Meta-Analysis of the Effects of Organic Chromium Supplementation on the Growth Performance and Carcass Quality of Weaned and Growing-Finishing Pigs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Meta-Analysis
2.1.1. Search Strategies
2.1.2. Selection Criteria and Procedure
2.1.3. Research Quality Assessment
2.1.4. Effect and Heterogeneity
2.2. Fuzzy Comprehensive Evaluation
2.3. Statistical Analysis
3. Results
3.1. Included Literature
3.2. Research Quality Evaluation Results
3.3. Publication Offset Test
3.4. Effect of EO-Cr on the Growth Performance of Pigs
3.4.1. Effect of EO-Cr on the Daily Gain of Pigs
3.4.2. Effect of EO-Cr on the Daily Feed Intake of Pigs
3.4.3. Effect of EO-Cr on the Feed Gain Ratio of Pigs
3.5. Effect of EO-Cr on the Carcass Quality of Pigs
3.6. Meta-Regression Analysis
3.7. Selection of Optimal EO-Cr Form for Pig Diet Supplementation
3.8. Optimal EO-Cr Supplementation Amount
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Database 1 | Search Term 2 | Number 3 |
---|---|---|
CNKI (China) | (“organic Cr” OR “chromium” OR “chromium picolinate” OR “ohromium Yeast” OR “chromium Methionine” OR “chromium polynicotinate” OR “chromium propionate”) AND (“pig” OR “sow” OR “boar” OR “hog”) AND (“production “ OR “ performance”) | 150 |
CQVIP (China) | (“organic Cr” OR “chromium” OR “chromium picolinate” OR “chromium Yeast” OR “chromium Methionine” OR “chromium polynicotinate” OR “chromium propionate”) AND (“pig” OR “sow” OR “boar” OR “hog”) AND (“production “ OR “ performance”) | 14 |
Wan Fang (China) | (“organic Cr” OR “chromium” OR “chromium picolinate” OR “chromium yeast” OR “chromium methionine” OR “chromium polynicotinate” OR “chromium propionate”) AND (“pig” OR “sow” OR “boar” OR “hog”) AND (“production “ OR “ performance”) | 54 |
Web of Science | (“organic Cr” OR “chromium” OR “chromium picolinate” OR “chromium Yeast” OR “chromium Methionine” OR “chromium polynicotinate” OR “chromium propionate”) AND (“pig” OR “sow” OR “boar” OR “hog”) AND (“production “ OR “ performance”) | 94 |
Science Direct | (“organic Cr” OR “chromium” OR “chromium picolinate” OR “chromium yeast” OR “chromium methionine” OR “chromium polynicotinate” OR “chromium propionate”) AND (“pig” OR “sow” OR “boar” OR “hog”) AND (“production “ OR “ performance”) | 5464 |
Pub Med | (“organic Cr” OR “chromium” OR “chromium picolinate” OR “chromium yeast” OR “chromium methionine” OR “chromium polynicotinate” OR “chromium propionate”) AND (“pig” OR “sow” OR “boar” OR “hog”) AND (“production “ OR “ performance”) | 201 |
Serial | Study (Year) 1 | Types of Organic Cr 2 | Organic Cr Content (mg/kg) 3 | N 4 | Included Indicators 5 |
---|---|---|---|---|---|
1 | Jianguo Dai (2001) [12] | Cr Pic | 0.2 | 48 | ADG; ADFI; F/G; Dr p; CLR; EM AA; Bf T |
2 | Zhijian Huang (2002) [13] | Yea Cr | 0.2; 0.5 | 90 | ADG; Dr p; CLR; EM AA; Bf T |
3 | Suohan Huang (2006) [14] | Yea Cr | 0.2; 0.3 | 72 | ADG; Dr p; CLR; EM AA; Bf T |
4 | Daiwen Chen (2006) [15] | Yea Cr | 0.2 | 10 | ADG; F/G; Dr p; CLR; EM AA; Bf T |
5 | Youhong Zhao (2007) [16] | Cr N | 0.1; 0.15; 0.2 | 80 | ADG; F/G |
6 | Bo Cui (2009) [17] | Cr M | 0.2; 0.4 | 18 | CLR; EM AA; Bf T |
7 | Changxiu Chen (2009) [18] | Cr Pro | 0.05; 0.1; 0.2 | 72 | ADG; ADFI; F/G; Dr p; CLR; EM AA; Bf T |
8 | Hongwei Dong (2010) [19] | Cr Pic | 0.3 | 60 | ADG; ADFI; F/G; Dr p; CLR; EM AA; Bf T |
9 | Mindong Fan (2010) [20] | Yea Cr; Cr pic | 0.2 | 128 | ADG; ADFI; F/G |
10 | Jianbin Zhang (2010) [21] | Yea Cr | 0.2 | 36 | ADG; ADFI; F/G |
11 | Yulang Qiu (2012) [22] | Cr Pic | 0.2 | 36 | ADG; ADFI; Dr p; CLR; EM AA; Bf T |
12 | Junwu Xiao (2012) [23] | Cr M; Cr pic | 0.2 | 64 | ADG; ADFI; F/G; EM AA; Bf T |
13 | Sili Li (2013) [24] | Cr M | 0.2; 0.3; 0.4 | 96 | ADG; ADFI; F/G; EM AA; Bf T |
14 | Longhua Liang (2014) [25] | Yea Cr; Cr M; Cr pic | 0.2 | 96 | ADG; ADFI; F/G |
15 | Minyue Liu (2014) [26] | Yea Cr; Cr M; Cr pic | 0.2 | 96 | ADG; ADFI; F/G |
16 | Yuyi Lu (2015) [27] | Cr M | 0.2; 0.3; 0.4 | 96 | ADG; ADFI |
17 | Wei Tang (2020) [28] | Cr M | 0.2; 0.4; 0.6 | 600 | ADG; ADFI; F/G; Dr p; CLR; EM AA; Bf T |
18 | A. Lemme (2000) [29] | Yea Cr | 0.2 | 40 | ADG; ADFI; F/G |
19 | J. O. Matthews (2001) [30] | Cr pic; Cr Pro | 0.2 | 36 | ADG; ADFI; F/G; Dr p; CLR; EM AA; Bf T |
20 | Yao-Yao Tian (2004) [31] | Cr M | 0.1; 0.2; 0.4; 0.8 | 180 | ADG; ADFI; F/G; Dr p; CLR; EM AA; Bf T |
21 | J. O. Matthews (2006) [32] | Cr Pro | 0.2 | 40 | ADG; ADFI; F/G; Dr p; CLR; EM AA; Bf T |
22 | M. D. Lindemann (2004) [33] | Cr Pro; Yea Cr; Cr M; Cr Pic | 5 | 40 | ADG; ADFI; F/G; Dr p; EM AA; Bf T |
23 | A. R. Jackson (2009) [34] | Cr Pic | 0.2 | 108 | ADG; ADFI; F/G; Dr p; CLR; EM AA; Bf T |
24 | B. G. Kim (2009) [35] | Cr Pic | 0.1; 0.2 | 27 | ADG; ADFI; F/G |
25 | Hongbing Zhang (2010) [36] | Cr Pic | 0.1; 0.2 | 27 | ADG; ADFI; F/G |
26 | C. P. A.Van de Ligt (2012) [37] | Cr Pic | 0.2 | 36 | ADG; Dr p; EM AA; Bf T |
27 | Alex Tsungyu Hung (2014) [38] | Cr Pic | 0.2 | 36 | ADG; Dr p; EM AA; Bf T |
28 | Yao-Yao Tian (2015) [39] | Cr M | 0.1; 0.2; 0.4; 0.9 | 180 | ADG; ADFI; F/G; Dr p; CLR; EM AA; Bf T |
29 | C. S. Marcolla (2017) [40] | Yea Cr | 0.4 | 32 | ADG; ADFI; F/G; Dr p; EM AA; Bf T |
30 | Xiao Xu (2017) [41] | Yea Cr | 0.4 | 32 | ADG; ADFI; F/G; Dr p; EM AA; Bf T |
31 | Zhan Shi (2018) [42] | Yea Cr | 0.4 | 32 | ADG; ADFI; F/G; Dr p; EM AA; Bf T |
32 | Alexandre Santos (2021) [43] | Cr Pro | 0.2 | 256 | ADG; ADFI; F/G; Dr p; CLR; EM AA; Bf T |
33 | Yunhan Liu (2023) [44] | Yea Cr | 0.1 | 72 | ADG; ADFI; F/G; CLR; EM AA; Bf T |
34 | Jordan T. Gebhardt (2019) [46] | Cr Pro | 0.2 | 1350 | ADG; ADFI; F/G; CLR; Bf T |
35 | J. L. Shelton (2003) [45] | Cr Pro | 0.1; 0.2; 0.3 | 144 | ADG; ADFI; F/G; Dr p; CLR; EM AA |
References
- Rahman, Z.; Singh, V.P. The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: An overview. Environ. Monit. Assess. 2019, 191, 419. [Google Scholar] [CrossRef]
- Kosla, T.; Ladeusz, L.; Skibniewska, E.M.; Kolnierzak, M.; Skibniewski, M. Trivalent chromium (Cr III) as a trace element essential for animals and humans. Med. Weter. 2018, 74, 560–567. [Google Scholar]
- Vincent, J.B. Effects of chromium supplementation on body composition, human and animal health, and insulin and glucose metabolism. Curr. Opin. Clin. Nutr. Metab. Care 2019, 22, 483–489. [Google Scholar] [CrossRef]
- Lukaski, H.C. Chromium as a supplement. Annu. Rev. Nutr. 1999, 19, 279–302. [Google Scholar] [CrossRef] [PubMed]
- Mayorga, E.J.; Kvidera, S.K.; Seibert, J.T.; Horst, E.A.; Abuajamieh, M.; Al-Qaisi, M.; Lei, S.; Ross, J.W.; Johnson, C.D.; Kremer, B.; et al. Effects of dietary chromium propionate on growth performance, metabolism, and immune biomarkers in heat-stressed finishing pigs1. J. Anim. Sci. 2019, 97, 1185–1197. [Google Scholar] [CrossRef] [PubMed]
- Haq, Z.; Jain, R.K.; Khan, N.; Dar, M.Y.; Ali, S.; Gupta, M.; Varun, T.K. Recent advances in role of chromium and its antioxidant combinations in poultry nutrition: A review. Vet. World 2016, 9, 1392–1399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ao, M.; Chen, X.; Deng, T.; Sun, S.; Tang, Y.; Morel, J.L.; Qiu, R.; Wang, S. Chromium biogeochemical behaviour in soil-plant systems and remediation strategies: A critical review. J. Hazard. Mater. 2022, 15, 424. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. PLoS Med. 2021, 18, e1003583. [Google Scholar] [CrossRef]
- Vesterinen, H.M.; Sena, E.S.; Egan, K.J.; Hirst, T.C.; Churolov, L.; Currie, G.L.; Antonic, A.; Howells, D.W.; Macleod, M.R. Meta-analysis of data from animal studies: A practical guide. J. Hazard. Mater. 2014, 221, 92–102. [Google Scholar] [CrossRef] [Green Version]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A.; PRISMA-P Group. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 2015, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Higgins, J.P.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savovic, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A.; et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, J.G.; Li, D.F.; Pu, X.S.; Pan, B.H.; Xin, J.J. Effect of chromium methylpyridine on production performance and carcass quality of growing finishing pigs. Chin. J. Anim. Husb. 2001, 5, 10–12. [Google Scholar] [CrossRef]
- Huang, Z.J.; Lin, P.P. Effect of yeast chromium preparation on blood physiological and biochemical indexes and meat quality of pigs. J. Fujian A F Univ. 2002, 02, 244–247. [Google Scholar] [CrossRef]
- Huang, S.H. Effects of Cysteamine and Yeast Chromium on Growth Performance, Carcass Quality and Serum Biochemical Indexes of Growing Finishing Pigs and Liangfeng Broilers. Master’s Thesis, Guangxi University, Guangxi, China, 2006. [Google Scholar] [CrossRef]
- Chen, D.W.; Zhang, K.Y.; Yu, B.; Li, X.C.; Hu, Z.Y. Effects of different feeding schemes on pig production performance and pork quality. J. Sichuan Agric. Univ. 2002, 1, 1–6. [Google Scholar] [CrossRef]
- Zhao, Y.H.; Lu, G.H.; Yue, B.H. Comparison of effects of different doses of chromium nicotinate on growth performance of weaned piglets. China Anim. Husb. Vet. 2007, 11, 138–139. [Google Scholar] [CrossRef]
- Cui, B.; Geng, Z.C.; Sun, H.T.; Ren, D.P.; Pan, X.L. Effect of Methionine Chelated Chromium and betaine on protein deposition in finishing pigs. China Feed 2009, 09, 18–21. [Google Scholar] [CrossRef]
- Chen, C.X. Effect of chromium propionate on production performance and carcass quality of finishing pigs. J. Jiangxi Agric. Univ. 2009, 31, 522–525. [Google Scholar] [CrossRef]
- Dong, H.W.; Zhao, Y.X.; Liu, D.W. Effect of chromium picolinate on production performance of growing finishing pigs. Henan Anim. Husb. Vet. Med. 2010, 08, 5–6. [Google Scholar]
- Fan, M.D.; He, J.; Yin, H.T.; Zhou, J.C.; Wang, G.F. Study on the effect of organic chromium from different sources on the performance of weaned piglets. Feed Ind. 2010, 22, 37–39. [Google Scholar] [CrossRef]
- Zhang, J.B.; Guo, M.Z. Effect of yeast chromium on production performance and blood biochemical indexes of finishing pigs. J. Tianjin Agric. Univ. 2010, 3, 29–31. [Google Scholar] [CrossRef]
- Qiu, Y.L.; Wan, L.L.; Wei, B.D.; Liu, H.Y.; Li, L.; Chen, Q. Effect of organic chromium on growth performance, physical and chemical indexes and meat quality of pigs. Feed Res. 2012, 364, 1–3. [Google Scholar]
- Xiao, J.W.; Wang, Y.; Deng, F.Q.; Liao, Y.H.; Zhu, G.H. Effects of different organic chromium sources on production performance and carcass quality of growing finishing pigs. Feed Rev. 2012, 363, 42–44. [Google Scholar]
- Li, S. Research on the Application Technology of Methionine Chromium as Feed Additive in the Production of Growing Finishing Pigs; Guangxi University: Guangxi, China, 2013. [Google Scholar]
- Liang, L.H.; He, R.G.; Chen, Y.; Liu, Q.T.; Zeng, D.; Lu, Y.Y.; Li, L.M. Comparative study on the effects of methionine chromium and other organic chromium on the growth performance of finishing pigs. Feed Res. 2015, 14, 45–47. [Google Scholar] [CrossRef]
- Liu, M.Y.; Shang, L.J.; Wang, Y.; Yu, Z.Y. Effects of chromium nicotinate and collagen powder on the performance of weaned piglets. Feed Expo. 2014, 7, 5–7. [Google Scholar]
- Lu, Y.Y.; He, R.G.; Liang, L.H.; Li, S.L.; Chen, Y.L.; Zhuo, Q. Effects of different levels of methionine chromium on growth performance, apparent digestibility, serum biochemical indexes and hormone levels of growing pigs. Feed Ind. 2015, 14, 46–50. [Google Scholar] [CrossRef]
- Tang, W.; Huang, X.Y. Effect of methionine chromium on growth performance, carcass composition and meat color of finishing pigs. China Feed 2020, 20, 45–48. [Google Scholar] [CrossRef]
- Lemme, A.; Wenk, C.; Lindemann, M.; Bee, G. Chromium yeast affects growth performance and plasma traits but not carcass characteristics of growing-finishing pigs depending on the glycemic index. Arch. Tierernahr. 2000, 2, 157–177. [Google Scholar] [CrossRef]
- Matthews, J.O.; Southern, L.L.; Fernandez, J.M.; Pontif, J.E.; Bidner, T.D.; Odgaard, R.L. Effect of chromium picolinate and chromium propionate on glucose and insulin kinetics of growing barrows and on growth and carcass traits of growing-finishing barrows. J. Anim. Sci. 2001, 8, 2172–2178. [Google Scholar] [CrossRef]
- Tian, Y.Y.; Zhang, L.Y.; Dong, B.; Cao, J.; Xue, J.X.; Gong, L.M. Effects of chromium methionine supplementation on growth performance, serum metabolites, endocrine parameters, antioxidant status, and immune traits in growing pigs. Biol. Trace Elem. Res. 2014, 1, 134–141. [Google Scholar] [CrossRef]
- Matthews, J.O.; Guzik, A.C.; Lemieux, F.M.; Southern, L.L.; Bidner, T.D. Effects of chromium propionate on growth, carcass traits, and pork quality of growing-finishing pigs. J. Anim. Sci. 2005, 4, 858–862. [Google Scholar] [CrossRef]
- Lindemann, M.D.; Carter, S.D.; Chiba, L.I.; Dove, C.R.; LeMieux, F.M.; Southern, L.L. A regional evaluation of chromium tripicolinate supplementation of diets fed to reproducing sows. J. Anim. Sci. 2004, 10, 2972–2977. [Google Scholar] [CrossRef]
- Jackson, A.R.; Powell, S.; Johnston, S.L.; Matthews, J.O.; Bidner, T.D.; Valdez, F.R.; Southern, L.L. The effect of chromium as chromium propionate on growth performance, carcass traits, meat quality, and the fatty acid profile of fat from pigs fed no supplemented dietary fat, choice white grease, or tallow. J. Anim. Sci. 2009, 12, 4032–4041. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.G.; Lindemann, M.G.; Cromwell, G.L. Effects of dietary chromium (III) picolinate on growth performance, respiratory rate, plasma variables, and carcass traits of pigs fed high-fat diets. Biol. Trace Elem. Res. 2010, 2, 181–196. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Dong, B.; Zhang, M.; Yang, J. Effect of chromium picolinate supplementation on growth performance and meat characteristics of swine. Biol. Trace Elem. Res. 2011, 1, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Van de Ligt, C.P.A.; Lindemann, M.D.; Cromwell, G.L. Assessment of chromium tripicolinate supplementation and dietary energy level and source on growth, carcass, and blood criteria in growing pigs. J. Anim. Sci. 2002, 2, 483–493. [Google Scholar] [CrossRef] [PubMed]
- Hung, A.T.; Leury, B.J.; Sabin, M.A.; Collins, C.L.; Dunshea, F.R. Dietary nano-chromium tripicolinate increases feed intake and decreases plasma cortisol in finisher gilts during summer. Trop. Anim. Health Prod. 2014, 8, 1483–1489. [Google Scholar] [CrossRef]
- Tian, Y.Y.; Gong, L.M.; Xue, J.X.; Cao, J.; Zhang, L.Y. Effects of graded levels of chromium methionine on performance, carcass traits, meat quality, fatty acid profiles of fat, tissue chromium concentrations, and antioxidant status in growing-finishing pigs. Biol. Trace Elem. Res. 2015, 1, 110–121. [Google Scholar] [CrossRef]
- Marcolla, C.S.; Holanda, D.M.; Ferreira, S.V.; Rocha, G.C.; Serão, N.V.L.; Duarte, M.S.; Abreu, M.L.T.; Saraiva, A. Chromium, CLA, and ractopamine for finishing pigs. J. Anim. Sci. 2017, 10, 4472–4480. [Google Scholar] [CrossRef]
- Xu, X.; Liu, L.; Long, S.F.; Piao, X.S.; Ward, T.L.; Ji, F. Effects of chromium methionine supplementation with different sources of zinc on growth performance, carcass traits, meat quality, serum metabolites, endocrine parameters, and the antioxidant status in growing-finishing pigs. Biol. Trace Elem. Res. 2017, 1, 70–78. [Google Scholar] [CrossRef]
- Shi, Z.; Song, W.; Sun, Y.; Wang, L.; Shi, B.; Shan, A.; Bi, Z. Dietary supplementation of l-arginine and chromium picolinate in sows during gestation affects the muscle fibre characteristics but not the performance of their progeny. J. Sci. Food Agric. 2018, 1, 74–79. [Google Scholar] [CrossRef]
- Santos, A.P.; Tokach, M.D.; Kiefer, C.; Goodband, R.D.; Woodworth, J.C.; DeRouchey, J.M.; Dritz, S.S.; Gebhardt, J.T. Effects of dietary chromium propionate and space allowance on performance and carcass responses of growing-finishing pigs. Transl. Anim. Sci. 2021, 5, 112. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Huo, B.; Chen, Z.; Wang, K.; Huang, L.; Che, L.; Feng, B.; Lin, Y.; Xu, S.; Zhuo, Y.; et al. Effects of Organic Chromium Yeast on Performance, Meat Quality, and Serum Parameters of Grow-Finish Pigs. Biol. Trace Elem. Res. 2023, 1, 1188–1196. [Google Scholar] [CrossRef] [PubMed]
- Shelton, J.L.; Payne, R.L.; Johnston, S.L.; Bidner, T.D.; Southern, L.L.; Odgaard, R.L.; Page, T.G. Effect of chromium propionate on growth, carcass traits, pork quality, and plasma metabolites in growing-finishing pigs. J. Anim. Sci. 2003, 81, 2515–2524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gebhardt, J.T.; Woodworth, J.C.; Tokach, M.D.; Derouchey, J.M.; Goodband, R.D.; Loughmiller, J.A.; de Souza, A.L.P.; Rincker, M.J.; Dritz, S.S. Determining the influence of chromium propionate and Yucca schidigera on growth performance and carcass composition of pigs housed in a commercial environment. Transl. Anim. Sci. 2019, 3, 1275–1285. [Google Scholar] [CrossRef] [PubMed]
- Sales, J.; Jancík, F. Effects of dietary chromium supplementation on performance, carcass characteristics, and meat quality of growing-finishing swine: A meta-analysis. J. Anim. Sci. 2011, 89, 4054–4067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Qatati, A.; Winter, P.W.; Wolf-Ringwall, A.L.; Chatterjee, P.B.; Van Orden, A.K.; Crans, D.C.; Roess, D.A.; Barisas, B.G. Insulin receptors and downstream substrates associate with membrane microdomains after treatment with insulin or chromium(III) picolinate. Cell Biochem. Biophys. 2012, 3, 441–450. [Google Scholar] [CrossRef]
- Spacek, T.; Santorová, J.; Zacharovová, K.; Berková, Z.; Hlavatá, L.; Saudek, F.; Jezek, P. Glucose-stimulated insulin secretion of insulinoma INS-1E cells is associated with elevation of both respiration and mitochondrial membrane potential. Int. J. Biochem. Cell Biol. 2007, 40, 1522–1535. [Google Scholar] [CrossRef]
- Iskra, R.; Vlizlo, V.; Fedoruk, R. Role of chromium (III) in the nutrition of pigs and cattle. Agric. Sci. Pract. 2016, 2, 56–62. [Google Scholar] [CrossRef]
- Varady, K.A.; Hellerstein, M.K. Alternate-day fasting and chronic disease prevention: A review of human and animal trials. Am. J. Clin. Nutr. 2007, 1, 7–13. [Google Scholar] [CrossRef] [Green Version]
- Bin-Jumah, M.; Abd El-Hack, M.E.; Abdelnour, S.A.; Hendy, Y.A.; Ghanem, H.A.; Alsafy, S.A.; Khafaga, A.F.; Noreldin, A.E.; Shaheen, H.; Samak, D.; et al. Potential use of chromium to combat thermal stress in animals: A review. Sci. Total Environ. 2020, 10, 135996. [Google Scholar] [CrossRef]
- Thekkoot, D.M.; Kemp, R.A.; Rothschild, M.F.; Plastow, G.S.; Dekkers, J.C. Estimation of genetic parameters for traits associated with reproduction, lactation, and efficiency in sows. J. Anim. Sci. 2016, 11, 4516–4529. [Google Scholar] [CrossRef] [PubMed]
- Abdourahman, A.; Edwards, J.G. Chromium supplementation improves glucose tolerance in diabetic Goto-Kakizaki rats. IUBMB Life 2008, 8, 541–548. [Google Scholar] [CrossRef] [PubMed]
Indicators 1 | P-Egger 2 | Fail-Safe N, Nfs 3 |
---|---|---|
ADG | 0.11 | 5097 |
ADFI | 0.26 | 2155 |
F/G | 0.57 | 275 |
Dressing percent | 0.86 | 1237 |
Carcass Lean Ratio | 0.15 | 937 |
Back fat thickness | 0.97 | 442 |
Eye muscle area | 0.10 | 2171 |
Indicators 1 | Meta-Regression Analysis | ||
---|---|---|---|
Publication Year 2 | Period of Supplementation 3 | Growth Stage 4 | |
ADG | 0.038 * | 0.203 | <0.001 *** |
ADFI | 0.022 * | 0.329 | 0.638 |
F/G | 0.073 | 0.419 | 0.053 |
Dressing percent | 0.015 * | 0.751 | NS |
Carcass Lean Ratio | 0.491 | 0.422 | NS |
Back fat thickness | 0.059 | 0.332 | NS |
Eye muscle area | 0.471 | 0.961 | NS |
Types of organic Cr 1 | ADG 2 | ADFI 3 | Carcass Lean Ratio 4 | Eye Muscle Area 5 | Summary 6 |
---|---|---|---|---|---|
Chromium picolinate | 1.000 | 1.000 | 1.000 | 1.000 | 4.000 |
Chromium propionate | 0.514 | −0.384 | 0.044 | 0.158 | 0.331 |
Chromium methionine | 0.661 | 0.831 | 0.475 | 0.418 | 2.385 |
Yeast chromium | 0.093 | 0.022 | 0.310 | −0.202 | 0.223 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, T.; Wei, C.; Lin, X.; Wang, B.; Yin, G. Meta-Analysis of the Effects of Organic Chromium Supplementation on the Growth Performance and Carcass Quality of Weaned and Growing-Finishing Pigs. Animals 2023, 13, 2014. https://doi.org/10.3390/ani13122014
He T, Wei C, Lin X, Wang B, Yin G. Meta-Analysis of the Effects of Organic Chromium Supplementation on the Growth Performance and Carcass Quality of Weaned and Growing-Finishing Pigs. Animals. 2023; 13(12):2014. https://doi.org/10.3390/ani13122014
Chicago/Turabian StyleHe, Tao, Chunbo Wei, Xiuwei Lin, Baoyin Wang, and Guoan Yin. 2023. "Meta-Analysis of the Effects of Organic Chromium Supplementation on the Growth Performance and Carcass Quality of Weaned and Growing-Finishing Pigs" Animals 13, no. 12: 2014. https://doi.org/10.3390/ani13122014
APA StyleHe, T., Wei, C., Lin, X., Wang, B., & Yin, G. (2023). Meta-Analysis of the Effects of Organic Chromium Supplementation on the Growth Performance and Carcass Quality of Weaned and Growing-Finishing Pigs. Animals, 13(12), 2014. https://doi.org/10.3390/ani13122014