PRRSV-1 Stabilization Programs in French Farrow-to-Finish Farms: A Way to Reduce Antibiotic Usage
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.1.1. Selected Farms
- (i)
- Farms should have implemented a successful PRRSV-1 stabilization program. This consisted of mass vaccination of sows and their piglets with a MLV vaccine, together with herd closure, unidirectional pig and human flows, and strict internal biosecurity measures. Regarding the vaccination strategy, it was a combination of a mass vaccination of sows, gilts, and piglets with a PRRSV-1-modified live vaccine (2 times at 1 month interval) followed by batch to batch vaccination of weaning piglets (2 times at 3 weeks interval) lasting around 6 months. All steps of the implementation of PRRSV-1 stabilization programs are described in Berton et al., 2017 [10]. Based mainly on blood samples from weaning piglets, the success of such protocols was confirmed by the absence of viral circulation in the breeding herds following the AASV guidelines [11].
- (ii)
- All descriptive data of antibiotics by all administration routes had to be available.
- (iii)
- Biomass data should be accessible (for slaughtered pigs and sows).
- (iv)
- The prescribing veterinarians and pig farmers had to be the same during both periods (P1 and P2).
2.1.2. Antibiotic Data Recorded
2.1.3. Design of the Antibiotic Consumption Categories
2.2. Calculation of Indicators
2.3. Statistical Analysis
3. Results
3.1. Features of the Analysed Data
3.1.1. General Characteristics
3.1.2. Global Antibiotic Consumption Data
3.2. The Impact of PRRSV-1 Stabilization Programmes
3.2.1. On Overall Antibiotic Consumption
3.2.2. According to the Level of Antibiotic Consumption in P1
4. Discussion
4.1. Evaluation of Methods
4.2. Data Quality
4.3. Antibiotic Usage Changes
4.4. Classes of Consumption’s Levels
- (1)
- All of the consumption levels used for comparison are measured at a national level. In our case, it is a regional study based only on farms located in Brittany, where the prevalence of PRRSV-1 is high. It would be appropriate to include farms spread all over France for comparison. The mg/PCU indicator is also impacted by this point.
- (2)
- Secondly, only PRRSV-1 unstable farms were included in our study, which may explain the higher level of antibiotic use due to their poorer health status. Indeed, Trevisi et al. had previously shown that PRRSV status significantly influenced the use of antibiotics in the weaning and fattening stages [36].
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nieuwenhuis, N.; Duinhof, T.F.; van Nes, A. Economic Analysis of Outbreaks of Porcine Reproductive and Respiratory Syndrome Virus in Nine Sow Herds. Vet. Rec. 2012, 170, 225. [Google Scholar] [CrossRef] [PubMed]
- Nathues, H.; Alarcon, P.; Rushton, J.; Jolie, R.; Fiebig, K.; Jimenez, M.; Geurts, V.; Nathues, C. Cost of Porcine Reproductive and Respiratory Syndrome Virus at Individual Farm Level—An Economic Disease Model. Prev. Vet. Med. 2017, 142, 16–29. [Google Scholar] [CrossRef] [PubMed]
- Renken, C.; Nathues, C.; Swam, H.; Fiebig, K.; Weiss, C.; Eddicks, M.; Ritzmann, M.; Nathues, H. Application of an Economic Calculator to Determine the Cost of Porcine Reproductive and Respiratory Syndrome at Farm-Level in 21 Pig Herds in Germany. Porc. Health Manag. 2021, 7, 3. [Google Scholar] [CrossRef] [PubMed]
- Adams, M.J.; Lefkowitz, E.J.; King, A.M.Q.; Harrach, B.; Harrison, R.L.; Knowles, N.J.; Kropinski, A.M.; Krupovic, M.; Kuhn, J.H.; Mushegian, A.R.; et al. Changes to Taxonomy and the International Code of Virus Classification and Nomenclature Ratified by the International Committee on Taxonomy of Viruses (2017). Arch. Virol. 2017, 162, 2505–2538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, P.J.; Siddell, S.G.; Lefkowitz, E.J.; Mushegian, A.R.; Adriaenssens, E.M.; Dempsey, D.M.; Dutilh, B.E.; Harrach, B.; Harrison, R.L.; Hendrickson, R.C.; et al. Changes to Virus Taxonomy and the Statutes Ratified by the International Committee on Taxonomy of Viruses (2020). Arch. Virol. 2020, 165, 2737–2748. [Google Scholar] [CrossRef]
- Saade, G.; Deblanc, C.; Bougon, J.; Marois-Créhan, C.; Fablet, C.; Auray, G.; Belloc, C.; Leblanc-Maridor, M.; Gagnon, C.A.; Zhu, J.; et al. Coinfections and Their Molecular Consequences in the Porcine Respiratory Tract. Vet. Res. 2020, 51, 80. [Google Scholar] [CrossRef]
- Odland, C.A.; Edler, R.; Noyes, N.R.; Dee, S.A.; Nerem, J.; Davies, P.R. Evaluation of the Impact of Antimicrobial Use Protocols in Porcine Reproductive and Respiratory Syndrome Virus-Infected Swine on Phenotypic Antimicrobial Resistance Patterns. Appl. Environ. Microbiol. 2022, 88, e00970-21. [Google Scholar] [CrossRef]
- Dee, S.A.; Philips, R. Using Vaccination and Unidirectional Pig Flow to Control PRRSV Transmission. J. Swine Health Prod. 1998, 6, 21–25. [Google Scholar]
- Linhares, D.; Cano, J.; Torremorell, M.; Morrison, R. Comparison of Time to PRRSv-Stability and Production Losses between Two Exposure Programs to Control PRRSv in Sow Herds. Prev. Vet. Med. 2014, 116, 111–119. [Google Scholar] [CrossRef]
- Berton, P.; Normand, V.; Martineau, G.-P.; Bouchet, F.; Lebret, A.; Waret-Szkuta, A. Evaluation of Porcine Reproductive and Respiratory Syndrome Stabilization Protocols in 23 French Farrow-to-Finish Farms Located in a High-Density Swine Area. Porc. Health Manag. 2017, 3, 11. [Google Scholar] [CrossRef] [Green Version]
- Holtkamp, D.J.; Polson, D.D.; Torremorell, M.; Classen, D.M.; Becton, L.; Henry, S.; Rodibaugh, M.T.; Rowland, R.R.; Snelson, H.; Straw, B. Terminology for Classifying Swine Herds by Porcine Reproductive and Respiratory Syndrome Virus Status. J. Swine Health Prod. 2011, 19, 44–56. [Google Scholar]
- Schwarz, S.; Kehrenberg, C.; Walsh, T.R. Use of Antimicrobial Agents in Veterinary Medicine and Food Animal Production. Int. J. Antimicrob. Agents 2001, 17, 431–437. [Google Scholar] [CrossRef]
- Collineau, L.; Belloc, C.; Stärk, K.D.C.; Hémonic, A.; Postma, M.; Dewulf, J.; Chauvin, C. Guidance on the Selection of Appropriate Indicators for Quantification of Antimicrobial Usage in Humans and Animals. Zoonoses Public. Health 2017, 64, 165–184. [Google Scholar] [CrossRef] [Green Version]
- Alarcón, L.V.; Allepuz, A.; Mateu, E. Biosecurity in Pig Farms: A Review. Porc. Health Manag. 2021, 7, 5. [Google Scholar] [CrossRef]
- ANSES. Sales Survey of Veterinary Medicinal Products Containing Antimicrobials in France in 2020; ANSES-ANMV: Maisons-Alfort, France, 2021; 90p. Available online: https://www.anses.fr/en/system/files/ANMV-Ra-Antibiotiques2020EN.pdf (accessed on 6 June 2023).
- David, J.-C.; Buchet, A.; Sialelli, J.-N.; Delouvée, S. Antibiotic Use in Relation with Psychological Profiles of Farmers of a French Pig Cooperative. Vet. Sci. 2021, 9, 14. [Google Scholar] [CrossRef]
- O’Neill, L.; Rodrigues da Costa, M.; Leonard, F.C.; Gibbons, J.; Calderón Díaz, J.A.; McCutcheon, G.; Manzanilla, E.G. Quantification, Description and International Comparison of Antimicrobial Use on Irish Pig Farms. Porc. Health Manag. 2020, 6, 30. [Google Scholar] [CrossRef]
- European Medicines Agency. Defined Daily Doses for Animals (DDDvet) and Defined Course Doses for Animals (DCDvet); European Medicines Agency: Amsterdam, The Netherlands, 2016; 29p.
- Hémonic, A.; Chauvin, C.; Delzescaux, D.; Verliat, F.; Corrégé, I.; The French Working Group ‘Antimicrobials in the Swine Industry’. Reliable Estimation of Antimicrobial Use and Its Evolution between 2010 and 2013 in French Swine Farms. Porc. Health Manag. 2018, 4, 8. [Google Scholar] [CrossRef] [Green Version]
- European Medicines Agency. Sales of Veterinary Antimicrobial Agents in 31 European Countries in 2021; European Medicines Agency: Amsterdam, The Netherlands, 2022; p. 92.
- Chauvin, C.; Madec, F.; Guillemot, D.; Sanders, P. The Crucial Question of Standardisation When Measuring Drug Consumption. Vet. Res. 2001, 32, 533–543. [Google Scholar] [CrossRef] [Green Version]
- Kasabova, S.; Hartmann, M.; Werner, N.; Käsbohrer, A.; Kreienbrock, L. Used Daily Dose vs. Defined Daily Dose—Contrasting Two Different Methods to Measure Antibiotic Consumption at the Farm Level. Front. Vet. Sci. 2019, 6, 116. [Google Scholar] [CrossRef]
- Kreienbrock, L. Evidenced Based Approach for a Definition of Defined Daily Dosages of Antibiotics Used in German Pig Production. Vet. Evid. 2018, 3, 170. [Google Scholar] [CrossRef]
- Taverne, F.; Jacobs, J.; Heederik, D.; Mouton, J.; Wagenaar, J.; van Geijlswijk, I. Influence of Applying Different Units of Measurement on Reporting Antimicrobial Consumption Data for Pig Farms. BMC Vet. Res. 2015, 11, 250. [Google Scholar] [CrossRef] [Green Version]
- Jensen, V.F.; Jacobsen, E.; Bager, F. Veterinary Antimicrobial-Usage Statistics Based on Standardized Measures of Dosage. Prev. Vet. Med. 2004, 64, 201–215. [Google Scholar] [CrossRef] [PubMed]
- Carson, C.A.; Reid-Smith, R.; Irwin, R.J.; Martin, W.S.; McEwen, S.A. Antimicrobial Use on 24 Beef Farms in Ontario. Can. J. Vet. Res. 2008, 72, 109–118. [Google Scholar] [PubMed]
- Waret-Szkuta, A.; Coelho, V.; Collineau, L.; Hémonic, A.; Buy, C.; Treff, M.; Raboisson, D. How Input Parameters and Calculation Rules Influence On-Farm Antimicrobial Use Indicators in Animals. Front. Vet. Sci. 2019, 6, 438. [Google Scholar] [CrossRef] [Green Version]
- Veterinary Medicines Directorate. UK Government Understanding the Mg/PCU Calculation Used for Antibiotic Monitoring in Food Producing Animals; Veterinary Medicines Directorate: Addlestone, UK, 2016.
- Bondt, N.; Jensen, V.F.; Puister-Jansen, L.F.; van Geijlswijk, I.M. Comparing Antimicrobial Exposure Based on Sales Data. Prev. Vet. Med. 2013, 108, 10–20. [Google Scholar] [CrossRef] [Green Version]
- Coyne, L.A.; Pinchbeck, G.L.; Williams, N.J.; Smith, R.F.; Dawson, S.; Pearson, R.B.; Latham, S.M. Understanding Antimicrobial Use and Prescribing Behaviours by Pig Veterinary Surgeons and Farmers: A Qualitative Study. Vet. Rec. 2014, 175, 593. [Google Scholar] [CrossRef]
- Singer, R.S.; Porter, L.J.; Thomson, D.U.; Gage, M.; Beaudoin, A.; Wishnie, J.K. Raising Animals without Antibiotics: U.S. Producer and Veterinarian Experiences and Opinions. Front. Vet. Sci. 2019, 6, 452. [Google Scholar] [CrossRef] [Green Version]
- Collineau, L.; Rojo-Gimeno, C.; Léger, A.; Backhans, A.; Loesken, S.; Nielsen, E.O.; Postma, M.; Emanuelson, U.; Grosse Beilage, E.; Sjölund, M. Herd-Specific Interventions to Reduce Antimicrobial Usage in Pig Production without Jeopardising Technical and Economic Performance. Prev. Vet. Med. 2017, 144, 167–178. [Google Scholar] [CrossRef]
- Visschers, V.H.; Backhans, A.; Collineau, L.; Iten, D.; Loesken, S.; Postma, M.; Belloc, C.; Dewulf, J.; Emanuelson, U.; Grosse Beilage, E. Perceptions of Antimicrobial Usage, Antimicrobial Resistance and Policy Measures to Reduce Antimicrobial Usage in Convenient Samples of Belgian, French, German, Swedish and Swiss Pig Farmers. Prev. Vet. Med. 2015, 119, 10–20. [Google Scholar] [CrossRef]
- ANSES. Suivi des Ventes de Médicaments Vétérinaires Contenant des Antibiotiques en France en 2020; ANSES-ANMV: Maisons-Alfort, France, 2021; 89p. Available online: https://www.anses.fr/fr/system/files/ANMV-Ra-Antibiotiques2020.pdf (accessed on 6 June 2023).
- ANSES. Suivi des Ventes de Médicaments Vétérinaires Contenant des Antibiotiques en France en 2021; ANSES-ANMV: Maisons-Alfort, France, 2022; 94p. Available online: https://www.anses.fr/fr/system/files/ANMV-Ra-Antibiotiques2021.pdf (accessed on 6 June 2023).
- Trevisi, P.; Amatucci, L.; Ruggeri, R.; Romanelli, C.; Sandri, G.; Luise, D.; Canali, M.; Bosi, P. Pattern of Antibiotic Consumption in Two Italian Production Chains Differing by the Endemic Status for Porcine Reproductive and Respiratory Syndrome. Front. Vet. Sci. 2022, 9, 840716. [Google Scholar] [CrossRef]
Number of Farms | 19 Farrow-to-Finish Farms |
---|---|
Average herd size in number of sows (range) | 273 (100–600) |
Number of farms per batch management: | |
Three batches | 1 |
Five batches | 1 |
Seven batches | 14 |
Ten batches | 2 |
Twenty batches | 1 |
Age at weaning: | |
21 days | 4 |
28 days | 15 |
Average Antibiotic Usage per Treatment | |||||
---|---|---|---|---|---|
Absolute Quantity | Exposure Indicators | ||||
Numbers of Treatments | Treatment Types | mg | Percent | ALEA 1 ± SD 3 | mg/PCU 2 ± SD 3 |
Period 1 | |||||
Treatments (n = 256) | Individual | 234.6 | 4% | 0.03 ± 0.11 | 0.6 ± 1.2 |
Collective | 5934.6 | 96% | 0.13 ± 0.19 | 17.7 ± 27.6 | |
Period 2 | |||||
Treatments (n = 311) | Individual | 167.6 | 3% | 0.02 ± 0.04 | 0.4 ± 0.8 |
Collective | 4971.7 | 97% | 0.10 ± 0.12 | 13.7 ± 26.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teixeira Costa, C.; Berton, P.; Boulbria, G.; Normand, V.; Brissonnier, M.; Lebret, A. PRRSV-1 Stabilization Programs in French Farrow-to-Finish Farms: A Way to Reduce Antibiotic Usage. Animals 2023, 13, 2270. https://doi.org/10.3390/ani13142270
Teixeira Costa C, Berton P, Boulbria G, Normand V, Brissonnier M, Lebret A. PRRSV-1 Stabilization Programs in French Farrow-to-Finish Farms: A Way to Reduce Antibiotic Usage. Animals. 2023; 13(14):2270. https://doi.org/10.3390/ani13142270
Chicago/Turabian StyleTeixeira Costa, Charlotte, Pauline Berton, Gwenaël Boulbria, Valérie Normand, Mathieu Brissonnier, and Arnaud Lebret. 2023. "PRRSV-1 Stabilization Programs in French Farrow-to-Finish Farms: A Way to Reduce Antibiotic Usage" Animals 13, no. 14: 2270. https://doi.org/10.3390/ani13142270
APA StyleTeixeira Costa, C., Berton, P., Boulbria, G., Normand, V., Brissonnier, M., & Lebret, A. (2023). PRRSV-1 Stabilization Programs in French Farrow-to-Finish Farms: A Way to Reduce Antibiotic Usage. Animals, 13(14), 2270. https://doi.org/10.3390/ani13142270