Evaluation of the Effect of Pb Pollution on Avian Influenza Virus-Specific Antibody Production in Black-Headed Gulls (Chroicocephalus ridibundus)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Age and Sex
2.3. Pb Investigation
2.4. Investigation of Antibodies to AIV
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elenwo, A.; Okafor-Elenwo, E. Zoonotic diseases of poultry: A threat to profitable poultry production. a review. J. Nat. Sci. Res. 2014, 4, 10–12. [Google Scholar]
- Kim, W.-H.; Bae, S.H.; Cho, S. Spatiotemporal dynamics of highly pathogenic avian influenza subtype H5N8 in poultry farms, South Korea. Viruses 2021, 13, 274. [Google Scholar] [CrossRef]
- Bird, B.H.; Mazet, J.A. Detection of emerging zoonotic pathogens: An integrated one health approach. Annu. Rev. Anim. Biosci. 2018, 6, 121–139. [Google Scholar] [CrossRef] [Green Version]
- Cui, B.; Wang, L.D.-L.; Ke, J.; Tian, Y. Chinese poultry farmers’ decision-making for avian influenza prevention: A qualitative analysis. Zoonoses Public Health 2019, 66, 647–654. [Google Scholar] [CrossRef]
- Sakoda, Y.; Ito, H.; Uchida, Y.; Okamatsu, M.; Yamamoto, N.; Soda, K.; Nomura, N.; Kuribayashi, S.; Shichinohe, S.; Sunden, Y.; et al. Reintroduction of H5N1 highly pathogenic avian influenza virus by migratory water birds, causing poultry outbreaks in the 2010–2011 winter season in Japan. J. Gen. Virol. 2012, 93, 541–550. [Google Scholar] [CrossRef] [PubMed]
- Ozawa, M.; Matsuu, A.; Tokorozaki, K.; Horie, M.; Masatani, T.; Nakagawa, H.; Okuya, K.; Kawabata, T.; Toda, S. Genetic diversity of highly pathogenic H5N8 avian influenza viruses at a single overwintering site of migratory birds in Japan, 2014/15. Eurosurveillance 2015, 20, 21132. [Google Scholar] [CrossRef] [Green Version]
- Okamatsu, M.; Ozawa, M.; Soda, K.; Takakuwa, H.; Haga, A.; Hiono, T.; Matsuu, A.; Uchida, Y.; Iwata, R.; Matsuno, K.; et al. Characterization of highly pathogenic avian influenza virus A (H5N6), Japan, November 2016. Emerg. Infect. Dis. 2017, 23, 691–695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benkaroun, J.; Shoham, D.; Kroyer, A.N.; Whitney, H.; Lang, A.S. Analysis of influenza A viruses from gulls: An evaluation of inter-regional movements and interactions with other avian and mammalian influenza A viruses. Cogent. Biol. 2016, 2, 1234957. [Google Scholar] [CrossRef]
- Fouchier, R.A.; Osterhaus, A.D.; Brown, I.H. Animal influenza virus surveillance. Vaccine 2003, 21, 1754–1757. [Google Scholar] [CrossRef]
- Koch, G.; Elbers, A.R. Outdoor ranging of poultry: A major risk factor for the introduction and development of High-Pathogenicity Avian Influenza. NJAS-Wagen. J. Life Sci. 2006, 54, 179–194. [Google Scholar] [CrossRef] [Green Version]
- Xie, X.-T.; Yitbarek, A.; Astill, J.; Singh, S.; Khan, S.U.; Sharif, S.; Poljak, Z.; Greer, A.L. Within-host model of respiratory virus shedding and antibody response to H9N2 avian influenza virus vaccination and infection in chickens. Infect. Dis. Model. 2021, 6, 490–502. [Google Scholar] [CrossRef]
- Boltz, D.A.; Douangngeun, B.; Sinthasak, S.; Phommachanh, P.; Midouangchanh, P.; Walker, D.; Keating, R.; Khalenkov, A.M.; Kumar, M.; Webster, R.G. Field assessment of an H5N1 inactivated vaccine in chickens and ducks in Lao PDR. Arch. Virol. 2009, 154, 939–944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nazir, R.; Khan, M.; Masab, M.; Rehman, H.U.; Rauf, N.U.; Shahab, S.; Ameer, N.; Sajed, M.; Ullah, M.; Rafeeq, M.; et al. Accumulation of heavy metals (Ni, Cu, Cd, Cr, Pb, Zn, Fe) in the soil, water and plants and analysis of physico-chemical parameters of soil and water collected from Tanda Dam Kohat. J. Pharm. Sci. 2015, 7, 89–97. [Google Scholar]
- Pain, D.J.; Cromie, R.; Green, R.E. Poisoning of UK birds and other wildlife from ammunition-derived lead. In Lead Ammunition: Understanding and Minimising the Risks to Human and Environmental Health; Delahay, R.J., Spray, C.J., Eds.; The Oxford Lead Symposium; Edward Grey Institute, University of Oxford: Oxford, UK, 2014; pp. 58–84. [Google Scholar]
- De Francisco, N.; Troya, J.D.R.; Agüera, E.I. Lead and lead toxicity in domestic and free-living birds. Avian Pathol. 2003, 32, 3–13. [Google Scholar] [CrossRef]
- Pain, D.J.; Mateo, R.; Green, R.E. Effects of lead from ammunition on birds and other wildlife: A review and update. Ambio 2019, 48, 935–953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiemeyer, S.N.; Scott, J.M.; Anderson, M.P.; Bloom, P.H.; Stafford, C.J. Environmental contaminants in California condors. J. Wildl. Manag. 1988, 52, 238–247. [Google Scholar] [CrossRef]
- Mateo, R. Lead poisoning in wild birds in Europe and the regulations adopted by different countries. In Ingestion of Lead from Spent Ammunition: Implications for Wildlife and Humans; Watson, R.T., Fuller, M., Pokras, M., Hunt, W.G., Eds.; The Peregrine Fund: Boise, ID, USA, 2009; pp. 71–98. [Google Scholar]
- Zarei, M.H.; Pourahmad, J.; Aghvami, M.; Soodi, M.; Nassireslami, E. Lead acetate toxicity on human lymphocytes at non-cytotoxic concentrations detected in human blood. Main Group Met. Chem. 2017, 40, 105–112. [Google Scholar] [CrossRef]
- Burger, J.; Gochfeld, M. Effects of lead on birds (Laridae): A review of laboratory and field studies. J. Toxicol. Environ. Health B Crit. Rev. 2000, 3, 59–78. [Google Scholar] [CrossRef]
- Ikenaka, Y.; Nakayama, S.M.; Muzandu, K.; Choongo, K.; Teraoka, H.; Mizuno, N.; Ishizuka, M. Heavy metal contamination of soil and sediment in Zambia. Afr. J. Environ. Sci. Technol. 2010, 4, 729–739. [Google Scholar]
- McCabe, M.J., Jr.; Singh, K.P.; Reiners, J.J., Jr. Low level lead exposure in vitro stimulates the proliferation and expansion of alloantigen-reactive CD4 high T cells. Toxicol. Appl. Pharmacol. 2001, 177, 219–231. [Google Scholar] [CrossRef]
- Dyatlov, V.A.; Lawrence, D.A. Neonatal lead exposure potentiates sickness behavior induced by Listeria monocytogenes infection of mice. Brain Behav. Immun. 2002, 16, 477–492. [Google Scholar] [CrossRef] [Green Version]
- Koller, L.D.; Kovacic, S. Decreased antibody formation in mice exposed to lead. Nature 1974, 250, 148–150. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Yang, T.; Wang, W.; Xu, S. Effect of selenium antagonist lead-induced damage on Th1/Th2 imbalance in the peripheral blood lymphocytes of chickens. Ecotoxicol. Environ. Saf. 2019, 175, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Yanagawa, Y.; Yanada, S.; Ishikawa, H.; Ohmura, H.; Okada, Y. Acute lead poisoning from a fishing sinker. Acute Med. Surg. 1996, 7, 669–672. (In Japanese) [Google Scholar]
- Fang, L.; Zhao, F.; Shen, X.; Ouyang, W.; Liu, X.; Xu, Y.; Yu, T.; Jin, B.; Chen, J.; Luo, W. Pb exposure attenuates hypersensitivity in vivo by increasing regulatory T cells. Toxicol. Appl. Pharmacol. 2012, 265, 272–278. [Google Scholar] [CrossRef]
- Jing, H.; Zhang, Q.; Li, S.; Gao, X.-j. Pb exposure triggers MAPK-dependent inflammation by activating oxidative stress and miRNA-155 expression in carp head kidney. Fish Shellfish Immunol. 2020, 106, 219–227. [Google Scholar] [CrossRef]
- Zahra, N.; Kalim, I.; Mahmood, M.; Naeem, N. Perilous effects of heavy metals contamination on human health. Pak. J. Anal. Environ. Chem. 2017, 18, 1–17. [Google Scholar] [CrossRef]
- Ellis, T.M.; Bousfield, R.B.; Bissett, L.A.; Dyrting, K.C.; Luk, G.S.M.; Tsim, S.T.; Sturm-Ramirez, K.; Webster, R.G.; Guan, Y.; Peiris, G.S.M. Investigation of outbreaks of highly pathogenic H5N1 avian influenza in waterfowl and wild birds in Hong Kong in late 2002. Avian Pathol. 2004, 33, 492–505. [Google Scholar] [CrossRef]
- Fouchier, R.A.; Munster, V.; Wallensten, A.; Bestebroer, T.M.; Herfst, S.; Smith, D.; Rimmelzwaan, G.F.; Olsen, B.; Osterhaus, A.D.M.E. Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from Black-headed gulls. J. Virol. 2005, 79, 2814–2822. [Google Scholar] [CrossRef] [Green Version]
- Sharshov, K.; Silko, N.; Sousloparov, I.; Zaykovskaya, A.; Shestopalov, A.; Drozdov, I. Avian influenza (H5N1) outbreak among wild birds, Russia, 2009. Emerg. Infect. Dis. 2010, 16, 349–350. [Google Scholar] [CrossRef]
- Jurinović, L.; Savić, V.; Balenović, M.; Lisičić, D.; Lucić, V. Virological and serological investigation of avian influenza in Black headed gulls captured on a rubbish dump in Zagreb, Croatia. Vet. Arh. 2014, 84, 521–528. [Google Scholar]
- Verhagen, J.; Majoor, F.; Lexmond, P.; Vuong, O.; Kasemir, G.; Lutterop, D.; Osterhaus, A.D.M.E.; Fouchier, R.A.M.; Kuiken, T. Epidemiology of influenza A virus among black headed gulls, the Netherlands, 2006–2010. Emerg. Infect. Dis. 2014, 20, 138–141. [Google Scholar] [CrossRef]
- Status of Occurrence and Detection of Highly Pathogenic Avian Influenza in Japan. Available online: https://www.env.go.jp/nature/dobutsu/bird_flu/wildbird_past.html (accessed on 11 June 2020).
- Baker, K. Black headed gull. In Identification Guide to European Non-Passerines; British Trust for Ornithology: Norfolk, UK, 1993; p. 24. [Google Scholar]
- Gambaryan, A.S.; Matrosovich, T.Y.; Boravleva, E.Y.; Lomakina, N.F.; Yamnikova, S.S.; Tuzikov, A.B.; Pazynina, G.V.; Bovin, N.V.; Fouchier, R.A.M.; Klenk, H.-D.; et al. Receptor-binding properties of influenza viruses isolated from gulls. Virology 2018, 522, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Postnikova, Y.; Treshchalina, A.; Boravleva, E.; Gambaryan, A.; Ishmukhametov, A.; Matrosovich, M.; Fouchier, R.A.M.; Sadykova, G.; Prilipov, A.; Lomakina, N. Diversity and reassorment rate of influenza A viruses in wild ducks and gulls. Viruses 2021, 13, 1010. [Google Scholar] [CrossRef]
- Kloubec, B.; Švecová, Z. Changes in the South Bohemian population of Black-headed Gull (Larus ridibundus) and their possible causes (in Czech). In Proceedings of the II South Bohemian Ornithological Conference, České Budějovice, Czech Republic, 25–26 February 1989; pp. 119–140. [Google Scholar]
- Furness, R.W.; Camphuysen, K. Seabirds as monitors of the marine environment. ICES Mar. Sci. Symp. 1997, 54, 726–737. [Google Scholar] [CrossRef] [Green Version]
- Pickard, K. Heavy Metal Pollution and Black Headed Gull (Larus ridibundus L.) Breeding Ecology. Ph.D. Thesis, School of Civil Engineering and the Environment, University of Southampton, Southampton, UK, 2010; pp. 1–325. [Google Scholar]
- Poprach, K.; Machar, I.; Maton, K. Long-term decline in breeding abundance of Black-headed Gull (Chroicocephalus ridibundus) in the Czech Republic: A case study of a population trend at the Chomoutov lake. Ekológia Bratisl. 2016, 35, 350–358. [Google Scholar] [CrossRef] [Green Version]
- Migula, P.; Augustyniak, M.; Szymczyk, A.; Kowalczyk, K. Heavy metals, resting metabolism rates and breeding parameters in two populations of Black-headed gull Larus ridibundus from the industrially polluted areas of Upper Silesia, Poland. Acta Ornithol. 2000, 35, 159–172. [Google Scholar] [CrossRef] [Green Version]
- Muller, W.; Dijkstra, C.; Groothuis, T.G.G. Inter-sexual differences in T-cell-mediated immunity of black-headed gull chicks (Larus ridibundus) depend on the hatching order. Behav. Ecol. Sociobiol. 2003, 55, 80–86. [Google Scholar] [CrossRef] [Green Version]
- Orlowski, G.; Polechonki, R.; Dobicki, W.; Zawada, Z. Heavy metal concentrations in the tissues of the Black-headed gull Larus ridibundus L. nesting in the dam reservoir in south-western Poland. Pol. J. Ecol. 2007, 55, 783–793. [Google Scholar]
- Kitowski, I.; Jakubas, D.; Wiącek, D.; Sujak, A. Concentrations of lead and other elements in the liver of the White-tailed eagle (Haliaeetus albicilla), a European flagship species, wintering in Eastern Poland. Ambio 2017, 46, 825–841. [Google Scholar] [CrossRef] [Green Version]
- Bird Banding Society of Japan. Available online: https://birdbanding-assn.jp/J05_color_ring/color.htm (accessed on 1 June 2022).
- Çakmak, E.; Pekşen, A.C.; Bilgin, C.C. Comparison of three different primer sets for sexing birds. J. Vet. Diagn. Investig. 2017, 29, 59–63. [Google Scholar] [CrossRef] [Green Version]
- Ushine, N.; Kato, T.; Hayama, S. Sex identification in Japanese birds using droppings as a source of DNA. J. Jpn. Bird Band. Assoc. 2016, 28, 51–70. (In Japanese) [Google Scholar] [CrossRef] [Green Version]
- Ushine, N.; Nakayama, S.M.; Ishizuka, M.; Sato, T.; Kurahashi, Y.; Wakayama, E.; Sugiura, N.; Hayama, S. Relationship between blood test values and blood lead (Pb) levels in Black-headed gull (Chroicocephalus ridibundus: Laridae). J. Vet. Med. Sci. 2020, 82, 1124–1129. [Google Scholar] [CrossRef] [PubMed]
- Jensen, T.H.; Ajjouri, G.; Handberg, K.J.; Slomka, M.J.; Coward, V.J.; Cherbonnel, M.; Jestin, V.; Lind, P.; Jorgensen, P.H. An enzyme-linked immunosorbent assay for detection of avian influenza virus subtypes H5 and H7 antibodies. Acta Vet. Scand. 2013, 55, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zera, A.J.; Harshman, L.G. The physiology of life history trade-offs in animals. Annu. Rev. Ecol. Evol. Syst. 2001, 32, 95–126. [Google Scholar] [CrossRef] [Green Version]
- Hoye, B.J.; Munster, V.J.; Nishiura, H.; Fouchier, R.A.M.; Madsen, J.; Klaassen, M. Reconstructing an annual cycle of interaction: Natural infection and antibody dynamics to avian influenza along a migratory flyway. Oikos 2011, 120, 748–755. [Google Scholar] [CrossRef]
- Ito, G.; Morikawa, M.; Akimoto, S.; Masatani, T.; Ozawa, M. Establishment of a safe and convenient assay for detection of HA subtype-specific antibodies with PB2 gene-knockout influenza viruses. Virus Res. 2021, 295, 2. [Google Scholar] [CrossRef]
- Guan, M.; Hall, J.S.; Zhang, X.; Dusek, R.J.; Olivier, A.K.; Liu, L.; Li, L.; Krauss, S.; Danner, A.; Li, T.; et al. Aerosol transmission of gull-origin Iceland subtype H10N7 influenza A virus in ferrets. J. Virol. 2019, 93, e00282-19. [Google Scholar] [CrossRef] [Green Version]
- He, F.; Prabakaran, M.; Tan, Y.; Indira, K.; Kumar, S.R.; Kwang, J. Development of dual-function ELISA for effective antigen and antibody detection against H7 avian influenza virus. BMC Microbiol. 2013, 13, 219. [Google Scholar] [CrossRef] [Green Version]
- Uyeki, T.M.; Chong, Y.-H.; Katz, J.M.; Lim, W.; Ho, Y.-Y.; Wang, S.S.; Tsang, T.H.F.; Au, W.W.-Y.; Chan, S.-C.; Rowe, T.; et al. Lack of evidence for human-to-human transmission of avian influenza A (H9N2) viruses in Houng Kong, China, 1999. Emerg. Infect. Dis. 2002, 8, 154–159. [Google Scholar] [CrossRef]
- Atamna, A.; Daskal, R.; Babich, T.; Ayada, G.; Ben-Zvi, H.; Elis, A.; Bishara, J.; Avni, T. The impact of obesity on seasonal influenza: A single-center, retrospective study conducted in Israel. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 1471–1476. [Google Scholar] [CrossRef] [PubMed]
- Hammouda, A.; Selmi, S.; Pearce-Duvet, J.; Chokri, M.A.; Arnal, A.; Gauthier-Clerc, M.; Boulinier, T. Maternal antibody transmission in relation to mother fluctuating asymmetry in a long-lived colonial seabird: The Yellow-legged gull Larus michahellis. PLoS ONE 2012, 7, e34966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glezen, W.P.; Paredes, A.; Allison, J.E.; Taber, L.H.; Frank, A.L. Risk of respiratory syncytial virus infection for infants from low-income families in relationship to age, sex, ethnic group, and maternal antibody level. J. Pediatr. 1981, 98, 708–715. [Google Scholar] [CrossRef]
- Glick, B. Interrelation of the avian immune and neuroendocrine systems. J. Exp. Zool. 1984, 232, 671–682. [Google Scholar] [CrossRef]
- Hayakawa, J.; Hayakawa, S.; Nishinarita, S. Gender Medicine and Autoimmune Disorders; Why our Ladies Get Sick? J. Nihon Univ. Med. Assoc. 2013, 72, 150–153. (In Japanese) [Google Scholar] [CrossRef]
- Franson, J.C.; Pain, D. Lead in birds. In Environmental Contaminants in Biota, Interpreting Tissue Concentrations, 2nd ed.; Beyer, W.N., Meador, J.P., Eds.; Taylor & Francis Group LLC: Boca Raton, FL, USA, 2011; pp. 563–593. [Google Scholar]
- Golden, N.H.; Warner, S.E.; Coffey, M.J. Toxicological effects of lead in birds. In Reviews of Environmental Contamination and Toxicology; de Voogt, P., Ed.; Springer International Publishing: Berlin, Germany, 2016; Volume 237, pp. 126–132. [Google Scholar]
- Teitelbaum, C.S.; Ackerman, J.T.; Hill, M.A.; Satter, J.M.; Casazza, M.L.; De La Cruz, S.E.; Boyce, W.M.; Buck, E.J.; Eadie, J.M.; Herzog, M.P.; et al. Avian influenza antibody titer increases with mercury contamination in wild waterfowl. Proc. R. Soc. B 2022, 289, 20221312. [Google Scholar] [CrossRef]
- Geological Survey of Japan. Available online: https://gbank.gsj.jp/geochemmap/gmaps/map.htm (accessed on 6 September 2021).
- Ushine, N.; Nakayama, M.M.S.; Ishizuka, M.; Kato, T.; Hayama, S.-i. Estimation of the relationship between Pb contamination and feeding history of black-headed gulls (Chroicocephalus ridibundus) using stable isotopes. Jpn. J. Environ. Toxicol. 2023, 26, 25–37. [Google Scholar] [CrossRef]
- Ellis, J.W.; Root, J.J.; McCurdy, L.M.; Bentler, K.T.; Barrett, N.L.; VanDalen, K.K.; Dirsmith, K.L.; Shriner, S.A. Avian influenza A virus susceptibility, infection, transmission, and antibody kinetics in European starlings. PLoS Pathog. 2021, 17, e1009879. [Google Scholar] [CrossRef]
- Pain, D.J.; Fisher, J.J.; Thomas, V.G. A global update of lead poisoning in terrestrial birds from ammunition sources. In Ingestion of Lead from Spent Ammunition: Implications for Wildlife and Humans; Watson, R.T., Fuller., M., Pokras, M., Hunt, W.G., Eds.; The Peregrine Fund: Boise, ID, USA, 2009; pp. 289–301. [Google Scholar]
- Vallverdu-Coll, N.; López-Antia, A.; Martinez-Haro, M.; Ortiz-Santaliestra, M.E.; Mateo, R. Altered immune response in mallard ducklings exposed to lead through maternal transfer in the wild. Environ. Pollut. 2015, 205, 350–356. [Google Scholar] [CrossRef]
- USEPA Regional Screening Level (RSL) Summary Table. Available online: https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables (accessed on 24 March 2021).
- Boskabady, M.H.; Karimi, G.R.; Samarghandian, S.; Farkhondeh, T. Tracheal responsiveness to methacholine and ovalbumin; and lung inflammation in guinea pigs exposed to inhaled lead after sensitization. Ecotoxicol. Environ. Saf. 2012, 86, 233–238. [Google Scholar] [CrossRef]
- Xing, M.; Jin, X.; Wang, J.; Shi, Q.; Cai, J.; Xu, S. The antagonistic effect of selenium on lead-induced immune dysfunction via recovery of cytokine and heat shock protein expression in chicken neutrophils. Biol. Trace Elem. Res. 2018, 185, 162–169. [Google Scholar] [CrossRef]
- Han, B.; García-Mendoza, D.; van den Berg, H.; van den Brink, N.W. Modulatory effects of Pb2+ on virally challenged chicken macrophage (HD-11) and B-lymphocyte (DT40) cell lines in vitro. Environ. Toxicol. Chem. 2020, 39, 1060–1070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skalny, A.V.; Lima, T.R.R.; Ke, T.; Zhou, J.-C.; Bornhorst, J.; Alekseenko, S.I.; Aaseth, J.; Anesti, O.; Sarigiannis, D.A.; Tsatsakis, A.; et al. Toxic metal exposure as a possible risk factor for COVID-19 and other respiratory infectious diseases. Food Chem. Toxicol. 2020, 146, 111809. [Google Scholar] [CrossRef] [PubMed]
- Anka, A.U.; Usman, A.B.; Kaoje, A.N.; Kabir, R.M.; Bala, A.; Arki, M.K.; Hossein-Khannazer, N.; Azizi, G. Potential mechanisms of some selected heavy metals in the induction of inflammation and autoimmunity. Eur. J. Inflamm. 2022, 20, 1–14. [Google Scholar] [CrossRef]
- Knowles, S.O.; Donaldson, W.E. Lead disrupts eicosanoid metabolism, macrophage function, and disease resistance in birds. Biol. Trace Elem. Res. 1997, 60, 13–26. [Google Scholar] [CrossRef]
- Boskabady, M.; Marefati, N.; Farkhondeh, T.; Shakeri, F.; Farshbaf, A.; Boskabady, M.H. The effect of environmental lead exposure on human health and the contribution of inflammatory mechanisms, a review. Environ. Int. 2018, 120, 404–420. [Google Scholar] [CrossRef]
- Bellinger, D.C.; Burger, J.; Cade, T.J.; Cory-Slechta, D.A.; Finkelstein, M.; Hu, H.; Kosnett, M.; Landrigan, P.J.; Lanphear, B.; Pokras, M.A.; et al. Health risks from lead-based ammunition in the environment. Environ. Health Perspect. 2013, 121, A178–A179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishii, C.; Nakayama, S.M.M.; Ikenaka, Y.; Nakata, H.; Saito, K.; Watanabe, Y.; Mizukawa, H.; Tanabe, S.; Nomiyama, K.; Hayashi, T.; et al. Lead exposure in raptors from Japan and source identification using Pb stable isotope ratios. Chemosphere 2017, 186, 367–373. [Google Scholar] [CrossRef]
- Shriner, S.A.; Root, J.J.; Lutman, M.W.; Kloft, J.M.; VanDalen, K.K.; Sullivan, H.J.; White, T.S.; Milleson, M.P.; Hairston, J.L.; Chandler, S.C.; et al. Surveillance for highly pathogenic H5 avian influenza virus in synanthropic wildlife associated with poultry farms during an acute outbreak. Sci. Rep. 2016, 6, 36237. [Google Scholar] [CrossRef]
- Nagarajan, S.; Kumar, M.; Murugkar, H.V.; Tripathi, S.; Shukla, S.; Agarwal, S.; Dubey, G.; Nagi, R.S.; Singh, V.P.; Tosh, C. Novel reassortant highly pathogenic avian influenza (H5N8) virus in zoos, India. Emerg. Infect. Dis. 2017, 23, 717–719. [Google Scholar] [CrossRef]
- Savic, V.; Labrovic, A.; Zelenika, T.A.; Balenovic, M.; Separovic, S.; Jurinovic, L. Multiple introduction of Asian H5N1 avian influenza virus in Croatia by wild birds during 2005–2006 and isolation of the virus from apparently healthy Black-headed gulls (Larus ridibundus). Vector Borne Zoonotic Dis. 2010, 10, 915–920. [Google Scholar] [CrossRef] [PubMed]
- Yamashina Institute for Ornithology. Atlas of Japanese Migratory Birds from 1961 to 1995; Yamashina Institute for Ornithology: Chiba, Japan, 2002. (In Japanese) [Google Scholar]
- Buttke, D.E.; Decker, D.J.; Wild, M.A. The role of one health in wildlife conservation: A challenge and opportunity. J. Wildl. Dis. 2015, 51, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Hoye, B.J.; Munster, V.J.; Nishiura, H.; Klaassen, M.; Fouchier, R.A.M. Surveillance of wild birds for avian influenza virus. Emerg. Infect. Dis. 2010, 16, 1827–1834. [Google Scholar] [CrossRef] [PubMed]
Periods | Arriving | Wintering | |||
---|---|---|---|---|---|
Age | Adults | Yearlings | Adults | Yearlings | |
TBP | Male | 17 | 0 | 42 | 0 |
Female | 13 | 0 | 42 | 4 | |
MBP | Male | 3 | 0 | 8 | 6 |
Female | 7 | 1 | 27 | 0 |
Population | MBP | TBP | |
---|---|---|---|
Sample number (n) | 52 | 118 | |
Sex (n) | Male | 17 | 59 |
Female | 35 | 59 | |
Age (n) | Yearlings | 7 | 4 |
Adults | 45 | 114 | |
Positive rate (positive number/total number; %) | 84.6 (44/52) | 50.0 (59/118) | |
Median value of antibody titer in the positive population (OD) | 1.10 | 0.93 | |
Maximum and minimum values of antibody titer in the positive population (OD) | 3.41–0.61 | 2.05–0.39 | |
Median value of antibody titer in the negative population (OD) | 0.43 | 0.33 | |
Maximum and minimum values of antibody titer in the negative population (OD) | 0.52–0.21 | 0.60–0.10 | |
Median value of BLL in the positive population (µg/dL) | 2.00 | 2.00 | |
Maximum and minimum values of BLL in the positive population (µg/dL) | 31.60–0.48 | 21.23–0.22 | |
Median value of BLL in the negative population (µg/dL) | 1.95 | 1.87 | |
Maximum and minimum values of BLL in the negative population (µg/dL) | 12.62–1.00 | 26.05–0.18 |
Populations | Periods (n) | Items | BW (g) | BLL (µg/dL) | Antibody Titer (OD Value) | Infection History (Positive Rate, %) |
---|---|---|---|---|---|---|
Tokyo Bay | Arriving (30) | Median value | 276.0 | 0.67 | 0.32 | 33.3% |
Max to min value | 301.0–227.0 | 8.86–0.18 | 2.05–0.10 | |||
Wintering (88) | Median value | 288.5 | 2.00 | 0.62 | 55.7% | |
Max to min value | 365.5–190.0 | 26.1–0.3 | 1.89–0.12 | |||
Mikawa Bay | Arriving (11) | Median value | 274.5 | 1.30 | 0.92 | 81.8% |
Max to min value | 317.0–214.6 | 31.60–0.48 | 2.67–0.43 | |||
Wintering (41) | Median value | 278.5 | 2.00 | 1.00 | 85.4% | |
Max to min value | 358.0–222.1 | 28.90–0.91 | 3.41–0.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ushine, N.; Ozawa, M.; Nakayama, S.M.M.; Ishizuka, M.; Kato, T.; Hayama, S.-i. Evaluation of the Effect of Pb Pollution on Avian Influenza Virus-Specific Antibody Production in Black-Headed Gulls (Chroicocephalus ridibundus). Animals 2023, 13, 2338. https://doi.org/10.3390/ani13142338
Ushine N, Ozawa M, Nakayama SMM, Ishizuka M, Kato T, Hayama S-i. Evaluation of the Effect of Pb Pollution on Avian Influenza Virus-Specific Antibody Production in Black-Headed Gulls (Chroicocephalus ridibundus). Animals. 2023; 13(14):2338. https://doi.org/10.3390/ani13142338
Chicago/Turabian StyleUshine, Nana, Makoto Ozawa, Shouta M. M. Nakayama, Mayumi Ishizuka, Takuya Kato, and Shin-ichi Hayama. 2023. "Evaluation of the Effect of Pb Pollution on Avian Influenza Virus-Specific Antibody Production in Black-Headed Gulls (Chroicocephalus ridibundus)" Animals 13, no. 14: 2338. https://doi.org/10.3390/ani13142338
APA StyleUshine, N., Ozawa, M., Nakayama, S. M. M., Ishizuka, M., Kato, T., & Hayama, S. -i. (2023). Evaluation of the Effect of Pb Pollution on Avian Influenza Virus-Specific Antibody Production in Black-Headed Gulls (Chroicocephalus ridibundus). Animals, 13(14), 2338. https://doi.org/10.3390/ani13142338