, nutrient digestibility and haemato-biochemical profile of Mehsana goats. Indian J. Anim. Sci. 2022, 92, 887–891. [Google Scholar] [CrossRef]
- Nurdin, E.; Amelia, T.; Makin, M. The effects of herbs on milk yield and milk quality of mastitis dairy cow. J. Indones. Trop. Anim. Agric. 2011, 36, 104–108. [Google Scholar] [CrossRef] [Green Version]
- Wanapat, M.; Cherdthong, A.; Pakdee, P.; Wanapat, S. Manipulation of rumen ecology by dietary lemongrass (Cymbopogon citratus Stapf.) powder supplementation. J. Anim. Sci. 2008, 86, 3497–3503. [Google Scholar] [CrossRef]
- Zmora, P.; Cieślak, A.; Pers-Kamczyc, E.; Nowak, A.; Szczechowiak, J.; Szumacher-Strabel, M. Effect of Mentha piperita L. on in vitro rumen methanogenesis and fermentation. Acta Agric. Scand. A Anim. 2012, 62, 46–52. [Google Scholar] [CrossRef]
- Kong, F.; Wang, S.; Dai, D.; Cao, Z.; Wang, Y.; Li, S.; Wang, W. Preliminary investigation of the effects of rosemary extract supplementation on milk production and rumen fermentation in high-producing dairy cows. Antioxidants 2022, 11, 1715. [Google Scholar] [CrossRef]
- Kuczyńska, B.; Puppel, K.; Madras-Majewska, B.; Łukasiewicz, M.; Bochenek, A. The use of phytobiotics in the prevention and treatment of sub-clinical mastitis in cows in organic production conditions. Anim. Prod. Rev. 2018, 6, 14–18. (In Polish) [Google Scholar]
- Matras, J.; Bartle, S.J.; Preston, R.L. Nitrogen utilization in growing lambs: Effects of grain (starch) and protein sources with various rates of ruminal degradation. J. Anim. Sci. 1991, 69, 339–347. [Google Scholar] [CrossRef] [Green Version]
- Szczurek, W.; Pisulewski, P.M. Nutritional methods of modifying the content of bone and processor in milk in terms of contemporary consumer values. Biul. Inf. IZ 1995, 3, 61–72. (In Polish) [Google Scholar]
- Ma, S.; Wang, C.; Guo, M. Changes in structure and antioxidant activity of β-lactoglobulin by ultrasound and enzymatic treatment. Ultrason. Sonochem. 2018, 43, 227–236. [Google Scholar] [CrossRef]
- Yilmaz-Ersan, L.; Ozcan, T.; Akpinar-Bayizit, A.; Sahin, S. Comparison of antioxidant capacity of cow and ewe milk kefirs. J. Dairy Sci. 2018, 101, 3788–3798. [Google Scholar] [CrossRef] [PubMed]
- Struff, W.G.; Sprotte, G. Bovine colostrum as a biologic in clinical medicine: A review—Part II: Clinical studies. Int. J. Clin. Pharmacol. Ther. 2008, 46, 211–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klebaniuk, R.; Grela, E.R.; Kowalczuk-Vasilev, E.; Olcha, M.; Góźdź, J. The effectiveness of using herbal mixtures in organic cattle farming. Wiad. Zoot. 2014, 56, 56–63. (In Polish) [Google Scholar]
- Reklewska, B.; Bernatowicz, E.; Ryniewicz, Z.; Pinto, R.R.; Zdziarski, K. Preliminary observations on the Echinacea-induced lactoferrin production in goat milk. Anim. Sci. Pap. Rep. 2004, 22, 17–25. [Google Scholar]
- Mann, S.; Shandilya, U.K.; Sodhi, M.; Kumar, P.; Bharti, V.K.; Verma, P.; Sharma, A.; Mohanty, A.; Mukesh, M. Determination of antioxidant capacity and free radical scavenging activity of milk from native cows (Bos Indicus), exotic cows (Bos Taurus), and riverine buffaloes (Bubalus Bubalis) across different lactation stages. Int. J. Dairy Sci. Process. 2016, 3, 66–70. [Google Scholar] [CrossRef]
- Leiber, F.; Kreuzer, M.; Nigg, D.; Wettstein, H.R.; Scheeder, M.R.L. A study on the causes for the elevated n-3 fatty acids in cow’s milk of alpine origin. Lipids 2005, 40, 191–202. [Google Scholar] [CrossRef]
- Paraskevakis, N. Effects of dietary dried Greek Oregano (Origanum vulgare ssp. hirtum) supplementation on blood and milk enzymatic antioxidant indices, on milk total antioxidant capacity and on productivity in goats. Anim. Feed Sci. Technol. 2015, 209, 90–97. [Google Scholar] [CrossRef]
- Uegaki, R.; Motohiko, S.A.; Ishida, M.; Takada, O.; Shinokura, K.; Kohchi, Y. Antioxidative activity of milk from cows fed herbs. J. Agric. Chem. Soc. Jpn. 2001, 75, 669–671. [Google Scholar] [CrossRef] [Green Version]
- Qingru, Z.; Yaodi, N.; Hongbin, G.; Chunguang, W. Effects of chinese herbal formula heat-stress-releasing on antioxidant function in dairy cows. Front. Agric. China 2007, 1, 478–480. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, G. Effects of varying dietary chinese herb extracts on blood immunestatus and antioxidant function in dairy cattle. J. Anim. Plant Sci. 2022, 32, 886–890. [Google Scholar] [CrossRef]
- Butler, G.; Nielsen, J.H.; Slots, T.; Seal, C.; Eyre, M.D.; Sanderson, R.; Leifert, C. Fatty acid and fat-soluble antioxidant concentrations in milk from high- and low-input conventional and organic systems: Seasonal variation. J. Sci. Food Agirc. 2008, 88, 1431–1441. [Google Scholar] [CrossRef]
- Santa, A.; Mierlita, D.; Dărăban, S.; Socol, C.T.; Vicas, S.I.; Suteu, M.; Maerescu, C.M.; Stanciu, A.S.; Pop, I.M. The effect of sustainable feeding systems, combining total mixed rations and pasture, on milk fatty acid composition and antioxidant capacity in jersey dairy cows. Animals 2022, 12, 908. [Google Scholar] [CrossRef]
- Leonarduzzi, G.; Sottero, B.; Poli, G. Oxidized products of cholesterol: Dietary and metabolicorigin, and proatherosclerotic effect: A review. J. Nutr. Biochem. 2002, 13, 700–710. [Google Scholar] [CrossRef]
- Staprans, I.; Pan, X.M.; Rapp, J.H.; Feingold, K.R. The role of dietary oxidized cholesterol and oxidized fatty acids in the development of atherosclerosis. Mol. Nutr. Food Res. 2005, 49, 1075–1082. [Google Scholar] [CrossRef]
- Kiokias, S.; Proestos, C.; Orepoulou, V. Effect of natural food antioxidants against LDL and DNA oxidative changes. Antioxidants 2018, 7, 133. [Google Scholar] [CrossRef] [Green Version]
Experimental Design | Group | |
---|---|---|
C | E | |
6 weeks | RO + CF | RO + CF + HM (3%) |
number of cows | 15 | 15 |
Item | Beet Pulp Silage | Maize Silage | Haylage | Wheat Straw | Concentrate Mixture | Herb-Supplemented Concentrate Mixture | Total |
---|---|---|---|---|---|---|---|
Control TMR | |||||||
kg DM/d/head | 1.60 | 7.39 | 3.65 | 0.44 | 4.73 | - | 17.81 |
Share (%) | 9.0 | 41.5 | 20.5 | 2.5 | 26.5 | - | 100 |
Experimental TMR | |||||||
kg DM/d/head | 1.60 | 7.39 | 3.65 | 0.44 | - | 4.95 | 18.03 |
Share (%) | 8.9 | 41.0 | 20.2 | 2.4 | 27.5 | 100 |
Parameter | Type of Feed | |||||
---|---|---|---|---|---|---|
Beet Pulp Silage | Maize Silage | Haylage | Wheat Straw | Concentrate Mixture | Herb-Supplemented Concentrate Mixture | |
Dry matter (%) | 21.3 | 26.4 | 30.4 | 87.5 | 87.6 | 88.4 |
Content in 1 kg dry matter (g) | ||||||
Crude protein | 112.1 | 80.9 | 161.0 | 35.0 | 137.1 | 136.8 |
Crude fat | 8.8 | 27.1 | 33.5 | 15.5 | 23.4 | 23.0 |
Crude fiber | 178.4 | 200.8 | 231.7 | 397.0 | 41.3 | 41.9 |
Ash | 70.5 | 38.1 | 59.2 | 42.0 | 34.5 | 35.2 |
NFE | 630.2 | 653.1 | 514.6 | 510.5 | 763.7 | 763.1 |
Content of biologically active component (%) | ||||||
Linalool | - | - | - | - | - | 8.32 |
Cymene | - | - | - | - | - | 7.02 |
Thymol | - | - | - | - | - | 5.83 |
Carvone | - | - | - | - | - | 2.31 |
Carvacrol | - | - | - | - | - | 1.13 |
Nutritive value of 1 kg DM | ||||||
UFL | 1.01 | 0.90 | 0.80 | 0.30 | 1.19 | 1.19 |
PDIN | 60.0 | 78.0 | 88.0 | 30.0 | 89.9 | 89.9 |
PDIE | 84.0 | 73.0 | 66.0 | 40.0 | 91.9 | 91.7 |
LFU | 1.10 | 1.24 | 1.20 | 1.30 | - | - |
Parameter | Control Group | Experimental Group | p-Value | |
---|---|---|---|---|
Treatment | Week | |||
Milk yield (kg) | 26.8 ± 2.9 | 29.2 ± 5.1 | ns | 0.039 |
Dry matter (%) | 13.09 ± 0.20 | 13.19 ± 0.44 | ns | ns |
Protein (%) | 3.47 ± 0.52 | 3.51 ± 0.62 | ns | 0.042 |
Casein (%) | 2.75 a ± 0.41 | 2.91 b ± 0.54 | 0.048 | ns |
Fat (%) | 4.27 ± 0.89 | 4.30 ± 0.87 | ns | ns |
Lactose (%) | 4.65 ± 0.17 | 4.72 ± 0.13 | ns | ns |
Cholesterol (mg/L) | 369.34 ± 34.76 | 293.58 ± 55.34 | ns | ns |
SCC (thousand/mL) | 178 ± 220 | 172 ± 180 | ns | ns |
Parameter | Control Group | Experimental Group | p-Value | |
---|---|---|---|---|
Treatment | Week | |||
Whey proteins (%) | 0.64 a ± 0.021 | 0.73 b ± 0.064 | 0.023 | ns |
β-lactoglobulin (g/L) | 2.99 a ± 0.20 | 3.14 b ± 0.23 | 0.032 | ns |
α-lactalbumin (g/L) | 0.95 ± 0.12 | 1.03 ± 0.11 | ns | ns |
Bovine serum albumin (g/L) | 0.33 ± 0.06 | 0.36 ± 0.09 | ns | ns |
Lactoferrin (mg/L) | 103.77 A ± 8.36 | 136.19 B ± 11.19 | 0.008 | ns |
Lysozyme (µg/L) | 5.62 a ± 0.86 | 6.92 b ± 0.99 | 0.021 | ns |
Parameter | Control Group | Experimental Group | p-Value | |
---|---|---|---|---|
Treatment | Week | |||
Vitamin A (mg/L) | 0.354 a ± 0.004 | 0.503 b ± 0.005 | 0.018 | ns |
Vitamin E (mg/L) | 1.276 A ± 0.38 | 2.06 B ± 0.28 | 0.006 | ns |
Vitamin D3 (µg/L) | 0.66 ± 0.16 | 0.75 ± 0.14 | ns | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stobiecka, M.; Król, J.; Brodziak, A.; Klebaniuk, R.; Kowalczuk-Vasilev, E. Effects of Supplementation with an Herbal Mixture on the Antioxidant Capacity of Milk. Animals 2023, 13, 2013. https://doi.org/10.3390/ani13122013
Stobiecka M, Król J, Brodziak A, Klebaniuk R, Kowalczuk-Vasilev E. Effects of Supplementation with an Herbal Mixture on the Antioxidant Capacity of Milk. Animals. 2023; 13(12):2013. https://doi.org/10.3390/ani13122013
Chicago/Turabian StyleStobiecka, Magdalena, Jolanta Król, Aneta Brodziak, Renata Klebaniuk, and Edyta Kowalczuk-Vasilev. 2023. "Effects of Supplementation with an Herbal Mixture on the Antioxidant Capacity of Milk" Animals 13, no. 12: 2013. https://doi.org/10.3390/ani13122013
APA StyleStobiecka, M., Król, J., Brodziak, A., Klebaniuk, R., & Kowalczuk-Vasilev, E. (2023). Effects of Supplementation with an Herbal Mixture on the Antioxidant Capacity of Milk. Animals, 13(12), 2013. https://doi.org/10.3390/ani13122013