Decomposing the Spatial and Temporal Effects of Climate and Habitat on a Hazel Grouse (Tetrastes bonasia) Population in Northeastern Chinese Mountains
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site and Infrared Camera Trap Installation
2.2. Data Extraction and Processing
2.3. Statistical Analyses
3. Results
3.1. Topography and Vegetation
3.2. Climate
3.3. Human Disturbance
4. Discussion
4.1. Topography and Vegetation Did Not Affect Hazel Grouse Population Distribution
4.2. Climate Effects
4.3. Human Disturbances
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- BirdLife International. Bonasa bonasia. The IUCN Red List of Threatened Species 2016: E.T22679494A85936486. 2016. Available online: https://doi.org/10.2305/IUCN.UK.2016-3.RLTS.T22679494A85936486.en (accessed on 16 April 2023).
- BirdLife International. European Red List of Birds; Publications Office of the European Union: Luxembourg, 2021; pp. 38, 48, 59. [Google Scholar]
- Jiang, Z. China’s key protected species lists, their criteria and management. Biodivers. Sci. 2019, 27, 698–703. [Google Scholar]
- Lampila, P.; Ranta, E.; Monkkonen, M.; Linden, H.; Helle, P. Grouse dynamics and harvesting in Kainuu, northeastern Finland. Oikos 2011, 120, 1057–1064. [Google Scholar] [CrossRef]
- Engler, J.O.; Stiels, D.; Schidelko, K.; Strubbe, D.; Quillfeldt, P.; Brambilla, M. Avian SDMs: Current state, challenges, and opportunities. J. Avian Biol. 2017, 48, 1483–1504. [Google Scholar] [CrossRef] [Green Version]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; Da Fonseca, G.A.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef]
- Chalfoun, A.D.; Martin, T.E. Assessments of habitat preferences and quality depend on spatial scale and metrics of fitness. J. Appl. Ecol. 2007, 44, 983–992. [Google Scholar] [CrossRef]
- Rhim, S.J. Home range and habitat selection of Hazel Grouse Bonasa bonasia in a temperate forest of South Korea. For. Ecol. Manag. 2006, 226, 22–25. [Google Scholar] [CrossRef]
- Sachot, S.; Perrin, N.; Neet, C. Winter habitat selection by two sympatric forest grouse in western Switzerland: Implications for conservation. Biol. Conserv. 2003, 112, 373–382. [Google Scholar] [CrossRef]
- Morris, D.W. Toward an ecological synthesis: A case for habitat selection. Oecologia 2003, 136, 1–13. [Google Scholar] [CrossRef]
- Rosenzweig, M.L. A theory of habitat selection. Ecology 1981, 62, 327–335. [Google Scholar] [CrossRef]
- Hanski, I. Habitat fragmentation and species richness. J. Biogeogr. 2015, 42, 989–993. [Google Scholar] [CrossRef]
- Hanson, J.O.; Rhodes, J.R.; Butchart, S.H.; Buchanan, G.M.; Rondinini, C.; Ficetola, G.F.; Fuller, R.A. Global conservation of species’ niches. Nature 2020, 580, 232–234. [Google Scholar] [CrossRef] [PubMed]
- St. Pierre, J.I.; Kovalenko, K.E. Effect of habitat complexity attributes on species richness. Ecosphere 2014, 5, art22. [Google Scholar] [CrossRef]
- Rhim, S.-J.; Lee, W.-S. Characteristics of Hazel Grouse Bonasa bonasia distribution in southern Korea. Wildl. Biol. 2001, 7, 257–261. [Google Scholar] [CrossRef]
- Zhao, Z. Ecological studies of the Hazel Grouse in Changbai Shan area. Acta Ecol. Sin. 1977, 23, 324–335. [Google Scholar]
- Elmhagen, B.; Kindberg, J.; Hellstrom, P.; Angerbjorn, A. A boreal invasion in response to climate change? Range shifts and community effects in the borderland between forest and tundra. Ambio 2015, 44, 39–50. [Google Scholar] [CrossRef] [Green Version]
- Williams, S.E.; Shoo, L.P.; Isaac, J.L.; Hoffmann, A.A.; Langham, G. Towards an integrated framework for assessing the vulnerability of species to climate change. PLoS Biol. 2008, 6, 2621–2626. [Google Scholar] [CrossRef] [PubMed]
- Shepard, I.D.; Wissinger, S.A.; Wood, Z.T.; Greig, H.S. Predators balance consequences of climate-change-induced habitat shifts for range-shifting and resident species. J. Anim. Ecol. 2022, 91, 334–344. [Google Scholar] [CrossRef]
- Both, C.; te Marvelde, L. Climate change and timing of avian breeding and migration throughout Europe. Clim. Res. 2007, 35, 93–105. [Google Scholar] [CrossRef] [Green Version]
- Virkkala, R.; Heikkinen, R.K.; Leikola, N.; Luoto, M. Projected large-scale range reductions of northern-boreal land bird species due to climate change. Biol. Conserv. 2008, 141, 1343–1353. [Google Scholar] [CrossRef]
- Lemoine, N.; Bauer, H.-G.; Peintinger, M.; Boehning-Gaese, K. Effects of climate and land-use change on species abundance in a central European bird community. Conserv. Biol. 2007, 21, 495–503. [Google Scholar] [CrossRef]
- Root; Terry. Environmental factors associated with avian distributional boundaries. J. Biogeogr. 1988, 15, 489–505. [Google Scholar] [CrossRef]
- Aschoff, J. Thermal conductance in mammals and birds: Its dependence on body size and crcadian phase. Comp. Biochem. Physiol. A Physiol. 1981, 69, 611–619. [Google Scholar] [CrossRef]
- Hannon, S.J.; Martin, K. Ecology of juvenile grouse during the transition to adulthood. J. Zool. 2006, 269, 422–433. [Google Scholar] [CrossRef]
- Loneux, M.; Lindsey, J.K.; Vandiepenbeek, M.; Charlet, O.; Keulen, C.; Poncin, P.; Ruwet, J.C. Climatic influence on Black Grouse population dynamic in Belgian Hautes-Fagnes. Sylvia 2003, 39, 53–57. [Google Scholar]
- Erikstad, K.E.; Andersen, R. The effect of weather on food intake, insect prey selection and feeding time in different sized Willow Grouse broods. Ornis Scand. 1983, 14, 249–252. [Google Scholar] [CrossRef]
- Loneux, M.; Lindsey, J.K. Climatic modelling of Black Grouse population dynamics: A game or a tool? Sylvia 2003, 49, 43–52. [Google Scholar]
- Schaeublin, S.; Bollmann, K. Winter habitat selection and conservation of Hazel Grouse (Bonasa bonasia) in mountain forests. J. Ornithol. 2011, 152, 179–192. [Google Scholar] [CrossRef]
- Shipley, A.A.; Sheriff, M.J.; Pauli, J.N.; Zuckerberg, B. Snow roosting reduces temperature-associated stress in a wintering bird. Oecologia 2019, 190, 309–321. [Google Scholar] [CrossRef]
- Cincotta, R.P.; Wisnewski, J.; Engelman, R. Human population in the biodiversity hotspots. Nature 2000, 404, 990–992. [Google Scholar] [CrossRef]
- Lepczyk, C.A.; Flather, C.H.; Radeloff, V.C.; Pidgeon, A.M.; Hammer, R.B.; Liu, J. Human impacts on regional avian diversity and abundance. Conserv. Biol. 2008, 22, 405–416. [Google Scholar] [CrossRef]
- Thaweepworadej, P.; Evans, K.L. Avian species richness and tropical urbanization gradients: Effects of woodland retention and human disturbance. Ecol. Appl. 2022, 32, e2586. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Ning, X.; Wang, H.; Liu, Y.; Liu, R. Impact of human foot print on landscape fragmentation in the Northeastern China Tiger and Leopard National Park. Acta Ecol. Sin. 2022, 42, 4688–4702. [Google Scholar]
- Ortmann, C.R.; Johnson, S.D. How reliable are motion-triggered camera traps for detecting small mammals and birds in ecological studies? J. Zool. 2021, 313, 202–207. [Google Scholar] [CrossRef]
- Foster, R.J.; Harmsen, B.J. A critique of density estimation from camera-trap data. J. Wildl. Manag. 2012, 76, 224–236. [Google Scholar] [CrossRef]
- Sollmann, R. A gentle introduction to camera-trap data analysis. Afr. J. Ecol. 2018, 56, 740–749. [Google Scholar] [CrossRef] [Green Version]
- Mueller, D.; Schroeder, B.; Mueller, J. Modelling habitat selection of the cryptic Hazel Grouse Bonasa bonasia in a montane forest. J. Ornithol. 2009, 150, 717–732. [Google Scholar] [CrossRef]
- Rhim, S.; Son, S. Natal dispersal of Hazel Grouse Bonasa bonasia in relation to habitat in a temperate forest of South Korea. For. Ecol. Manag. 2009, 258, 1055–1058. [Google Scholar] [CrossRef]
- Li, S.; McShea, W.J.; Wang, D.; Shao, L.; Shi, X. The use of infrared-triggered cameras for surveying phasianids in Sichuan Province, China. Ibis 2010, 152, 299–309. [Google Scholar] [CrossRef]
- Silveira, L.; Jacomo, A.T.A.; Diniz, J.A.F. Camera trap, line transect census and track surveys: A comparative evaluation. Biol. Conserv. 2003, 114, 351–355. [Google Scholar] [CrossRef]
- Zhao, Y.Z.; Wang, Z.C.; Xu, J.L.; Luo, X. Activity rhythm and behavioral time budgets of wild Reeves’s Pheasant (Syrmaticus reevesii) using infrared camera. Acta Ecol. Sin. 2013, 33, 6021–6027. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Bao, Y.; Wang, Y.; Fang, P.; Ye, B. Comparisons of different camera trap placement patterns in monitoring mammal resources in Gutianshan National Nature Reserve. Chin. J. Ecol. 2012, 31, 2016–2022. [Google Scholar]
- Xiao, Z.; Li, X.; Wang, X.; Zhou, Q.; Quan, R.; Shen, X.; Li, S. Developing camera-trapping protocols for wildlife monitoring in Chinese forests. Biodivers. Sci. 2014, 22, 704–711. [Google Scholar]
- O’Brien, T.G.; Kinnaird, M.F.; Wibisono, H.T. Crouching tigers, hidden prey: Sumatran tiger and prey populations in a tropical forest landscape. Anim. Conserv. 2003, 6, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Ma, S.; Li, P.; Wang, X. Research on ecological breeding and eating habits of Tetrasees bonasia. J. Liaoning For. Sci.Tech. 2004, 1, 6–8+20. [Google Scholar]
- Zhao, S.; Fang, J.; Zong, Z. Composition, structure and species diversity of plant communities along an altitudinal gradient on the northern slope of Mt. Changbai, Northeast China. Chin. Biodivers. 2004, 12, 164–173. [Google Scholar] [CrossRef]
- Sun, Y.H.; Piao, Z.J.; Swenson, J.E. Occurrence of Hazel Grouse Bonasa bonasia in a heavily human-impacted landscape near the Changbai Mountains, northeastern China. Wildl. Biol. 2003, 9, 371–375. [Google Scholar] [CrossRef]
- Rhim, S.; Lee, W. Characteristics of seasonal movement of Hazel Grouse (Bonasa bonasia) in a temperate forest. J. For. Res. 2002, 13, 131–134. [Google Scholar] [CrossRef]
- Whitaker, D.M.; Stauffer, D.F. Night roost selection during winter by Ruffed Grouse in the central Appalachians. Southeast. Nat. 2003, 2, 377–392. [Google Scholar] [CrossRef]
- Heinrich, B. Winter strategies of Ruffed Grouse in a mixed northern forest. Northeast. Nat. 2017, 24, B55–B71. [Google Scholar] [CrossRef]
- Huhta, E.; Helle, P.; Nivala, V.; Nikula, A. The effect of human-modified landscape structure on forest grouse broods in two landscape types. Ecosphere 2017, 8, e01950. [Google Scholar] [CrossRef]
- Pomara, L.Y.; Zuckerberg, B. Climate variability drives population cycling and synchrony. Divers. Distrib. 2017, 23, 421–434. [Google Scholar] [CrossRef] [Green Version]
- Swenson, J.E.; Saari, L.; Bonczar, Z. Effects of weather on Hazel Grouse reproduction: An allometric perspective. J. Avian Biol. 1994, 25, 8–14. [Google Scholar] [CrossRef]
- Klaus, S. A 33-year study of Hazel Grouse Bonasa bonasia in the Bohemian Forest, Sumava, Czech Republic: Effects of weather on density in autumn. Wildl. Biol. 2007, 13, 105–108. [Google Scholar] [CrossRef] [Green Version]
- Maloney, S.K. Thermoregulation in ratites: A review. Aust. J. Exp. Agric. 2008, 48, 1293–1301. [Google Scholar] [CrossRef]
- Morelli, F.; Jerzak, L.; Pruscini, F.; Santolini, R.; Benedetti, Y.; Tryjanowski, P. Testing bird response to roads on a rural environment: A case study from central Italy. Acta Oecol. 2015, 69, 146–152. [Google Scholar] [CrossRef]
- Morelli, F.; Beim, M.; Jerzak, L.; Jones, D.; Tryjanowski, P. Can roads, railways and related structures have positive effects on birds?—A review. Transport. Res. Part D-Transport. Environ. 2014, 30, 21–31. [Google Scholar] [CrossRef]
- Fang, Y.; Sun, Y.-H. Brood movement and natal dispersal of Hazel Grouse Bonasa bonasia at Changbai Mountain, Jilin Province, China. Wildl. Biol. 1997, 3, 261–264. [Google Scholar] [CrossRef]
- Swenson, J.E.; Andreev, A.V.; Drovetskii, S.V. Factors shaping winter social organization in Hazel Grouse Bonasa bonasia: A comparative study in the eastern and western Palearctic. J. Avian Biol. 1995, 26, 4–12. [Google Scholar] [CrossRef]
- Aberg, J.; Jansson, G.; Swenson, J.E.; Angelstam, P. The effect of matrix on the occurrence of Hazel Grouse (Bonasa bonasia) in isolated habitat fragments. Oecologia 1995, 103, 265–269. [Google Scholar] [CrossRef]
Type | No. | Variable |
---|---|---|
Topography | 1 | Slope |
2 | Orientation | |
3 | Elevation | |
Vegetation | 4 | NDVI |
5 | Vegetation type | |
Climate | 6 | Annual mean temperature |
7 | Max. temperature of warmest month | |
8 | Annual temperature range | |
9 | Annual precipitation | |
10 | Precipitation of wettest quarter | |
11 | Precipitation of driest quarter | |
Human Disturbance | 12 | Distance to unpaved road |
13 | Distance to paved road | |
14 | Distance to province road | |
15 | Distance to village | |
16 | Distance to farmland |
Mann–Whitney U Test | |||||||||
---|---|---|---|---|---|---|---|---|---|
Environmental Variable | Spring Pr vs. Ab | Summer Pr vs. Ab | Autumn Pr vs. Ab | ||||||
W | t | p | W | t | p | W | t | p | |
Slope | 982.0 | 0.541 | 0.589 | 1919.5 | −0.514 | 0.607 | 967.0 | 0.562 | 0.574 |
Orientation | 821.5 | −1.837 | 0.066 | 1866.0 | −0.969 | 0.332 | 910.5 | −0.296 | 0.767 |
Elevation | 1021.5 | 1.126 | 0.260 | 2152.0 | 1.462 | 0.144 | 1026.0 | 1.459 | 0.145 |
NDVI | 992.0 | 0.689 | 0.491 | 1842.5 | −1.169 | 0.242 | 941.0 | 0.167 | 0.867 |
Annual mean temperature | 866.5 | −1.171 | 0.242 | 1744.0 | −2.007 | 0.045 * | 818.0 | −1.702 | 0.089 |
Max. temperature of warmest month | 894.0 | −0.763 | 0.445 | 1806.5 | −1.476 | 0.140 | 811.0 | −1.808 | 0.071 |
Annual temperature range | 1016.0 | 1.045 | 0.296 | 2292.0 | 2.654 | 0.008 ** | 984.0 | 0.821 | 0.412 |
Annual precipitation | 941.0 | −0.067 | 0.947 | 1857.0 | −1.049 | 0.294 | 999.5 | 1.058 | 0.290 |
Precipitation of wettest quarter | 963.5 | 0.269 | 0.788 | 1916.0 | −0.549 | 0.583 | 1035.0 | 1.614 | 0.106 |
Precipitation of driest quarter | 920.5 | −0.382 | 0.703 | 1904.5 | −0.659 | 0.510 | 841.5 | −1.372 | 0.170 |
Distance to unpaved road | 970.5 | 0.393 | 0.694 | 1910.5 | −0.640 | 0.522 | 846.5 | −1.285 | 0.199 |
Distance to paved road | 1047.5 | 1.511 | 0.131 | 2232.0 | 2.142 | 0.032 * | 977.5 | 0.722 | 0.471 |
Distance to province road | 936.0 | −0.141 | 0.888 | 2039.0 | 0.506 | 0.613 | 918.5 | −0.175 | 0.861 |
Distance to village | 1021.0 | 1.118 | 0.264 | 1845.5 | −1.143 | 0.253 | 897.0 | −0.501 | 0.616 |
Distance to farmland | 987.0 | 0.615 | 0.539 | 1994.0 | 0.119 | 0.905 | 979.0 | 0.744 | 0.457 |
Correspondence Analysis | |||||||||
Environmental Variable | Season | χ2 | df | p | |||||
Vegetation type | Spring Pr vs. Ab | 1.349 | 8 | 0.995 | |||||
Summer Pr vs. Ab | 6.735 | 8 | 0.565 | ||||||
Autumn Pr vs. Ab | 2.855 | 8 | 0.943 |
Kruskal–Wallis Test | |||
---|---|---|---|
Environmental Variable | t | df | p |
Slope | 1.245 | 2 | 0.537 |
Orientation | 2.493 | 2 | 0.288 |
Elevation | 1.115 | 2 | 0.573 |
Distance to unpaved road | 8.650 | 2 | 0.013 * |
Distance to paved road | 0.474 | 2 | 0.789 |
Distance to province road | 0.374 | 2 | 0.829 |
Distance to village | 1.447 | 2 | 0.485 |
Distance to farmland | 0.146 | 2 | 0.930 |
NDVI | 2.270 | 2 | 0.321 |
Correspondence Analysis | |||
Environmental Variable | χ2 | df | p |
Vegetation type | 5.566 | 16 | 0.992 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, X.; Zhang, Y.; Li, X.; Jiang, G. Decomposing the Spatial and Temporal Effects of Climate and Habitat on a Hazel Grouse (Tetrastes bonasia) Population in Northeastern Chinese Mountains. Animals 2023, 13, 2025. https://doi.org/10.3390/ani13122025
Xing X, Zhang Y, Li X, Jiang G. Decomposing the Spatial and Temporal Effects of Climate and Habitat on a Hazel Grouse (Tetrastes bonasia) Population in Northeastern Chinese Mountains. Animals. 2023; 13(12):2025. https://doi.org/10.3390/ani13122025
Chicago/Turabian StyleXing, Xiaoying, Yuesen Zhang, Xiang Li, and Guangshun Jiang. 2023. "Decomposing the Spatial and Temporal Effects of Climate and Habitat on a Hazel Grouse (Tetrastes bonasia) Population in Northeastern Chinese Mountains" Animals 13, no. 12: 2025. https://doi.org/10.3390/ani13122025
APA StyleXing, X., Zhang, Y., Li, X., & Jiang, G. (2023). Decomposing the Spatial and Temporal Effects of Climate and Habitat on a Hazel Grouse (Tetrastes bonasia) Population in Northeastern Chinese Mountains. Animals, 13(12), 2025. https://doi.org/10.3390/ani13122025