Net Energy Value of a Cassava Chip Ration for Lactation in Holstein–Friesian Crossbred Dairy Cattle Estimated by Indirect Calorimetry
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal, Experimental Design, and Diets
2.2. Feed Intake and Digestibility
2.3. Animal Calorimetry
2.4. Sample Collection and Chemical Analysis
2.5. Calculation
2.6. Statistical Analysis
3. Results
3.1. The Chemical Composition and Energy Content
3.2. Feed Intake and Digestibility
3.3. Milk Yield and Composition
3.4. Respiratory Gas Consumption and Production
3.5. Energy Partitioning
3.6. Energy Requirement for Maintenance and Efficiency of ME Utilization for Lactation
3.7. Energy Values of Cassava Chips for Lactation by Substitution and Regression Methods
4. Discussion
4.1. Nutrient Intake, Total Tract Digestibility, and Milk Production
4.2. Enteric Methane Emissions
4.3. Energy Partition, Efficiency of Utilization, and Maintenance Requirement of Dairy Cows
4.4. Estimation of Net Energy Value of Cassava Chips for Lactation by Substitution Compared with Regression Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The Thai Tapioca Trade Association. Statistics of Tapioca Production in Thailand. Available online: http://ttta-tapioca.org (accessed on 25 March 2022).
- Jakrawatana, N.; Pingmuangleka, P.; Gheewala, S.H. Material flow management and cleaner production of cassava processing for future food, feed and fuel in Thailand. J. Clean. Prod. 2016, 134, 633–641. [Google Scholar] [CrossRef]
- Sommart, K.; Wanapat, M.; Rowlinson, P.; Parker, D.S.; Climee, P.; Panishying, S. The use of cassava chips as an energy source for lactating dairy cows fed with rice straw. Asian-Australas. J. Anim. Sci. 2000, 13, 1094–1101. [Google Scholar] [CrossRef]
- Wanapat, M.; Kang, S. Cassava chip (Manihot esculenta Crantz) as an energy source for ruminant feeding. Anim. Nutr. 2015, 1, 266–270. [Google Scholar] [CrossRef]
- Marques, R.O.; Gonçalves, H.C.; Meirelles, P.R.D.L.; Brito, E.P.; Gomes, H.F.B.; Oliveira, G.M.D. Rumen parameters and intake in goats fed cassava chips and alfalfa. Rev. Cienc. Agron. 2020, 51, 1–9. [Google Scholar] [CrossRef]
- Kotupan, K.; Sommart, K. Broken rice in a fermented total mixed ration improves carcass and marbling quality in fattened beef cattle. Anim Biosci. 2021, 34, 1331–1341. [Google Scholar] [CrossRef]
- Suksombat, W.; Lounglawan, P.; Noosen, P. Energy and protein evaluation of five feedstuffs used in diet in which cassava pulp as main energy source for lactating dairy cows. Kasetsart J. 2006, 14, 99–107. [Google Scholar]
- Working Committee of Thai Feeding Standard for Ruminant (WTSR). Nutrient Requirements of Dairy Cattle in Thailand, 1st ed.; Khon Kaen University Press: Khon Kaen, Thailand, 2021; p. 193. [Google Scholar]
- Chanjula, P.; Wanapat, M.; Wachirapakorn, C.; Uriyapongson, S.; Rowlinson, P. Ruminal degradability of tropical feeds and their potential use in ruminant diets. Asian-Australas. J. Anim. Sci. 2003, 16, 211–216. [Google Scholar] [CrossRef]
- Kongphitee, K.; Sommart, K.; Phonbumrung, T.; Gunha, T.; Suzuki, T. Feed intake, digestibility and energy partitioning in beef cattle fed diets with cassava pulp instead of rice straw. Asian-Australas. J. Anim. Sci. 2018, 31, 1431–1441. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.; Cui, Z.H.; Li, J.W.; Yan, P.S. Estimation of metabolisable energy and net energy of rice straw and wheat straw for beef cattle by indirect calorimetry. Arch. Anim. Nutr. 2018, 72, 275–289. [Google Scholar] [CrossRef]
- Suzuki, T.; Phaowphaisal, I.; Pholsen, P.; Narmsilee, R.; Indramanee, S.; Nitipot, P.; Chaokaur, A.; Sommart, K.; Khotprom, N.; Panichpol, V.; et al. In vivo nutritive value of Pangola grass (Digitaria eriantha) hay by a novel indirect calorimeter with a ventilated hood in Thailand. Japan Agric. Res. Q. 2008, 42, 123–129. [Google Scholar] [CrossRef] [Green Version]
- Brouwer, E. Report of subcommittee on constants and factors. In Energy Metabolism of Farm Animals, 3rd.; Blaxter, K.L., Ed.; EAAP Academic Press: London, UK, 1965; pp. 441–443. [Google Scholar]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 16th ed.; Association of Official Analysis Chemists: Washington, DC, USA, 1995. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Mertens, D.R. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: Collaborative study. J. AOAC Int. 2002, 85, 1217–1240. [Google Scholar] [PubMed]
- Gerber, P.; Vellinga, T.; Opio, C.; Steinfeld, H. Productivity gains and greenhouse gas emissions intensity in dairy systems. Livest. Sci. 2011, 139, 100–108. [Google Scholar] [CrossRef]
- Cabezas-Garcia, E.H.; Gordon, A.W.; Mulligan, F.J.; Ferris, C.P. Revisiting the relationships between fat-to-protein ratio in milk and energy balance in dairy cows of different parities, and at different stages of lactation. Animals 2021, 11, 3256. [Google Scholar] [CrossRef] [PubMed]
- Blaxter, K.L.; Clapperton, J.L. Prediction of the amount of methane produced by ruminants. Br. J. Nutr. 1965, 19, 511–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moe, P.W.; Flatt, W.P.; Tyrell, H.F. Net energy value of feeds for lactation. J. Dairy Sci. 1972, 55, 945–958. [Google Scholar] [CrossRef]
- SAS. SAS/STAT User’s Guide; Version 9.0; SAS Inst. Inc.: Cary, NC, USA, 2002. [Google Scholar]
- Paengkoum, P.; Paengkoum, S. Effects of cassava chips used as non-structural carbohydrate source for lactating dairy cows fed urea-treated rice straw. KMUTT. RD. J. 2007, 30, 435–448. [Google Scholar]
- Hristov, A.N.; Oh, J.; Firkins, J.L.; Dijkstra, J.; Kebreab, E.; Waghorn, G.; Makkar, H.P.S.; Adesogan, A.T.; Yang, W.; Lee, C.; et al. Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. J. Anim. Sci. 2013, 91, 5045–5069. [Google Scholar] [CrossRef] [Green Version]
- Knapp, J.R.; Laur, G.L.; Vadas, P.A.; Weiss, W.P.; Tricarico, J.M. Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. J. Dairy Sci. 2014, 97, 3231–3261. [Google Scholar] [CrossRef] [Green Version]
- Mickayla, A.M. Using Indirect Calorimetry to Investigate Feeding Value of Byproducts for Lactating Dairy Cattle: Canola Meal and Dried Distillers Grains and Solubles. Master’s Thesis, University of Nebraska, Lincoln, NE, USA, May 2018. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Agriculture, Forestry and Other Land Use. In 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Eggleston, S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; IGES: Hayama, Japan, 2006. [Google Scholar]
- Chuntrakort, P.; Otsuka, M.; Hayashi, K.; Takenaka, A.; Udchachon, S.; Sommart, K. The effect of dietary coconut kernels, whole cottonseeds and sunflower seeds on the intake, digestibility and enteric methane emissions of Zebu beef cattle fed rice straw based diets. Livest. Sci. 2014, 161, 80–89. [Google Scholar] [CrossRef]
- Kurihara, M.; Magner, T.; Hunter, R.; McCrabb, G. Methane production and energy partition of cattle in the tropics. Br. J. Nutr. 1999, 81, 227–234. [Google Scholar] [CrossRef]
- Subepang, S.; Suzuki, T.; Phonbumrung, T.; Sommart, K. Enteric methane emissions, energy partitioning, and energetic efficiency of zebu beef cattle fed total mixed ration silage. Asian-Australas. J. Anim. Sci. 2019, 32, 548–555. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, M.A.; Brown-Brandl, T.M.; Judy, J.V.; Herrick, K.J.; Hales, K.E.; Watson, A.K.; Kononoff, P.J. Use of indirect calorimetry to evaluate utilization of energy in lactating Jersey dairy cattle consuming common coproducts. J. Dairy Sci. 2019, 102, 320–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foth, A.J.; Brown-Brandl, T.; Hanford, K.J.; Miller, P.S.; Garcia Gomez, G.; Kononoff, P.J. Energy content of reduced-fat dried distillers grains with solubles for lactating dairy cows. J. Dairy Sci. 2015, 98, 7142–7152. [Google Scholar] [CrossRef]
- Ramin, M.; Fant, P.; Huhtanen, P. The effects of gradual replacement of barley with oats on enteric methane emissions, rumen fermentation, milk production, and energy utilization in dairy cows. J. Dairy Sci. 2021, 104, 5617–5630. [Google Scholar] [CrossRef] [PubMed]
- Tyrrell, H.F.; Moe, P.W. Net energy value of a corn and a barley ration for lactation. J. Dairy Sci. 1973, 57, 451–458. [Google Scholar] [CrossRef]
- Oliveira, A.S. Meta-analysis of feeding trials to estimate energy requirements of dairy cows under tropical condition. Anim. Feed Sci. Technol. 2015, 210, 94–103. [Google Scholar] [CrossRef]
- Morris, D.L.; Kononoff, P.J. Derivation of the maintenance energy requirements and efficiency of metabolizable energy utilization for dry and lactating Jersey cows. J. Dairy Sci. 2021, 104, 9726–9734. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.F.; Ferris, C.P.; McDowell, D.A.; Yan, T. Effects of diet forage proportion on maintenance energy requirement and the efficiency of metabolizable energy use for lactation by lactating dairy cows. J. Dairy Sci. 2015, 98, 8846–8855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, B.; Yan, T.; Ferris, C.F.; Mayne, C.S. Milk production and energy efficiency of Holstein and Jersey-Holstein crossbred dairy cows offered diets containing grass silage. J. Dairy Sci. 2011, 94, 1455–1464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Research Council (NRC). Nutrient Requirement of Dairy Cattle, 7th ed.; National Academic Press: Washington, DC, USA, 2001. [Google Scholar]
- Judy, J.V.; Bachman, G.C.; Brown-Brandl, T.M.; Fernando, S.C.; Hales, K.E.; Miller, P.S.; Stowell, R.R.; Kononoff, P.J. Energy balance and diurnal variation in methane production as affected by feeding frequency in Jersey cows in late lactation. J. Dairy Sci. 2018, 101, 10899–10910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Items | Cassava Chip Substitution (%) | |||
---|---|---|---|---|
Basal Diet (0) | 12 | 24 | 36 | |
Ingredients, %DM 1 | ||||
Rice straw | 15.0 | 13.2 | 11.4 | 9.6 |
Cassava chips * | - | 11.8 | 23.5 | 35.3 |
Cassava pulp | 30.0 | 26.4 | 22.8 | 19.2 |
Wet brewery waste | 15.0 | 13.2 | 11.4 | 9.6 |
Rice bran | 11.0 | 9.7 | 8.4 | 7.0 |
Palm kernel cake | 12.0 | 10.5 | 9.1 | 7.7 |
Soybean meal | 15.0 | 13.2 | 11.4 | 9.6 |
Urea | 0.5 | 0.5 | 0.5 | 0.5 |
Mineral 2 | 1.0 | 1.0 | 1.0 | 1.0 |
Premix 3 | 0.5 | 0.5 | 0.5 | 0.5 |
Total | 100.0 | 100.0 | 100.0 | 100.0 |
Feed cost, TBH/kg FM | 3.64 | 3.85 | 4.22 | 4.54 |
Items 1 | Cassava Chip | Cassava Chip Substitution (%) | |||
---|---|---|---|---|---|
0 | 12 | 24 | 36 | ||
Chemical composition, %DM | |||||
Dry matter | 87.4 | 31.6 | 33.3 | 37.3 | 40.1 |
Organic matter | 97.7 | 92.9 | 93.3 | 93.3 | 93.9 |
Crude protein | 2.1 | 18.5 | 16.4 | 13.9 | 13.8 |
Neutral detergent fiber | 7.9 | 35.4 | 35.4 | 36.1 | 35.3 |
Acid detergent fiber | 6.6 | 22.2 | 24.3 | 22.6 | 21.9 |
Ether extract | 0.4 | 6.2 | 4.7 | 4.8 | 3.8 |
Non-fiber carbohydrate | 86.9 | 32.8 | 36.8 | 38.4 | 40.4 |
Energy content | |||||
Gross energy, MJ/kg DM | 16.2 | 18.2 | 18.1 | 18.0 | 17.8 |
Metabolizable energy 2, MJ/kg DM | 12.2 | 10.6 | 10.7 | 11.2 | 11.5 |
Items 1 | Cassava Chip Substitution (%) | SEM | p-Value 2 | |||||
---|---|---|---|---|---|---|---|---|
0 | 12 | 24 | 36 | L | Q | C | ||
Body weight, kg | 480.9 | 486.4 | 493.9 | 491.8 | ||||
Dry matter intake | ||||||||
kg/d | 12.6 | 12.4 | 14.5 | 14.8 | 0.47 | <0.01 | 0.56 | 0.10 |
%BW | 2.5 | 2.6 | 3.0 | 3.1 | 0.13 | 0.03 | 0.65 | 0.18 |
Nutrient intake, kg/d | ||||||||
Organic matter | 11.8 | 11.6 | 13.5 | 13.9 | 0.44 | <0.01 | 0.57 | 0.10 |
Crude protein | 2.3 | 1.9 | 2.0 | 1.9 | 0.65 | <0.01 | 0.03 | 0.06 |
Ether extract | 0.8 | 0.6 | 0.7 | 0.6 | 0.02 | <0.01 | 0.15 | <0.01 |
Neutral detergent fiber | 5.8 | 4.6 | 5.5 | 5.2 | 0.17 | 0.28 | 0.06 | <0.01 |
Acid detergent fiber | 3.0 | 2.2 | 3.2 | 2.9 | 0.09 | 0.12 | 0.06 | <0.01 |
Non-fiber carbohydrate | 2.9 | 4.5 | 5.4 | 6.3 | 0.18 | <0.01 | 0.10 | 0.34 |
Items | Cassava Chip Substitution (%) | SEM | p-Value 1 | |||||
---|---|---|---|---|---|---|---|---|
0 | 12 | 24 | 36 | L | Q | C | ||
Digestibility, g/kg DM | ||||||||
Dry matter | 653 | 676 | 703 | 712 | 13.8 | 0.02 | 0.62 | 0.74 |
Organic matter | 685 | 713 | 741 | 750 | 11.4 | <0.01 | 0.43 | 0.73 |
Crude protein | 722 | 709 | 672 | 649 | 18.6 | 0.02 | 0.80 | 0.66 |
Ether extract | 886 | 870 | 846 | 848 | 14.7 | 0.08 | 0.57 | 0.63 |
Neutral detergent fiber | 482 | 570 | 540 | 603 | 45.4 | 0.15 | 0.79 | 0.34 |
Acid detergent fiber | 383 | 507 | 513 | 535 | 49.4 | 0.08 | 0.34 | 0.57 |
Non-fiber carbohydrate | 895 | 904 | 957 | 975 | 19.0 | 0.01 | 0.81 | 0.38 |
Items 1 | Cassava Chip Substitution (%) | SEM | p-Value 2 | |||||
---|---|---|---|---|---|---|---|---|
0 | 12 | 24 | 36 | L | Q | C | ||
Milk production, kg/d | ||||||||
Milk yield | 13.8 | 13.5 | 13.4 | 13.8 | 0.19 | 0.94 | 0.11 | 0.59 |
FPCM | 13.5 | 13.9 | 13.9 | 15.3 | 0.50 | 0.05 | 0.32 | 0.45 |
ECM | 13.6 | 14.1 | 14.1 | 15.8 | 0.60 | 0.05 | 0.31 | 0.44 |
Protein | 440 | 440 | 431 | 489 | 12.8 | 0.05 | 0.06 | 0.23 |
Fat | 539 | 578 | 585 | 668 | 34.7 | 0.04 | 0.55 | 0.52 |
Milk composition, g/kg | ||||||||
Protein | 31.9 | 32.7 | 32.1 | 35.0 | 0.37 | <0.01 | 0.03 | 0.02 |
Fat | 38.7 | 41.8 | 42.8 | 47.4 | 2.45 | 0.05 | 0.78 | 0.63 |
Lactose | 47.5 | 48.5 | 48.2 | 49.7 | 0.49 | 0.03 | 0.64 | 0.22 |
Solid non-fat | 87.1 | 88.7 | 88.2 | 92.6 | 0.96 | <0.01 | 0.2 | 0.16 |
Milk energy, MJ/kg | 3.0 | 3.2 | 3.2 | 3.5 | 0.11 | 0.03 | 0.61 | 0.44 |
SCC, ×103 cells/mL | 380 | 276 | 267 | 557 | 278 | 0.14 | 0.44 | 0.71 |
Feed efficiency | 1.1 | 1.1 | 1.0 | 1.0 | 0.22 | 0.75 | 0.99 | 0.60 |
Items 1 | Cassava Chip Substitution (%) | SEM | p-Value 2 | |||||
---|---|---|---|---|---|---|---|---|
0 | 12 | 24 | 36 | L | Q | C | ||
Respiratory gas | ||||||||
O2 consumption, L/d | 3705 | 3778 | 3549 | 3904 | 62.94 | 0.24 | 0.07 | 0.02 |
CO2 production, L/d | 4189 | 4399 | 4205 | 4594 | 55.27 | <0.01 | 0.16 | <0.01 |
RQ | 1.13 | 1.16 | 1.18 | 1.19 | 0.01 | <0.01 | 0.09 | 0.97 |
Enteric methane emission | ||||||||
L/d | 304.8 | 342.1 | 355.0 | 351.8 | 13.09 | 0.04 | 0.17 | 0.89 |
L/kg DMI | 24.2 | 27.9 | 24.4 | 23.7 | 1.79 | 0.55 | 0.27 | 0.26 |
L/kg FPCM | 23.6 | 26.3 | 29.4 | 25.5 | 1.95 | 0.35 | 0.14 | 0.42 |
MJ/100 MJ GEI | 6.4 | 7.7 | 7.6 | 6.9 | 0.18 | 0.13 | <0.01 | 0.37 |
Items 1 | Cassava Chip Substitution (%) | SEM | p-Value 2 | |||||
---|---|---|---|---|---|---|---|---|
0 | 12 | 24 | 36 | L | Q | C | ||
Energy partition, kJ/kg BW0.75 | ||||||||
GE intake | 1887 | 1819 | 1834 | 1972 | 57.35 | 0.33 | 0.12 | 0.89 |
Fecal excretion | 603 | 531 | 518 | 530 | 18.64 | 0.03 | 0.06 | 0.70 |
Urine excretion | 60.8 | 50.9 | 44.8 | 39.1 | 3.35 | <0.01 | 0.56 | 0.83 |
Methane emission | 120 | 134 | 137 | 135 | 4.50 | 0.06 | 0.12 | 0.83 |
Heat production | 782 | 802 | 751 | 820 | 7.49 | 0.11 | 0.02 | <0.01 |
Milk energy | 337 | 352 | 342 | 365 | 23.23 | 0.50 | 0.88 | 0.61 |
Energy balance | −15.3 | −51.0 | 41.2 | 83.5 | 51.04 | 0.14 | 0.47 | 0.47 |
El(0) | 334 | 309 | 385 | 448 | 43.02 | 0.07 | 0.35 | 0.58 |
Energy intake, kJ/kg BW0.75 | ||||||||
DE | 1284 | 1288 | 1316 | 1442 | 49.48 | 0.06 | 0.26 | 0.75 |
ME | 1104 | 1103 | 1135 | 1268 | 48.01 | 0.05 | 0.21 | 0.75 |
NEL | 844 | 837 | 822 | 959 | 110.23 | 0.53 | 0.54 | 0.76 |
Energy content, MJ/kg of DM | ||||||||
DE | 12.4 | 12.9 | 13.1 | 13.1 | 0.21 | 0.05 | 0.29 | 0.99 |
ME | 10.6 | 11.0 | 11.3 | 11.5 | 0.23 | 0.03 | 0.67 | 0.90 |
NEL | 8.0 | 8.4 | 8.0 | 8.7 | 1.02 | 0.75 | 0.87 | 0.69 |
Energy utilization | ||||||||
DE/GE | 0.68 | 0.71 | 0.73 | 0.74 | 0.01 | <0.01 | 0.34 | 0.87 |
ME/GE | 0.58 | 0.61 | 0.63 | 0.65 | 0.01 | <0.01 | 0.78 | 0.80 |
ME/DE | 0.85 | 0.85 | 0.86 | 0.88 | 0.01 | 0.03 | 0.25 | 0.74 |
Item 1 | Regression Equations 2 | RMSE 3 | R2 | p-Value | Slope | Intercept | ||
---|---|---|---|---|---|---|---|---|
SEM | p-Value | SEM | p-Value | |||||
DE, MJ/kg DM | Y = 12.42X + 0.002 | 0.17 | 0.99 | <0.001 | 0.31 | <0.001 | 0.07 | 0.97 |
ME, MJ/kg DM | Y = 10.63X + 0.002 | 0.20 | 0.98 | <0.001 | 0.38 | <0.001 | 0.09 | 0.98 |
NEL, MJ/kg DM | Y = 8.04X + 0 | 0.65 | 0.76 | <0.001 | 1.21 | <0.001 | 0.27 | 0.99 |
Item 1 | Comparative Method | SEM | p-Value | |||
---|---|---|---|---|---|---|
Substitution | Substitution | Substitution | Regression | |||
12% | 24% | 36% | ||||
DE, MJ/kg DM | 12.43 | 12.44 | 12.43 | 12.42 | 0.39 | 1.00 |
ME, MJ/kg DM | 10.63 | 10.65 | 10.65 | 10.63 | 0.48 | 1.00 |
NEL, MJ/kg DM | 8.01 | 8.03 | 8.05 | 8.04 | 1.54 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gunha, T.; Kongphitee, K.; Binsulong, B.; Sommart, K. Net Energy Value of a Cassava Chip Ration for Lactation in Holstein–Friesian Crossbred Dairy Cattle Estimated by Indirect Calorimetry. Animals 2023, 13, 2296. https://doi.org/10.3390/ani13142296
Gunha T, Kongphitee K, Binsulong B, Sommart K. Net Energy Value of a Cassava Chip Ration for Lactation in Holstein–Friesian Crossbred Dairy Cattle Estimated by Indirect Calorimetry. Animals. 2023; 13(14):2296. https://doi.org/10.3390/ani13142296
Chicago/Turabian StyleGunha, Thidarat, Kanokwan Kongphitee, Bhoowadol Binsulong, and Kritapon Sommart. 2023. "Net Energy Value of a Cassava Chip Ration for Lactation in Holstein–Friesian Crossbred Dairy Cattle Estimated by Indirect Calorimetry" Animals 13, no. 14: 2296. https://doi.org/10.3390/ani13142296
APA StyleGunha, T., Kongphitee, K., Binsulong, B., & Sommart, K. (2023). Net Energy Value of a Cassava Chip Ration for Lactation in Holstein–Friesian Crossbred Dairy Cattle Estimated by Indirect Calorimetry. Animals, 13(14), 2296. https://doi.org/10.3390/ani13142296