A Review of Toxoplasma gondii in Animals in Greece: A FoodBorne Pathogen of Public Health Importance
Abstract
:Simple Summary
Abstract
1. Introduction
2. Surveillance across Europe
3. Diagnostic Approaches
4. Studies on T. gondii in Animals and Their Products in Greece
4.1. Pigs and Wild Boars
4.2. Sheep and Meat Thereof
4.3. Goats and Meat Thereof
4.4. Cattle and Meat Thereof
4.5. Birds and Poultry Products
4.6. Hares and Meat Thereof
4.7. Equines and Meat Thereof
4.8. Cats
4.9. Dairy Products
5. Control Measures for Foodborne Toxoplasmosis
6. Risk-based Control of Meat-borne Toxoplasmosis
Animal Species | Public Health Relevance | Indicators (Animal/Food Category/Other) | Food Chain Stage | Analytical/Diagnostic Method | Specimen |
---|---|---|---|---|---|
Sheep and Goats | High | HEI 1: Farms with controlled husbandry conditions | Farm | Auditing | Not applicable |
HEI 2: Information on the age of the animals | Abattoir | Food chain information | Not applicable | ||
HEI 3: Detection of T. gondii infection | Abattoir | Serology | Blood | ||
HEI 4: Detection of T. gondii infection in older animals (more than one year) from farms with controlled husbandry conditions | Abattoir | Serology | Blood | ||
HEI 5: Absence of T. gondii infection in younger animals (less than one year) from farms without controlled husbandry conditions | Abattoir | Serology | Blood | ||
Farmed deer and farmed wild boar | High | HEI 1: Detection of T. gondii antibodies in all farmed deer and wild boar | Abattoir | Serology | Meat juice |
HEI 2: Detection of T. gondii antibodies in the older animals (over one year) of farmed deer and wild boar | Abattoir | Serology | Meat juice | ||
Swine | Medium | HEI 1: Farms with officially recognised controlled housing conditions (including control of cats and boots) | Farm | Auditing | Not applicable |
HEI 2: T. gondii in breeding pigs from officially recognised controlled housing conditions | Abattoir | Serology | Blood | ||
HEI 3: T. gondii in all pigs from non-officially recognised controlled housing conditions | Abattoir | Serology | Blood | ||
Poultry (Broilers) | Low | Not applicable | Not applicable | Not applicable | Not applicable |
Bovine | Undetermined | Not applicable | Not applicable | Not applicable | Not applicable |
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Robertson, L.J. Parasites in Food: From a Neglected Position to an Emerging Issue. Adv. Food Nutr. Res. 2018, 86, 71–113. [Google Scholar] [CrossRef]
- Havelaar, A.H.; Kirk, M.D.; Torgerson, P.R.; Gibb, H.J.; Hald, T.; Lake, R.J.; Praet, N.; Bellinger, D.C.; de Silva, N.R.; Gargouri, N.; et al. World Health Organization Global Estimates and Regional Comparisons of the Burden of Foodborne Disease in 2010. PLoS Med. 2015, 12, e1001923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouwknegt, M.; Devleesschauwer, B.; Graham, H.; Robertson, L.J.; van der Giessen, J.W.B.; Akkari, H.; Banu, T.; Koc, R.C.; Chalmers, R.; Cretu, C.M.; et al. Prioritisation of food-borne parasites in Europe, 2016. Eurosurveillance 2018, 23, 17-00161. [Google Scholar] [CrossRef] [Green Version]
- van der Giessen, J.; Deksne, G.; Gómez-Morales, M.A.; Troell, K.; Gomes, J.; Sotiraki, S.; Rozycki, M.; Kucsera, I.; Djurković-Djaković, O.; Robertson, L.J. Surveillance of foodborne parasitic diseases in Europe in a One Health approach. Parasite Epidemiol. Control 2021, 13, e00205. [Google Scholar] [CrossRef] [PubMed]
- de Moraes, É.P.B.X.; da Costa, M.M.; Dantas, A.F.M.; da Silva, J.C.R.; Mota, R.A. Toxoplasma gondii diagnosis in ovine aborted fetuses and stillborns in the State of Pernambuco, Brazil. Vet. Parasitol. 2011, 183, 152–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Berardinis, A.; Paludi, D.; Pennisi, L.; Vergara, A. Toxoplasma gondii, a Foodborne Pathogen in the Swine Production Chain from a European Perspective. Foodborne Pathog. Dis. 2017, 14, 637–648. [Google Scholar] [CrossRef]
- Dubey, J.P. Toxoplasmosis of Animals and Humans; CRC Press: Boca Raton, FL, USA, 2022; ISBN 9781003199373. [Google Scholar]
- Food, E.; Authority, S. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017. EFSA J. 2018, 16, e05500. [Google Scholar] [CrossRef] [Green Version]
- Opsteegh, M.; Kortbeek, T.M.; Havelaar, A.H.; Van Der Giessen, J.W.B. Intervention strategies to reduce human Toxoplasma gondii disease burden. Clin. Infect. Dis. 2015, 60, 101–107. [Google Scholar] [CrossRef] [Green Version]
- Jones, J.L.; Dubey, J.P. Waterborne toxoplasmosis—Recent developments. Exp. Parasitol. 2010, 124, 10–25. [Google Scholar] [CrossRef]
- Koutsoumanis, K.; Allende, A.; Alvarez-Ordóñez, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; Davies, R.; De Cesare, A.; Herman, L.; Hilbert, F.; et al. Public health risks associated with food-borne parasites. EFSA J. 2018, 16, e05495. [Google Scholar] [CrossRef]
- Halová, D.; Mulcahy, G.; Rafter, P.; Turčeková, L.; Grant, T.; de Waal, T. Toxoplasma gondii in Ireland: Seroprevalence and Novel Molecular Detection Method in Sheep, Pigs, Deer and Chickens. Zoonoses Public Health 2013, 60, 168–173. [Google Scholar] [CrossRef]
- Rostami, A.; Riahi, S.M.; Fakhri, Y.; Saber, V.; Hanifehpour, H.; Valizadeh, S.; Gholizadeh, M.; Pouya, R.H.; Gamble, H.R. The global seroprevalence of Toxoplasma gondii among wild boars: A systematic review and meta-analysis. Vet. Parasitol. 2017, 244, 12–20. [Google Scholar] [CrossRef]
- Almeria, S.; Murata, F.H.A.; Cerqueira-Cézar, C.K.; Kwok, O.C.H.; Shipley, A.; Dubey, J.P. Epidemiological and public health significance of Toxoplasma gondii infection in wild rabbits and hares: 2010–2020. Microorganisms 2021, 9, 597. [Google Scholar] [CrossRef] [PubMed]
- Kuruca, L.; Belluco, S.; Vieira-Pinto, M.; Antic, D.; Blagojevic, B. Current control options and a way towards risk-based control of Toxoplasma gondii in the meat chain. Food Control 2023, 146, 109556. [Google Scholar] [CrossRef]
- EFSA. Surveillance and monitoring of Toxoplasma in humans, food and animals—Scientific Opinion of the Panel on Biological Hazards. EFSA J. 2007, 583, 1–64. [Google Scholar] [CrossRef]
- World Health Organization. Multicriteria-Based Ranking for Risk Management of Food-Borne Parasites; World Health Organization: Geneva, Switzerland, 2012; ISBN 1726-5274. [Google Scholar]
- Schlüter, D.; Barragan, A. Advances and challenges in undersstanding cerebral toxoplasmosis. Front. Immunol. 2019, 10, 242. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Li, J.; Zhang, G.; Gong, P.; Yang, J.; Zhang, X. Toxoplasma gondii: Protective immunity against toxoplasmosis with recombinant actin depolymerizing factor protein in BALB/c mice. Exp. Parasitol. 2012, 130, 218–222. [Google Scholar] [CrossRef]
- Montoya, J.G.; Liesenfeld, O. Toxoplasmosis. Lancet 2004, 363, 1965–1976. [Google Scholar] [CrossRef]
- Torgerson, P.R.; Devleesschauwer, B.; Praet, N.; Speybroeck, N.; Willingham, A.L.; Kasuga, F.; Rokni, M.B.; Zhou, X.N.; Fèvre, E.M.; Sripa, B.; et al. World Health Organization Estimates of the Global and Regional Disease Burden of 11 Foodborne Parasitic Diseases, 2010: A Data Synthesis. PLoS Med. 2015, 12, e1001920. [Google Scholar] [CrossRef] [Green Version]
- Lopes-Mori, F.M.R.; Mitsuka-Breganó, R.; Capobiango, J.D.; Inoue, I.T.; Reiche, E.M.V.; Morimoto, H.K.; Casella, A.M.B.; de Barros Bittencourt, L.H.F.; Freire, R.L.; Navarro, I.T. Programs for control of congenital toxoplasmosis. Rev. Assoc. Med. Bras. 2011, 57, 594–599. [Google Scholar] [CrossRef] [Green Version]
- EFSA. The European Union One Health 2018 Zoonoses Report. EFSA J. 2019, 17, e05926. [Google Scholar] [CrossRef] [Green Version]
- Hofhuis, A.; Van Pelt, W.; Van Duynhoven, Y.T.H.P.; Nijhuis, C.D.M.; Mollema, L.; Van Der Klis, F.R.M.; Havelaar, A.H.; Kortbeek, L.M. Decreased prevalence and age-specific risk factors for Toxoplasma gondii IgG antibodies in The Netherlands between 1995/1996 and 2006/2007. Epidemiol. Infect. 2011, 139, 530–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Findal, G.; Barlinn, R.; Sandven, I.; Stray-Pedersen, B.; Nordbø, S.A.; Samdal, H.H.; Vainio, K.; Dudman, S.G.; Jenum, P.A. Toxoplasma prevalence among pregnant women in Norway: A cross-sectional study. Apmis 2015, 123, 321–325. [Google Scholar] [CrossRef] [Green Version]
- Evengård, B.; Petersson, K.; Engman, M.L.; Wiklund, S.; Ivarsson, S.A.; Teär-Fahnehjelm, K.; Forsgren, M.; Gilbert, R.; Malm, G. Low incidence of Toxoplasma infection during pregnancy and in newborns in Sweden. Epidemiol. Infect. 2001, 127, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Birgisdóttir, A.; Asbjörnsdottir, H.; Cook, E.; Gislason, D.; Jansson, C.; Olafsson, I.; Gislason, T.; Jogi, R.; Thjodleifsson, B. Seroprevalence of Toxoplasma gondii in Sweden, Estonia and Iceland. Scand. J. Infect. Dis. 2006, 38, 625–631. [Google Scholar] [CrossRef] [Green Version]
- EFSA. Technical specifications on harmonised epidemiological indicators for public health hazards to be covered by meat inspection of swine. EFSA J. 2011, 9, 2371. [Google Scholar] [CrossRef]
- EFSA BIOHAZ Panel. Scientific Opinion on the public health hazards to be covered by inspection of meat (poultry). EFSA J. 2012, 10, 2741. [Google Scholar] [CrossRef] [Green Version]
- EFSA BIOHAZ Panel. Scientific Opinion on the public health hazards to be covered by inspection of meat (solipeds). EFSA J. 2013, 11, 3263. [Google Scholar] [CrossRef]
- EFSA BIOHAZ Panel. Scientific Opinion on the public health hazards to be covered by inspection of meat from farmed game. EFSA J. 2013, 11, 3264. [Google Scholar] [CrossRef]
- Tenter, A.M.; Heckeroth, A.R.; Weiss, L.M. Toxoplasma gondii: From animals to humans. Int. J. Parasitol. 2000, 30, 1217–1258. [Google Scholar] [CrossRef] [Green Version]
- Foroutan, M.; Fakhri, Y.; Riahi, S.M.; Ebrahimpour, S.; Namroodi, S.; Taghipour, A.; Spotin, A.; Gamble, H.R.; Rostami, A. The global seroprevalence of Toxoplasma gondii in pigs: A systematic review and meta-analysis. Vet. Parasitol. 2019, 269, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Nayeri, T.; Sarvi, S.; Moosazadeh, M.; Daryani, A. Global prevalence of Toxoplasma gondii infection in the aborted fetuses and ruminants that had an abortion: A systematic review and meta-analysis. Vet. Parasitol. 2021, 290, 109370. [Google Scholar] [CrossRef] [PubMed]
- Opsteegh, M.; Maas, M.; Schares, G.; Van Der Giessen, J.; Conraths, F.; Bangoura, B.; Blaga, R.; Boireau, P.; Vallee, I.; Djokic, V.; et al. Relationship between seroprevalence in the main livestock species and presence of Toxoplasma gondii in meat (GP/EFSA/BIOHAZ/2013/01) An extensive literature review. Final report 1 behalf of the consortium. EFSA J. 2016, 13, 996E. [Google Scholar] [CrossRef] [Green Version]
- Opsteegh, M.; Prickaerts, S.; Frankena, K.; Evers, E.G. A quantitative microbial risk assessment for meatborne Toxoplasma gondii infection in The Netherlands. Int. J. Food Microbiol. 2011, 150, 103–114. [Google Scholar] [CrossRef]
- Stelzer, S.; Basso, W.; Benavides Silván, J.; Ortega-Mora, L.M.; Maksimov, P.; Gethmann, J.; Conraths, F.J.; Schares, G. Toxoplasma gondii infection and toxoplasmosis in farm animals: Risk factors and economic impact. Food Waterborne Parasitol. 2019, 15, e00037. [Google Scholar] [CrossRef] [PubMed]
- Athanasiou, L.V.; Papatsiros, V.G.; Spanou, V.M.; Katsogiannou, E.G.; Dedousi, A. Neospora caninum and/or Toxoplasma gondii seroprevalence: Vaccination against pcv2 and muscle enzyme activity in seropositive and seronegative pigs. Microorganisms 2021, 9, 97. [Google Scholar] [CrossRef]
- Papatsiros, V.G.; Athanasiou, L.V.; Stougiou, D.; Papadopoulos, E.; Maragkakis, G.G.; Katsoulos, P.D.; Lefkaditis, M.; Kantas, D.; Tzika, E.D.; Tassis, P.D.; et al. Cross-Sectional Serosurvey and Risk Factors Associated with the Presence of Toxoplasma gondii Antibodies in Pigs in Greece. Vector-Borne Zoonotic Dis. 2016, 16, 48–53. [Google Scholar] [CrossRef]
- Touloudi, A.; Valiakos, G.; Athanasiou, L.V.; Birtsas, P.; Giannakopoulos, A.; Papaspyropoulos, K.; Kalaitzis, C.; Sokos, C.; Tsokana, C.N.; Spyrou, V.; et al. A serosurvey for selected pathogens in Greek European wild boar. Vet. Rec. Open 2015, 2, e000077. [Google Scholar] [CrossRef] [Green Version]
- Tzanidakis, N.; Maksimov, P.; Conraths, F.J.; Kiossis, E.; Brozos, C.; Sotiraki, S.; Schares, G. Toxoplasma gondii in sheep and goats: Seroprevalence and potential risk factors under dairy husbandry practices. Vet. Parasitol. 2012, 190, 340–348. [Google Scholar] [CrossRef]
- Diakou, A.; Papadopoulos, E.; Panousis, N.; Karatzias, C.; Giadinis, N. Toxoplasma gondii and Neospora caninum seroprevalence in dairy sheep and goats mixed stock farming. Vet. Parasitol. 2013, 198, 387–390. [Google Scholar] [CrossRef]
- Ntafis, V.; Xylouri, E.; Diakou, A.; Sotirakoglou, K.; Kritikos, I.; Georgakilas, E.; Menegatos, I. Serological survey of antibodies against Toxoplasma gondii in organic sheep and goat farms in Greece. J. Hell. Vet. Med. Soc. 2007, 58, 22. [Google Scholar] [CrossRef] [Green Version]
- Kouam, M.K.; Katzoura, V.; Cabezón, O.; Nogareda, C.; Almeria, S.; Theodoropoulos, G. Comparative Cross-Sectional Study of Neospora Caninum and Toxoplasma gondii: Seroprevalence in Sheep of Greece and North-Eastern Spain. Sustain. Dev. Cult. Tradit. J. 2019, i, 1–7. [Google Scholar] [CrossRef]
- Kantzoura, V.; Diakou, A.; Kouam, M.K.; Feidas, H.; Theodoropoulou, H.; Theodoropoulos, G. Seroprevalence and risk factors associated with zoonotic parasitic infections in small ruminants in the Greek temperate environment. Parasitol. Int. 2013, 62, 554–560. [Google Scholar] [CrossRef] [PubMed]
- Burriel, A.R.; Vougiouka, O.M.; Butsini, S.; Nomikou, K.; Patakakis, M. A serologic investigation of some causes of reproductive failure among small ruminants in Greece. Online J. Vet. Res. 2002, 6, 57–63. [Google Scholar]
- Bisias, G.; Burriel, A.; Boutsini, S.; Kritas, S.; Leontides, L. A Serological Investigation Of Some Abortion Causes Among Small Ruminant Flocks In Greece. Internet J. Vet. Med. 2009, 8, 2. [Google Scholar]
- Stefanakis, A.; Bizaki, A.; Krambovitis, E. Seroprevalence of toxoplasmosis in the sheep and goats of Crete, Greece. Bull. Vet. Med. Soc. 1995, 46, 243–249. [Google Scholar]
- Kontos, V.; Boutsini, S.; Haralabidis, S.; Diakou, A.; Athanasiou, L.; Magana, O.; Nomikou, K. Ovine Toxoplasmosis. An Epizootiological Research. In Proceedings of the 3rd Hellenic Symposium in Farm Veterinary Medicine, Thessaloniki, Greece, 9–11 November 2001; p. 81. [Google Scholar]
- Giadinis, N.D.; Terpsidis, K.; Diakou, A.; Siarkou, V.; Loukopoulos, P.; Osman, R.; Karatzias, H.; Papazahariadou, M. Massive Toxoplasma abortions in a dairy sheep flock and therapeutic approach with different doses of sulfadimidine. Turkish J. Vet. Anim. Sci. 2011, 35, 207–211. [Google Scholar] [CrossRef]
- Giadinis, N.D.; Lafi, S.Q.; Loannidou, E.; Papadopoulos, E.; Terpsidis, K.; Karanikolas, G.; Petridou, E.J.; Brozos, C.; Karatzias, H. Reduction of the abortion rate due To Toxoplasma in 3 goat herds following administration of sulfadimidine. Can. Vet. J. 2013, 54, 1080–1082. [Google Scholar]
- Lefkaditis, M.; Evagelopoulou, G.; Sossidou, A.; Spanoudis, K. Neosporosis and toxoplasmosis are two prevalent and important protozoses in dairy cows in small farms from Thessaly, Central Greece. J. Hell. Vet. Med. Soc. 2020, 71, 2357–2362. [Google Scholar] [CrossRef]
- Kritsepi-Konstantinou, M. Serological survey for toxoplasmosis in cattle. J. Hell. Vet. Med. Soc. 1992, 43, 48–52. [Google Scholar]
- Diakou, A.; Papadopoulos, E.; Haralabidis, S.; Papachristou, F.; Karatzias, H.; Panousis, N. Prevalence of parasites in intensively managed dairy cattle in Thessaloniki region, Greece. Cattle Pract. 2005, 13, 51–54. [Google Scholar]
- Moustakidis, K.; Economou, V.; Dovas, C.; Symeonidou, I.; Papadopoulos, E.; Papazahariadou, M. First report of Toxoplasma gondii in the woodcock (Scolopax rusticola): Preliminary results. CEUR Workshop Proc. 2017, 2030, 20–27. [Google Scholar]
- Diakou, A.; Papadopoulos, E.; Antalis, V.; Gewehr, S. Toxoplasma gondii infection in wild and domestic pigeons (Columba livia). In Proceedings of the IV Conference of the Scandinavian-Baltic Society for Parasitology, Oslo, Norway, 19–22 June 2011; p. 79. [Google Scholar]
- Andreopoulou, M.; Schares, G.; Koethe, M.; Chaligiannis, I.; Maksimov, P.; Joeres, M.; Cardron, G.; Goroll, T.; Sotiraki, S.; Daugschies, A.; et al. Prevalence and molecular characterization of Toxoplasma gondii in different types of poultry in Greece, associated risk factors and co-existence with Eimeria spp. Parasitol. Res. 2022, 122, 97–111. [Google Scholar] [CrossRef] [PubMed]
- Tsokana, C.N.; Sokos, C.; Giannakopoulos, A.; Birtsas, P.; Athanasiou, L.V.; Valiakos, G.; Sofia, M.; Chatzopoulos, D.C.; Kantere, M.; Spyrou, V.; et al. Serological and molecular investigation of selected parasitic pathogens in European brown hare (Lepus europaeus) in Greece: Inferring the ecological niche of Toxoplasma gondii and Leishmania infantum in hares. Parasitol. Res. 2019, 118, 2715–2721. [Google Scholar] [CrossRef] [PubMed]
- Kouam, M.K.; Diakou, A.; Kantzoura, V.; Papadopoulos, E.; Gajadhar, A.A.; Theodoropoulos, G. A seroepidemiological study of exposure to Toxoplasma, Leishmania, Echinococcus and Trichinella in equids in Greece and analysis of risk factors. Vet. Parasitol. 2010, 170, 170–175. [Google Scholar] [CrossRef]
- Sioutas, G.; Symeonidou, I.; Gelasakis, A.I.; Tzirinis, C.; Papadopoulos, E. Feline Toxoplasmosis in Greece: A Countrywide Seroprevalence Study and Associated Risk Factors. Pathogens 2022, 11, 1511. [Google Scholar] [CrossRef]
- Symeonidou, I.; Gelasakis, A.I.; Arsenopoulos, K.; Angelou, A.; Beugnet, F.; Papadopoulos, E. Feline gastrointestinal parasitism in Greece: Emergent zoonotic species and associated risk factors. Parasites Vectors 2018, 11, 227. [Google Scholar] [CrossRef]
- Kostopoulou, D.; Claerebout, E.; Arvanitis, D.; Ligda, P.; Voutzourakis, N.; Casaert, S.; Sotiraki, S. Abundance, zoonotic potential and risk factors of intestinal parasitism amongst dog and cat populations: The scenario of Crete, Greece. Parasites Vectors 2017, 10, 43. [Google Scholar] [CrossRef] [Green Version]
- Diakou, A.; Migli, D.; Dimzas, D.; Morelli, S.; Di Cesare, A.; Youlatos, D.; Lymberakis, P.; Traversa, D. Endoparasites of european wildcats (Felis silvestris) in Greece. Pathogens 2021, 10, 594. [Google Scholar] [CrossRef]
- Komnenou, A.T.; Giadinis, N.D.; Kritsepi-Konstantinou, M.; Thomas, A.L.; Danika, S.; Terpsidis, K.; Petridou, E.; Papadopoulos, E. Abortion Related to Toxoplasma gondii Infection in a Bactrian Camel (Camelus bactrianus) in Greece: A Case Report. Iran. J. Parasitol. 2022, 17, 111–117. [Google Scholar] [CrossRef]
- Belluco, S.; Mancin, M.; Conficoni, D.; Simonato, G.; Pietrobelli, M.; Ricci, A. Investigating the determinants of Toxoplasma gondii prevalence in meat: A systematic review and meta-regression. PLoS ONE 2016, 11, e0153856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belluco, S.; Simonato, G.; Mancin, M.; Pietrobelli, M.; Ricci, A. Toxoplasma gondii infection and food consumption: A systematic review and meta-analysis of case-controlled studies. Crit. Rev. Food Sci. Nutr. 2018, 58, 3085–3096. [Google Scholar] [CrossRef] [PubMed]
- Batz, M.B.; Hoffmann, S.; Morris, J.G. Ranking the disease burden of 14 pathogens in food sources in the united states using attribution data from outbreak investigations and expert elicitation. J. Food Prot. 2012, 75, 1278–1291. [Google Scholar] [CrossRef] [Green Version]
- Dubey, J.P. Long-term persistence of Toxoplasma gondii in tissues of pigs inoculated with T. gondii oocysts and effect of freezing on viability of tissue cysts in pork. Am. J. Vet. Res. 1988, 49, 910–913. [Google Scholar] [PubMed]
- Gisbert Algaba, I.; Verhaegen, B.; Jennes, M.; Rahman, M.; Coucke, W.; Cox, E.; Dorny, P.; Dierick, K.; De Craeye, S. Pork as a source of transmission of Toxoplasma gondii to humans: A parasite burden study in pig tissues after infection with different strains of Toxoplasma gondii as a function of time and different parasite stages. Int. J. Parasitol. 2018, 48, 555–560. [Google Scholar] [CrossRef]
- Juránková, J.; Basso, W.; Neumayerová, H.; Baláž, V.; Jánová, E.; Sidler, X.; Deplazes, P.; Koudela, B. Brain is the predilection site of Toxoplasma gondii in experimentally inoculated pigs as revealed by magnetic capture and real-time PCR. Food Microbiol. 2014, 38, 167–170. [Google Scholar] [CrossRef] [PubMed]
- Ahaduzzaman, M.; Hasan, T. Seroprevalence of Toxoplasma gondii infection in sheep and goats from different geographical regions of the world: Systematic review and meta-analysis. Transbound. Emerg. Dis. 2022, 69, 3790–3822. [Google Scholar] [CrossRef]
- Roberts, C.W.; Cruickshank, S.M.; Alexander, J. Sex-determined resistance to Toxoplasma gondii is associated with temporal differences in cytokine production. Infect. Immun. 1995, 63, 2549–2555. [Google Scholar] [CrossRef]
- Roberts, C.W.; Walker, W.; Alexander, J. Sex-associated hormones and immunity to protozoan parasites. Clin. Microbiol. Rev. 2001, 14, 476–488. [Google Scholar] [CrossRef] [Green Version]
- Walker, W.; Roberts, C.W.; Ferguson, D.J.P.; Jebbari, H.; Alexander, J. Innate immunity to Toxoplasma gondii is influenced by gender and is associated with differences in interleukin-12 and gamma interferon production. Infect. Immun. 1997, 65, 1119–1121. [Google Scholar] [CrossRef]
- Fais, T.; Giadinis, N.; Papadopoulos, E.; Brellou, G.; Theodoridis, A.; Blaga, R.; Le Roux, D.; Bitchava, D.; Ntemka, A.; Boscos, C.; et al. Effect of Toxoplasma gondii on ram sperm quality after experimental infection. Pathogens 2020, 9, 1004. [Google Scholar] [CrossRef] [PubMed]
- Hutchinson, J.P.; Wear, A.R.; Lambton, S.L.; Smith, R.P.; Pritchard, G.C. Survey to determine the seroprevalence of Toxoplasma gondii infection in British sheep flocks. Vet. Rec. 2011, 169, 582. [Google Scholar] [CrossRef] [PubMed]
- Ranucci, D.; Battisti, E.; Veronesi, F.; Diaferia, M.; Morganti, G.; Branciari, R.; Ferroglio, E.; Valiani, A.; Chiesa, F. Absence of viable Toxoplasma gondii in artisanal raw-milk ewe cheese derived from naturally infected animals. Microorganisms 2020, 8, 143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juránková, J.; Opsteegh, M.; Neumayerová, H.; Kovařčík, K.; Frencová, A.; Baláž, V.; Volf, J.; Koudela, B. Quantification of Toxoplasma gondii in tissue samples of experimentally infected goats by magnetic capture and real-time PCR. Vet. Parasitol. 2013, 193, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Dubey, J.P.; Cerqueira-Cézar, C.K.; Murata, F.H.A.; Kwok, O.C.H.; Yang, Y.R.; Su, C. All about toxoplasmosis in cats: The last decade. Vet. Parasitol. 2020, 283, 109145. [Google Scholar] [CrossRef]
- Dubey, J.P. Distribution of cysts and tachyczoites in calves and pregnant cows inoculated with Toxoplasma gondii oocysts. Vet. Parasitol. 1983, 13, 199–211. [Google Scholar] [CrossRef]
- Opsteegh, M.; Teunis, P.; Züchner, L.; Koets, A.; Langelaar, M.; van der Giessen, J. Low predictive value of seroprevalence of Toxoplasma gondii in cattle for detection of parasite DNA. Int. J. Parasitol. 2011, 41, 343–354. [Google Scholar] [CrossRef] [Green Version]
- Gondim, L.F.P.; Mineo, J.R.; Schares, G. Importance of serological cross-reactivity among Toxoplasma gondii, Hammondia spp., Neospora spp., Sarcocystis spp. and Besnoitia besnoiti. Parasitology 2017, 144, 851–868. [Google Scholar] [CrossRef] [Green Version]
- Shariatzadeh, S.A.; Sarvi, S.; Hosseini, S.A.; Sharif, M.; Gholami, S.; Pagheh, A.S.; Montazeri, F.; Nayeri, T.; Nakhaei, M.; Mikaeili Galeh, T.; et al. The global seroprevalence of Toxoplasma gondii infection in bovines: A systematic review and meta-analysis. Parasitology 2021, 148, 1417–1433. [Google Scholar] [CrossRef]
- Jones, J.L.; Dargelas, V.; Roberts, J.; Press, C.; Remington, J.S.; Montoya, J.G. Risk factors for Toxoplasma gondii infection in the United States. Clin. Infect. Dis. 2009, 49, 878–884. [Google Scholar] [CrossRef] [Green Version]
- WHO. The Burden of Foodborne Diseases in the WHO European Region; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- Gracia Salinas, M.J.; Campos, C.E.; Peris Peris, M.P.; Kassab, N.H. Prevalence of Toxoplasma gondii in retail fresh meat products from free-range chickens in Spain. J. Vet. Res. 2021, 65, 457–461. [Google Scholar] [CrossRef] [PubMed]
- Plaza, J.; Dámek, F.; Villena, I.; Innes, E.A.; Katzer, F.; Hamilton, C.M. Detection of Toxoplasma gondii in retail meat samples in Scotland. Food Waterborne Parasitol. 2020, 20, e00086. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, A.; Janecko, N.; Pollari, F.; Dixon, B. Prevalence and molecular characterization of Toxoplasma gondii DNA in retail fresh meats in Canada. Food Waterborne Parasitol. 2018, 13, e00031. [Google Scholar] [CrossRef]
- Li, X.; Ni, H.B.; Ren, W.X.; Jiang, J.; Gong, Q.L.; Zhang, X.X. Seroprevalence of Toxoplasma gondii in horses: A global systematic review and meta-analysis. Acta Trop. 2020, 201, 105222. [Google Scholar] [CrossRef]
- Barnard, C.; O’Connor, N. RUNNERS and RIDERS: The HORSEMEAT SCANDAL, EU LAW and MULTI-LEVEL ENFORCEMENT. Camb. Law J. 2017, 76, 116–144. [Google Scholar] [CrossRef] [Green Version]
- Dubey, J.P. Infectivity and pathogenicity of Toxoplasma gondii oocysts for cats. J. Parasitol. 1996, 82, 957–961. [Google Scholar] [CrossRef]
- Zulpo, D.L.; Sammi, A.S.; dos Santos, J.R.; Sasse, J.P.; Martins, T.A.; Minutti, A.F.; Cardim, S.T.; de Barros, L.D.; Navarro, I.T.; Garcia, J.L. Toxoplasma gondii: A study of oocyst re-shedding in domestic cats. Vet. Parasitol. 2018, 249, 17–20. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Shapiro, K.; VanWormer, E. Dynamics and epidemiology of Toxoplasma gondii oocyst shedding in domestic and wild felids. Transbound. Emerg. Dis. 2021, 69, 2412–2423. [Google Scholar] [CrossRef]
- Hatam-Nahavandi, K.; Calero-Bernal, R.; Rahimi, M.T.; Pagheh, A.S.; Zarean, M.; Dezhkam, A.; Ahmadpour, E. Toxoplasma gondii infection in domestic and wild felids as public health concerns: A systematic review and meta-analysis. Sci. Rep. 2021, 11, 9509. [Google Scholar] [CrossRef] [PubMed]
- Dubey, J.P. The history of Toxoplasma gondii—The first 100 years. J. Eukaryot. Microbiol. 2008, 55, 467–475. [Google Scholar] [CrossRef]
- Koethe, M.; Schade, C.; Fehlhaber, K.; Ludewig, M. Survival of Toxoplasma gondii tachyzoites in simulated gastric fluid and cow’s milk. Vet. Parasitol. 2017, 233, 111–114. [Google Scholar] [CrossRef]
- Sacks, J.J.; Roberto, R.R.; Brooks, N.F. Toxoplasmosis Infection Associated With Raw Goat’s Milk. JAMA J. Am. Med. Assoc. 1982, 248, 1728–1732. [Google Scholar] [CrossRef] [PubMed]
- Luptakova, L.; Benova, K.; Rencko, A.; Petrovova, E. DNA detection of Toxoplasma gondii in sheep milk and blood samples in relation to phase of infection. Vet. Parasitol. 2015, 208, 250–253. [Google Scholar] [CrossRef] [PubMed]
- Cisak, E.; Zając, V.; Sroka, J.; Sawczyn, A.; Kloc, A.; Dutkiewicz, J.; Wójcik-Fatla, A. Presence of Pathogenic Rickettsiae and Protozoan in Samples of Raw Milk from Cows, Goats, and Sheep. Foodborne Pathog. Dis. 2017, 14, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Vismarra, A.; Barilli, E.; Miceli, M.; Mangia, C.; Bacci, C.; Brindani, F.; Kramer, L. Toxoplasma gondii and pre-treatment protocols for polymerase chain reaction analysis of milk samples: A field trial in sheep from southern Italy. Ital. J. Food Saf. 2017, 6, 45–48. [Google Scholar] [CrossRef]
- Mancianti, F.; Nardoni, S.; D’Ascenzi, C.; Pedonese, F.; Mugnaini, L.; Franco, F.; Papini, R. Seroprevalence, detection of DNA in blood and milk, and genotyping of Toxoplasma gondii in a goat population in Italy. Biomed Res. Int. 2013, 2013, 905326. [Google Scholar] [CrossRef] [Green Version]
- Sroka, J.; Kusyk, P.; Bilska-Zajác, E.; Karamon, J.; Dutkiewicz, J.; Wójcik-Fatla, A.; Zajác, V.; Stojecki, K.; Rózycki, M.; Cencek, T. Seroprevalence of Toxoplasma gondii infection in goats from the south-west region of Poland and the detection of T. gondii DNA in goat milk. Folia Parasitol. 2017, 64, 023. [Google Scholar] [CrossRef]
- Lafi, S.Q.; Giadinis, N.D.; Papadopoulos, E.; Filioussis, G.; Koutsoumpas, A. Ovine and caprine toxoplasmosis: Experimental study. Pak. Vet. J. 2014, 34, 50–53. [Google Scholar]
- Dubey, J.P.; Verma, S.K.; Ferreira, L.R.; Oliveira, S.; Cassinelli, A.B.; Ying, Y.; Kwok, O.C.H.; Tuo, W.; Chiesa, O.A.; Jones, J.L. Detection and survival of Toxoplasma gondii in milk and cheese from experimentally infected goats. J. Food Prot. 2014, 77, 1747–1753. [Google Scholar] [CrossRef]
- EFSA BIOHAZ Panel. Scientific Opinion on the public health hazards to be covered by inspection of meat (swine). EFSA J. 2011, 9, 2351. [Google Scholar] [CrossRef] [Green Version]
- Dubey, J.P.; Lindsay, D.S.; Lappin, M.R. Toxoplasmosis and Other Intestinal Coccidial Infections in Cats and Dogs. Vet. Clin. North Am.-Small Anim. Pract. 2009, 39, 1009–1034. [Google Scholar] [CrossRef] [PubMed]
- Nayeri, T.; Sarvi, S.; Daryani, A. Toxoplasma gondii in mollusks and cold-blooded animals: A systematic review. Parasitology 2021, 148, 895–903. [Google Scholar] [CrossRef] [PubMed]
- Lundén, A.; Uggla, A. Infectivity of Toxoplasma gondii in mutton following curing, smoking, freezing or microwave cooking. Int. J. Food Microbiol. 1992, 15, 357–363. [Google Scholar] [CrossRef] [PubMed]
- El-Nawawi, F.A.; Tawfik, M.A.; Shaapan, R.M. Methods for inactivation of Toxoplasma gondii cysts in meat and tissues of experimentally infected sheep. Foodborne Pathog. Dis. 2008, 5, 687–690. [Google Scholar] [CrossRef]
- Mirza Alizadeh, A.; Jazaeri, S.; Shemshadi, B.; Hashempour-Baltork, F.; Sarlak, Z.; Pilevar, Z.; Hosseini, H. A review on inactivation methods of Toxoplasma gondii in foods. Pathog. Glob. Health 2018, 112, 306–319. [Google Scholar] [CrossRef] [PubMed]
- Chang-Cun, S.; Xing-Zheng, Y.; Li-Ying, S.; Xiao-Xian, G.; Jiang-Zu, D. The effect of cobalt-60 irradiation on the infectivity of Toxoplasma gondii. Int. J. Parasitol. 1993, 23, 89–93. [Google Scholar] [CrossRef]
- Hill, D.E.; Luchansky, J.; Porto-Fett, A.; Gamble, H.R.; Fournet, V.M.; Hawkins-Cooper, D.S.; Urban, J.F.; Gajadhar, A.A.; Holley, R.; Juneja, V.K.; et al. Rapid inactivation of Toxoplasma gondii bradyzoites during formulation of dry cured ready-to-eat pork sausage. Food Waterborne Parasitol. 2018, 12, e00029. [Google Scholar] [CrossRef]
- Herrero, L.; Gracia, M.J.; Pérez-Arquillué, C.; Lázaro, R.; Herrera, A.; Bayarri, S. Toxoplasma gondii in raw and dry-cured ham: The influence of the curing process. Food Microbiol. 2017, 65, 213–220. [Google Scholar] [CrossRef]
- EFSA BIOHAZ Panel. Scientific Opinion on the public health hazards to be covered by inspection of meat from sheep and goats. EFSA J. 2013, 11, 3265. [Google Scholar] [CrossRef] [PubMed]
- EFSA BIOHAZ Panel. Scientific Opinion on the public health hazards to be covered by inspection of meat (bovine animals). EFSA J. 2013, 11, 3266. [Google Scholar] [CrossRef]
- Blagojevic, B.; Nesbakken, T.; Alvseike, O.; Vågsholm, I.; Antic, D.; Johler, S.; Houf, K.; Meemken, D.; Nastasijevic, I.; Vieira Pinto, M.; et al. Drivers, opportunities, and challenges of the European risk-based meat safety assurance system. Food Control 2021, 124, 107870. [Google Scholar] [CrossRef]
- Salines, M.; Lazou, T.; Gomez-Luengo, J.; Holthe, J.; Nastasijevic, I.; Bouwknegt, M.; Dadios, N.; Houf, K.; Blagojevic, B.; Antic, D. Risk categorisation of abattoirs in Europe: Current state of play. Food Control 2023, 152, 109863. [Google Scholar] [CrossRef]
- EFSA. Technical specifications on harmonised epidemiological indicators for biological hazards to be covered by meat inspection of domestic sheep and goats. EFSA J. 2013, 11, 3277. [Google Scholar] [CrossRef]
- EFSA. Technical specifications on harmonised epidemiological indicators for biological hazards to be covered by meat inspection of poultry. EFSA J. 2012, 10, 2764. [Google Scholar] [CrossRef] [Green Version]
- EFSA. Technical specifications on harmonised epidemiological indicators for biological hazards to be covered by meat inspection of domestic solipeds. EFSA J. 2013, 11, 3268. [Google Scholar] [CrossRef]
- EFSA. Technical specifications on harmonised epidemiological indicators for biological hazards to be covered by meat inspection of bovine animals. EFSA J. 2013, 11, 3276. [Google Scholar] [CrossRef]
A/A | Animal Species | Number of Animals Tested | Year of Publication | Location | Type of Study | Diagnostic Method | Results and Remarks |
---|---|---|---|---|---|---|---|
1 | Pigs | 609 sows (65 farms) | 2016 [39] | Mainland Greece | Seroprevalence | IFAT and ELISA | 4.3% (26/609). Risk factors: Farms in mountainous areas and farms with low biosecurity measures |
2 | Pigs | 364 sows | 2021 [38] | Not specified | Seroprevalence | IFAT | 4.4% (16/364). Seropositive sows had higher AST and CK activity Risk factors: sows not vaccinated against porcine circovirus |
3 | Wild boars | 94 wild boars | 2015 [40] | Different areas of Greece | Seroprevalence | IFAT | 5.2% (5/94) |
4 | Sheep and Goats | 8700 sheep 2320 goats | 1995 [48] | Crete | Seroprevalence | ELISA | Sheep: 23% (2001/8700) Goats: 14% (325/2320) Sheep had significantly higher seroprevalence than goats |
5 | Sheep | 840 examined by IFAT 450 examined by ELISA | 2001 [49] | Mainland Greece | Seroprevalence | IFAT and ELISA | IFAT: 53.4% (449/840) ELISA: 58.5% (263/450) All farms were conventional (non-organic) |
6 | Sheep and Goats | 250 sheep (25 farms) 250 goats (26 farms) | 2002 [46] | Southern Greece, Islands | Seroprevalence | IFAT | Sheep: 47.6% (119/250) Seroprevalence in abortive sheep: 52.1% (86/165) Goats: 50.4% (126/250) Seroprevalence in abortive goats:47.9% (69/144) |
7 | Sheep and Goats | 182 sheep (9 farms) 167 goats (6 farms) | 2007 [43] | Peloponnese, western Central Greece, and Ioannina | Seroprevalence | ELISA | Sheep: 50.5% (92/182) Seroprevalence in abortive sheep: 60.9% (14/23) Goats: 17.9% (30/167) Seroprevalence in abortive goats: 14.3% (7/49) All farms were organic Sheep had significantly higher seroprevalence than goats Sheep risk factors: Female sex, increased age Goat risk factors: Increased age |
8 | Sheep and Goats | 289 sheep (37 farms) 174 goats (18 farms) | 2009 [47] | Southern Greece | Seroprevalence | IFAT | Seroprevalence in abortive sheep: 49.8% (144/289) Seroprevalence in abortive goats: 29.9% (52/174) Sheep farms were semi-extensiveGoat farms were extensive |
9 | Sheep | 500 sheep (1 farm) | 2011 [50] | Northern Greece | Case Report | ELISA and histopathology | 60% (300/500) of the sheep had aborted due to T. gondii |
10 | Sheep and Goats | 1501 sheep (60 farms) 541 goats (41 farms) | 2012 [41] | Northern Greece (Thessaloniki, Chalkidiki, Kastoria) | Seroprevalence | ELISA | Sheep: 48.6% (729/1501) Goats: 30.7% (166/541) No regional differences were found; sheep had significantly higher seroprevalence than goats Risk factors for both animal species: intensive or semi-intensive farming, feeding concentrate, water from public supply |
11 | Sheep and Goats | 360 sheep (34 farms) 179 goats (20 farms) | 2013 [45] | Thessaly | Seroprevalence | ELISA | Sheep: 28.3% (102/360) Goats: 16.8% (30/179) Risk factors for both animal species: herd size, anthelmintic treatment, class of anthelmintic, grazing with other flocks, farmer education, farm altitude, and generalised land cover |
12 | Sheep and Goats | 458 sheep (50 farms) 375 goats (50 farms) | 2013 [42] | Different areas of Greece | Seroprevalence | ELISA | Sheep: 53.7% (246/458). Goats: 61.3% (230/375) Goats had significantly higher seroprevalence than sheep |
13 | Goats | 920 goats (3 farms) | 2013 [51] | Northern Greece | Case Report | PCR, histopathology, serology | The abortion rate without treatment ranged from 11% to 78.5% |
14 | Sheep | 80 sheep | 2019 [44] | Trikala, Asimenio-Didimotiho, Xilokeriza-Corinthia, Velestino-Volos, Giannitsa, Sitihori-Didimotiho, Loutraki-Corinthia, Aliveri-Evia | Seroprevalence | MAT | 56.25% (45/80). Risk factors: Geographic region, sheep from Trikala, Asimenio-Didimotiho, Xilokeriza-Corinthia Velestino-Volos, and Giannitsa, had significantly higher seroprevalence than sheep from Loutraki-Corinthia |
15 | Cattle | 1890 cattle | 1992 [53] | Serres | Seroprevalence | Complement fixation test | 39.7% (751/1890) |
16 | Cattle | 105 cattle | 2005 [54] | Thessaloniki | Seroprevalence | ELISA | 20% (21/105) well-managed intensive farms, Friesian cattle |
17 | Cattle | 627 cattle(7 farms) | 2020 [52] | Thessaly | Seroprevalence | ELISA | 8.1% (51/627) All farms had previous reproductive problems, and cats present |
18 | Pigeons | 379 domestic pigeons 50 wild pigeons | 2011 [56] | Northern Greece | Seroprevalence | ELISA | Domestic pigeons 5.8% (22/379) Wild pigeons 0% (0/50) |
19 | Woodcock | 86 woodcocks | 2017 [55] | Macedonia, Mesolonghi | Molecular prevalence | PCR | 4.7% (4/86) |
20 | Chickens | 934 chickens (8 broiler farms, 14 backyard farms, 20 layer farms) | 2022 [57] | Epirus, Central Macedonia, Central Greece-Attica | Seroprevalence | ELISA | 9.4% (88/934) Risk factors: Farming system, nutrition type, and automatic feeding |
21 | Hares | 105 hares | 2019 [58] | Northern and Central Greece | Seroprevalence | IFAT | 5.7% (6/105) No positive liver sample with PCR Risk factors: Precipitation indices and land uses |
22 | Equines | 753 horses 13 mules 7 ponies | 2010 [59] | Peloponnese, Attica, Thessaly, Macedonia | Seroprevalence | ELISA | 1.8% (14/773) Risk factors: Activity type, location |
23 | Cats | 1150 cats | 2018 [61] | Countrywide | Faecal prevalence | Sedimentation and Flotation technique | 0% (0/1150) |
24 | Cats | 264 cats | 2017 [62] | Crete | Faecal prevalence | Sedimentation and Flotation technique | 0.4% (1/264) Oocysts were T. gondii-like, not confirmed with PCR |
25 | Cats | 1554 cats | 2022 [60] | Countrywide | Seroprevalence | Immunochromatographic test | 21.8% (339/1554) Risk factors: hunting, rural areas, outdoor access |
26 | Wildcats | 23 wildcat carcasses 62 faecal samples | 2021 [63] | Different areas of Greece | Faecal prevalence | Sedimentation and Flotation technique | Faecal samples 1.6% (1/62) Faeces of necropsied animals 4.3% (1/23) Oocysts were T. gondii-like, not confirmed with PCR |
27 | Camel | 1 Camel | [64] | Trikala | Case report | ELISA, PCR, cytology | The female camel was pregnant with a high antibody titer against T. gondii and aborted. The aborted foetus was positive for tissue cysts in brain smears and positive in PCR for T. gondii |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Symeonidou, I.; Sioutas, G.; Lazou, T.; Gelasakis, A.I.; Papadopoulos, E. A Review of Toxoplasma gondii in Animals in Greece: A FoodBorne Pathogen of Public Health Importance. Animals 2023, 13, 2530. https://doi.org/10.3390/ani13152530
Symeonidou I, Sioutas G, Lazou T, Gelasakis AI, Papadopoulos E. A Review of Toxoplasma gondii in Animals in Greece: A FoodBorne Pathogen of Public Health Importance. Animals. 2023; 13(15):2530. https://doi.org/10.3390/ani13152530
Chicago/Turabian StyleSymeonidou, Isaia, Georgios Sioutas, Thomai Lazou, Athanasios I. Gelasakis, and Elias Papadopoulos. 2023. "A Review of Toxoplasma gondii in Animals in Greece: A FoodBorne Pathogen of Public Health Importance" Animals 13, no. 15: 2530. https://doi.org/10.3390/ani13152530
APA StyleSymeonidou, I., Sioutas, G., Lazou, T., Gelasakis, A. I., & Papadopoulos, E. (2023). A Review of Toxoplasma gondii in Animals in Greece: A FoodBorne Pathogen of Public Health Importance. Animals, 13(15), 2530. https://doi.org/10.3390/ani13152530