Detection of Toxoplasma gondii Infection in Small Ruminants: Old Problems, and Current Solutions
Abstract
:Simple Summary
Abstract
1. Introduction
2. T. gondii Infection in Small Ruminants
3. Molecular Detection of T. gondii
Sample | Target Gene | Primers (5′-3′) | Product Size (bp) | Results | Reference, Publication Year |
---|---|---|---|---|---|
Muscle tissue of sheep and goats | B1 | External primers Tg1: TGTTCTGTCCTATCGCAACG Tg2: ACGGATGCAGTTCCTTTCTG | 580 | T. gondii DNA was detected in 1.69% of sheep samples and 1.34% of goat samples. | [59], 2017 |
Internal primers Tg3: TCTTCCCAGACGTGGATTTC Tg4: CTCGACAATACGCTGCTTGA | 531 | ||||
Neck muscles of ewes and goats | 18S | 1A: AACCTGGTTGATCCTGCCAGT 564R: GGCACCAGACTTGCCCTC | 600 | DNA of T. gondii was detected in 33.3% of sheep and 32.5% of goats. The infection rate was significantly higher in sheep aged more than one year and goats aged less than three years in comparison to other ages. | [60], 2017 |
B1 |
B22: AACGGGCGAGTAGCACCTGAGGAGA B23: TGGGTCTACGTCGATGGCATGACAAC | 114 | |||
Muscle tissue from ewes and ewe lambs | 18S | 1A: AACCTGGTTGATCCTGCCAGT 564R: GGCACCAGACTTGCCCTC | 600 | The percentage of T. gondii infection was 31% (54/174) and 32% (48/150) for animals from Sidi Bouzid and Beja, respectively. No significant difference in prevalence depending on age, breed and location was found. | [61], 2017 |
ITS1 | External primers NN1: CCTTTGAATCCCAAGCAAAACATGAG NN2 GCGAGCCAAGACATCCATTGCTGA | 227 | |||
Internal primers Tg-NP1: GTGATAGTATCGAAAGGTAT Tg-NP2: ACTCTCTCTCAAATGTTCCT | |||||
Sheep brains | B1 | External primers Fext: GGAACTGCATCCGTTCATGAG Rext: TCTTTAAAGCGTTCGTGGTC | 193 | Parasitic DNA was detected in 26/140 (18.57%) samples. | [62], 2018 |
Internal primers Fint: TGCATAGGTTGCAGTCACTG Rint: GGCGACCAATCTGCGAATACACC | 97 | ||||
Ram semen | 18S | 1A: AACCTGGTTGATCCTGCCAGT 564R: GGCACCAGACTTGCCCTC | 600 | 51.09% samples tested positive for T. gondii DNA. | [63], 2019 |
B1 | B22: AACGGGCGAGTAGCACCTGAGGAGA B23: TGGGTCTACGTCGATGGCATGACAAC | 114 | |||
Muscle tissue and diaphragm samples from sheep and goats | B1 | External primers Fext: GGAACTGCATCCGTTCATGAG Rext: TCTTTAAAGCGTTCGTGGTC | 193 | No T. gondii DNA was detected in all 184 goat and sheep meat samples. | [64], 2020 |
Internal primers Fint: TGCATAGGTTGCAGTCACTG Rint: GGCGACCAATCTGCGAATACACC | 96 | ||||
Muscle tissue of seropositive sheep and goats | ITS1 | External primers NN1: CCTTTGAATCCCAAGCAAAACATGAG NN2 GCGAGCCAAGACATCCATTGCTGA | 227 | For goats, similar prevalence was found for both young and adult animals (6.9% and 4.5%, respectively); a significant difference was reported between adult sheep and lambs (38.2% and 1%, respectively). | [65], 2020 |
Internal primers Tg-NP1: GTGATAGTATCGAAAGGTAT Tg-NP2: ACTCTCTCTCAAATGTTCCT | |||||
Muscle tissue of sheep and goats | B1 | External primers TOXO1: GGAACTGCATCCGTTCATGAG TOXO2: TCTTTAAAGCGTTCGTGGTC | 98 | Parasite DNA was detected in 9.84% of sheep and 10.73% of goats. Meat from rural areas had a significantly higher T. gondii prevalence than that obtained from supermarkets. | [66], 2020 |
Internal primers TOXO4: TGCATAGGTTGCAGTCACTG TOXO2: TCTTTAAAGCGTTCGTGGTC | |||||
Blood of female sheep and goats that aborted | B1 | JW63: GCACCTTTCGGACCTCAACCG JW62: TTCTCGCCTCATTTCTGGGTCTAC | 286 | DNA of T. gondii was detected in 35.24% samples of sheep and 18.68% of goats. Prevalence was higher in sheep aged over 1 year. No significant difference in relation to age in goats. Female sheep that aborted between 1 and 60 days of gestation were more often infected then females that aborted between days 61 and 120. The opposite was reported for goats. | [67], 2020 |
Lamb mincemeat purchased from a large supermarket | B1 | Real-time PCR TOXO-F: TCCCCTCTGCTGGCGAAAAGT TOXO-R: AGCGTTCGTGGTCAACTATCGATTG | 98 | 43% of lamb mincemeat was contaminated with T. gondii. | [68], 2020 |
Nested PCR F: CGAAAAGTGAAATTCATGAG R: CTATCGATTGCAGGCGACC | 66 | ||||
Heart, liver, and meat tissues of sheep and goats | B1 | F: GAGACCGCGGAGCCGAAGTGC R: CCTCCTCCTCCCTTCGTCCAAG | 469 | 17.3%, 22%, and 32% of liver, meat, and heart samples in sheep, and 16%, 17.3%, and 24% of liver, meat, and heart samples in goats, respectively, showed positive PCR results. | [69], 2021 |
Ovary, horns, body of the uterus, and vagina of chronically infected ewes | 18S | 1A: AACCTGGTTGATCCTGCCAGT 564R: GGCACCAGACTTGCCCTC | 600 | 95.2% of ewes had at least one infected genital part. A significantly higher parasitic prevalence was found in the ovaries and vagina of older animals. | [70], 2021 |
B1 |
B22: AACGGGCGAGTAGCACCTGAGGAGA B23: TGGGTCTACGTCGATGGCATGACAAC | 114 | |||
Liver or diaphragm tissue of goats and sheep | B1 | External primers Fext: GGAACTGCATCCGTTCATGAG Rext: TCTTTAAAGCGTTCGTGGTC | 193 | T. gondii detected in 14.4% (13/90) of sheep and 8.8% (8/90) of goats. No statistically significant difference between infection rate and age or sample type. However, significantly more males (19.5%) than females (3.4%) were found to be infected. | [71], 2021 |
Internal primers Fint: TGCATAGGTTGCAGTCACTG Rint: GGCGACCAATCTGCGAATACACC | 96 | ||||
Goat blood | ITS1 |
F: AGTTTAGGAAGCAATCTGAAAGCACATC R: GATTTGCATTCAAGAAGCGTGATAGTAT | 302 | T. gondii DNA was detected in 48/898 (5.3%) goats. Blood cell count and serum creatine was affected in T. gondii-positive animals. | [72], 2022 |
Sheep and goat blood | B1 | External primers Fext: GGAACTGCATCCGTTCATGAG Rext: TCTTTAAAGCGTTCGTGGTC | 193 | Corresponding results of PCR assay and ELISA. B1-PCR products more intense then single P30-PCR products. | [73], 2022 |
Internal primers Fint: TGCATAGGTTGCAGTCACTG Rint: GGCGACCAATCTGCGAATACACC | 97 | ||||
P30 | P30F: TTGCCGCGCCCACACTGATG P30R: CGCGACACAAGCTGCGATAG | 914 | |||
Tissues of seropositive sheep (brain, heart, lungs, kidneys, liver, and diaphragm) | P43 | External primers Fext: CAACTCTCACCATTCCACCC Rext: GCGCGTTGTTAGACAAGACA | 225 | DNA of the parasite was detected in 60% of animals. Pairs of tissue of lungs and heart, lungs and diaphragm or heart and diaphragm could be employed for successful molecular detection of T. gondii in sheep. | [74], 2022 |
Internal primers Fint: TCTTGTCGGGTGTTCACTCA Rint: CACAAGGAGACCGAGAAGGA | |||||
Brain and heart from sheep abortions | REP529 | TOX4: CGCTGCAGGGAGGAAGACGAAAGTTG TOX5: CGCTGCAGACACAGTGCATCTGGATT | T. gondii DNA was detected in 11.8% (9/76) of sheep abortions. Both brain and heart samples were positive in PCR. | [75], 2023 | |
Brains of mice bioassayed with diaphragm tissue from seropositive lambs | 529 | Viable T. gondii was isolated from 32.14% lambs by microscopic examination for brain cysts. PCR confirmed these results. | |||
Sheep hearts | ITS1 | External primers NN1: CCTTTGAATCCCAAGCAAAACATGAG NN2 GCGAGCCAAGACATCCATTGCTGA | 227 | The molecular detection of T. gondii was 7.3%, while seroprevalence was 26.1%. Nested PCR increased the sensitivity in comparison to conventional PCR. | [76], 2023 |
Internal primers Tg-NP1: GTGATAGTATCGAAAGGTAT Tg-NP2: ACTCTCTCTCAAATGTTCCT | |||||
Goat blood | B1 | External primers Tg1: TGTTCTGTCCTATCGCAACG Tg2: ACGGATGCAGTTCCTTTCTG | 580 | Prevalence of infection was 14.8% (25/169) | [77], 2023 |
Internal primers Tg3: TCTTCCCAGACGTGGATTTC Tg4: CTCGACAATACGCTGCTTGA | 531 |
4. T. gondii DNA Detection in Milk
Detection Method | Target Gene | Results | Reference, Publication Year |
---|---|---|---|
PCR | REP529 | Seven milk samples from five seropositive sheep tested positive. Authors stated that the peripartum period may lead to the recirculation of T. gondii tachyzoites which can be excreted in milk. | [93], 2011 |
PCR | B1 | 1/27 (3.7%) milk samples tested positive | [94], 2011 |
Real-time PCR | TGR1E | T. gondii DNA detected in 7/25 (28%) milk samples from IgM+ sheep and 2/55 (3.64%) samples from IgM-sheep. | [89], 2014 |
PCR Real-time PCR | REP529 | 1/21 (4.76%) milk samples positive in both one-step PCR and real-time PCR | [90], 2017 |
Nested PCR | ITS1 and B1 | 1/58 (1.72%) milk samples showed presence of T. gondii DNA. | [95], 2019 |
LAMP RT-PCR | SAG1 | 16/16 milk samples positive in both methods. LAMP demonstrated the presence of T. gondii. DNA and RT-PCR assessed parasite viability. | [57], 2020 |
PCR | B1 | 5/45 (11.11%) milk samples positive for parasitic DNA. | [96], 2022 |
Detection Method | Target Gene | Results | Reference, Publication Year |
---|---|---|---|
Nested PCR | unknown | 13% of milk samples from seropositive goats tested positive. 100% agreement between results for blood and milk samples. | [88], 2013 |
PCR | REP529 | T. gondii DNA was detected in 15/248 (6.05%) of milk samples. 5/15 positive samples were from seropositive goats. | [97], 2015 |
PCR | REP529 | 2.69% (5/186) of goat milk samples tested positive by PCR. None of the samples came from IgG+ animals. | [84], 2015 |
Nested PCR | ITS1 | 7.8% of milk samples tested positive. No correlation between DNA in milk and seroprevalence. | [86], 2016 |
Real-time PCR Nested PCR | B1 | 65% of milk samples were positive in real-time PCR and 43% in nested PCR. Some positive samples were obtained from IgG-goats. | [85], 2017 |
PCR | B1 | 1/29 milk samples (3.4%) tested positive. | [94], 2017 |
Nested PCR | ITS1 | Excretion of parasite DNA was intermittent. Highest DNA concentration was found in the second fortnight and at the end of lactation. No milk samples tested positive in the first fortnight of lactation. | [98], 2019 |
Nested PCR | B1 | 11 samples (5.5%) of goat milk tested positive for T. gondii DNA. No significant relationship between geographical area and milk infection. | [99], 2021 |
PCR | B1 | Molecular prevalence of T. gondii in milk 20%. | [96], 2022 |
5. Serological Detection of T. gondii
6. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dubey, J.P. Toxoplasmosis of Animals and Humans; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Andreoletti, O.; Budka, H.; Buncic, S.; Colin, P.; Collins, J.D.; De Koeijer, A.; Griffin, J.; Havelaar, A.; Hope, J.; Klein, G.; et al. Surveillance and Monitoring of Toxoplasma in Humans, Food and Animals—Scientific Opinion of the Panel on Biological Hazards. EFSA J. 2007, 5, 583. [Google Scholar] [CrossRef]
- Weiss, L.M.; Dubey, J.P. Toxoplasmosis: A History of Clinical Observations. Int. J. Parasitol. 2009, 39, 895. [Google Scholar] [CrossRef] [PubMed]
- Robert-Gangneux, F.; Dardé, M.-L. Epidemiology of and Diagnostic Strategies for Toxoplasmosis. Clin. Microbiol. Rev. 2012, 25, 264–296. [Google Scholar] [CrossRef]
- Tenter, A.M.; Heckeroth, A.R.; Weiss, L.M. Toxoplasma Gondii: From Animals to Humans. Int. J. Parasitol. 2000, 30, 1217–1258. [Google Scholar] [CrossRef] [PubMed]
- Montoya, J.G.; Liesenfeld, O. Toxoplasmosis. Lancet 2004, 363, 1965–1976. [Google Scholar] [CrossRef] [PubMed]
- Mendoza Roldan, J.A.; Otranto, D. Zoonotic Parasites Associated with Predation by Dogs and Cats. Parasites Vectors 2023, 16, 55. [Google Scholar] [CrossRef]
- Sroka, J.; Karamon, J.; Dutkiewicz, J.; Fatla, A.W.; Zając, V.; Cencek, T. Prevalence of Toxoplasma Gondii Infection in Cats in Southwestern Poland. Ann. Agric. Environ. Med. 2018, 25, 576–580. [Google Scholar] [CrossRef]
- Saitoh, Y.; Itagaki, H. Dung Beetles, Onthophagus Spp., as Potential Transport Hosts of Feline Coccidia. Japanese J. Vet. Sci. 1990, 52, 293–297. [Google Scholar] [CrossRef]
- Omata, Y.; Umeshita, Y.; Murao, T.; Kano, R.; Kamiya, H.; Kudo, A.; Masukata, Y.; Kobayashi, Y.; Maeda, R.; Saito, A.; et al. Toxoplasma Gondii Does Not Persist In Goldfish (Carassius Auratus). J. Parasitol. 2005, 91, 1496–1499. [Google Scholar] [CrossRef]
- Ferreira, F.B.; de Macêdo-Júnior, A.G.; Lopes, C.S.; Silva, M.V.; Ramos, E.L.P.; Júnior, Á.F.; Vitaliano, S.N.; Santiago, F.M.; Santos, A.L.Q.; Mineo, J.R.; et al. Serological Evidence of Toxoplasma Gondii Infection in Melanosuchus Niger (Spix, 1825) and Caimam Crocodilus (Linnaeus, 1758). Int. J. Parasitol. Parasites Wildl. 2020, 12, 42–45. [Google Scholar] [CrossRef]
- Carruthers, V.B. Host Cell Invasion by the Opportunistic Pathogen Toxoplasma Gondii. Acta Trop. 2002, 81, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Burrells, A.; Taroda, A.; Opsteegh, M.; Schares, G.; Benavides, J.; Dam-Deisz, C.; Bartley, P.M.; Chianini, F.; Villena, I.; Van Der Giessen, J.; et al. Detection and Dissemination of Toxoplasma Gondii in Experimentally Infected Calves, a Single Test Does Not Tell the Whole Story. Parasites and Vectors 2018, 11, 45. [Google Scholar] [CrossRef] [PubMed]
- Ossani, R.A.; Borges, H.A.T.; Souza, A.P.; Sartor, A.A.; Miletti, L.C.; Federle, M.; Moura, A.B. Toxoplasma Gondii in Milk of Naturally Infected Dairy Ewes on West Mesoregion of Santa Catarina State, Brazil. Arq. Bras. Med. Vet. Zootec. 2017, 69, 1294–1300. [Google Scholar] [CrossRef]
- Baril, L.; Ancelle, T.; Goulet, V.; Thulliez, P.; Tirard-Fleury, V.; Carme, B. Risk Factors for Toxoplasma Infection in Pregnancy: A Case-Control Study in France. Scand. J. Infect. Dis. 1999, 31, 305–309. [Google Scholar] [CrossRef] [PubMed]
- Cook, A.J.C.; Holliman, R.; Gilbert, R.E.; Buffolano, W.; Zufferey, J.; Petersen, E.; Jenum, P.A.; Foulon, W.; Semprini, A.E.; Dunn, D.T. Sources of Toxoplasma Infection in Pregnant Women: European Multicentre Case-Control Study. BMJ 2000, 321, 142–147. [Google Scholar] [CrossRef] [PubMed]
- Kapperud, G.; Jenum, P.A.; Stray-Pedersen, B.; Melby, K.K.; Eskild, A.; Eng, J. Risk Factors for Toxoplasma Gondii Infection in PregnancyResults of a Prospective Case-Control Study in Norway. Am. J. Epidemiol. 1996, 144, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Kijlstra, A.; Jongert, E. Control of the Risk of Human Toxoplasmosis Transmitted by Meat. Int. J. Parasitol. 2008, 38, 1359–1370. [Google Scholar] [CrossRef] [PubMed]
- Rani, S.; Cerqueira-Cézar, C.K.; Murata, F.H.A.; Kwok, O.C.H.; Dubey, J.P.; Pradhan, A.K. Distribution of Toxoplasma Gondii Tissue Cysts in Shoulder Muscles of Naturally Infected Goats and Lambs. J. Food Prot. 2020, 83, 1396–1401. [Google Scholar] [CrossRef]
- Dubey, J.P.; Murata, F.H.A.; Cerqueira-Cézar, C.K.; Kwok, O.C.H. Public Health and Economic Importance of Toxoplasma Gondii Infections in Goats: The Last Decade. Res. Vet. Sci. 2020, 132, 292–307. [Google Scholar] [CrossRef]
- Dubey, J.P.; Murata, F.H.A.; Cerqueira-Cézar, C.K.; Kwok, O.C.H.; Su, C. Economic and Public Health Importance of Toxoplasma Gondii Infections in Sheep: 2009–2020. Vet. Parasitol. 2020, 286, 109195. [Google Scholar] [CrossRef]
- Bártová, E.; Sedlák, K.; Literák, I. Toxoplasma Gondii and Neospora Caninum Antibodies in Sheep in the Czech Republic. Vet. Parasitol. 2009, 161, 131–132. [Google Scholar] [CrossRef] [PubMed]
- Dumètre, A.; Ajzenberg, D.; Rozette, L.; Mercier, A.; Dardé, M.L. Toxoplasma Gondii Infection in Sheep from Haute-Vienne, France: Seroprevalence and Isolate Genotyping by Microsatellite Analysis. Vet. Parasitol. 2006, 142, 376–379. [Google Scholar] [CrossRef] [PubMed]
- Holec-Gąsior, L.; Dominiak-Górski, B.; Kur, J. First Report of Seroprevalence of Toxoplasma Gondii Infection in Sheep in Pomerania, Northern Poland. Annals Agric. Environ. Med. 2015, 22, 604–607. [Google Scholar] [CrossRef]
- Gazzonis, A.L.; Veronesi, F.; Di Cerbo, A.R.; Zanzani, S.A.; Molineri, G.; Moretta, I.; Moretti, A.; Fioretti, D.P.; Invernizzi, A.; Manfredi, M.T. Toxoplasma Gondii in Small Ruminants in Northern Italy—Prevalence and Risk Factors. Annals Agric. Environ. Med. 2015, 22, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Martín, D.; García-Bocanegra, I.; Almería, S.; Castro-Scholten, S.; Dubey, J.P.; Amaro-López, M.A.; Cano-Terriza, D. Epidemiological Surveillance of Toxoplasma Gondii in Small Ruminants in Southern Spain. Prev. Vet. Med. 2020, 183, 105137. [Google Scholar] [CrossRef] [PubMed]
- Fusco, G.; Rinaldi, L.; Guarino, A.; Proroga, Y.T.R.; Pesce, A.; Giuseppina, D.M.; Cringoli, G. Toxoplasma Gondii in Sheep from the Campania Region (Italy). Vet. Parasitol. 2007, 149, 271–274. [Google Scholar] [CrossRef] [PubMed]
- Jokelainen, P.; Näreaho, A.; Knaapi, S.; Oksanen, A.; Rikula, U.; Sukura, A. Toxoplasma Gondii in Wild Cervids and Sheep in Finland: North-South Gradient in Seroprevalence. Vet. Parasitol. 2010, 171, 331–336. [Google Scholar] [CrossRef]
- Klun, I.; Djurković-Djaković, O.; Katić-Radivojević, S.; Nikolić, A. Cross-Sectional Survey on Toxoplasma Gondii Infection in Cattle, Sheep and Pigs in Serbia: Seroprevalence and Risk Factors. Vet. Parasitol. 2006, 135, 121–131. [Google Scholar] [CrossRef]
- Opsteegh, M.; Teunis, P.; Mensink, M.; Züchner, L.; Titilincu, A.; Langelaar, M.; van der Giessen, J. Evaluation of ELISA Test Characteristics and Estimation of Toxoplasma Gondii Seroprevalence in Dutch Sheep Using Mixture Models. Prev. Vet. Med. 2010, 96, 232–240. [Google Scholar] [CrossRef]
- Vesco, G.; Buffolano, W.; La Chiusa, S.; Mancuso, G.; Caracappa, S.; Chianca, A.; Villari, S.; Currò, V.; Liga, F.; Petersen, E. Toxoplasma Gondii Infections in Sheep in Sicily, Southern Italy. Vet. Parasitol. 2007, 146, 3–8. [Google Scholar] [CrossRef]
- Sroka, J.; Szymańska, J. Analysis of Prevalence of Toxoplasma Gondii Infection in Selected Rural Households In the Lublin Region. Bull. Vet. Inst. Pulawy 2012, 56, 529–534. [Google Scholar] [CrossRef]
- Tzanidakis, N.; Maksimov, P.; Conraths, F.J.; Kiossis, E.; Brozos, C.; Sotiraki, S.; Schares, G. Toxoplasma Gondii in Sheep and Goats: Seroprevalence and Potential Risk Factors under Dairy Husbandry Practices. Vet. Parasitol. 2012, 190, 340–348. [Google Scholar] [CrossRef] [PubMed]
- Anastasia, D.; Elias, P.; Nikolaos, P.; Charilaos, K.; Nektarios, G. Toxoplasma Gondii and Neospora Caninum Seroprevalence in Dairy Sheep and Goats Mixed Stock Farming. Vet. Parasitol. 2013, 198, 387–390. [Google Scholar] [CrossRef] [PubMed]
- Bártová, E.; Kobédová, K.; Lamka, J.; Kotrba, R.; Vodička, R.; Sedlák, K. Seroprevalence of Neospora Caninum and Toxoplasma Gondii in Exotic Ruminants and Camelids in the Czech Republic. Parasitol. Res. 2017, 116, 1925–1929. [Google Scholar] [CrossRef] [PubMed]
- Hartley, W.J.; Jebson, J.L.; McFarlane, D.W. New Zealand Type II Abortion in Ewes. Aust. Vet. J. 1954, 30, 216–218. [Google Scholar] [CrossRef]
- Hartley, W.J.; Marshall, S.C. Toxoplasmosis as a Cause of Ovine Perinatal Mortality. N. Z. Vet. J. 1957, 5, 119–124. [Google Scholar] [CrossRef]
- Dubey, J.P.; Beattie, C.P. Beattie Toxoplasmosis of Animals and Man. In Parasitology; CRC Press: Boca Raton, FL, USA, 1988; p. 220. [Google Scholar]
- Innes, E.A.; Bartley, P.M.; Buxton, D.; Katzer, F. Ovine Toxoplasmosis. Parasitology 2009, 136, 1887–1894. [Google Scholar] [CrossRef] [PubMed]
- Esubalew, S.; Nigatu, S.D.; Kussa, M.; Tsegaye, A.A.; Bogale, B. Seroepidemiology of Toxoplasma Gondii in Small Ruminants in Northwest Ethiopia. Vet. Parasitol. Reg. Stud. Reports 2020, 22, 100456. [Google Scholar] [CrossRef]
- Selim, A.; Marzok, M.; Alshammari, A.; AL-Jabr, O.A.; Salem, M.; Wakid, M.H. Toxoplasma Gondii Infection in Egyptian Domestic Sheep and Goats: Seroprevalence and Risk Factors. Trop. Anim. Health Prod. 2023, 55, 182. [Google Scholar] [CrossRef]
- Skjerve, E.; Waldeland, H.; Nesbakken, T.; Kapperud, G. Risk Factors for the Presence of Antibodies to Toxoplasma Gondii in Norwegian Slaughter Lambs. Prev. Vet. Med. 1998, 35, 219–227. [Google Scholar] [CrossRef]
- Gebremedhin, E.Z.; Agonafir, A.; Tessema, T.S.; Tilahun, G.; Medhin, G.; Vitale, M.; Di Marco, V. Some Risk Factors for Reproductive Failures and Contribution of Toxoplasma Gondii Infection in Sheep and Goats of Central Ethiopia: A Cross-Sectional Study. Res. Vet. Sci. 2013, 95, 894–900. [Google Scholar] [CrossRef] [PubMed]
- Buxton, D.; Maley, S.W.; Wright, S.E.; Rodger, S.; Bartley, P.; Innes, E.A. Toxoplasma Gondii and Ovine Toxoplasmosis: New Aspects of an Old Story. Vet. Parasitol. 2007, 149, 25–28. [Google Scholar] [CrossRef] [PubMed]
- Duncanson, P.; Terry, R.S.; Smith, J.E.; Hide, G. High Levels of Congenital Transmission of Toxoplasma Gondii in a Commercial Sheep Flock. Int. J. Parasitol. 2001, 31, 1699–1703. [Google Scholar] [CrossRef] [PubMed]
- Williams, R.H.; Morley, E.K.; Hughes, J.M.; Duncanson, P.; Terry, R.S.; Smith, J.E.; Hide, G. High Levels of Congenital Transmission of Toxoplasma Gondii in Longitudinal and Cross-Sectional Studies on Sheep Farms Provides Evidence of Vertical Transmission in Ovine Hosts. Parasitology 2005, 130, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Morley, E.K.; Williams, R.H.; Hughes, J.M.; Thomasson, D.; Terry, R.S.; Duncanson, P.; Smith, J.E.; Hide, G. Evidence That Primary Infection of Charollais Sheep with Toxoplasma Gondii May Not Prevent Foetal Infection and Abortion in Subsequent Lambings. Parasitology 2008, 135, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Hurtado, A.; Aduriz, G.; Moreno, B.; Barandika, J.; García-Pérez, A.L. Single Tube Nested PCR for the Detection of Toxoplasma Gondii in Fetal Tissues from Naturally Aborted Ewes. Vet. Parasitol. 2001, 102, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Burg, J.L.; Grover, C.M.; Pouletty, P.; Boothroyd, J.C. Direct and Sensitive Detection of a Pathogenic Protozoan, Toxoplasma Gondii, by Polymerase Chain Reaction. J. Clin. Microbiol. 1989, 27, 1787–1792. [Google Scholar] [CrossRef] [PubMed]
- Homan, W.L.; Vercammen, M.; De Braekeleer, J.; Verschueren, H. Identification of a 200- to 300-Fold Repetitive 529 Bp DNA Fragment in Toxoplasma Gondii, and Its Use for Diagnostic and Quantitative PCR. Int. J. Parasitol. 2000, 30, 69–75. [Google Scholar] [CrossRef]
- Tenter, A.M.; Luton, K.; Johnson, A.M. Species-Specific Identification of Sarcocystis and Toxoplasma by PCR Amplification of Small Subunit Ribosomal RNA Gene Fragments. Appl. Parasitol. 1994, 35, 173–188. [Google Scholar]
- Savva, D.; Morris, J.C.; Johnson, J.D.; Holliman, R.E. Polymerase Chain Reaction for Detection of Toxoplasma Gondii. J. Med. Microbiol. 1990, 32, 25–31. [Google Scholar] [CrossRef]
- Costa, M.E.S.; Oliveira, C.B.S.; Andrade, J.M.D.A.; Medeiros, T.A.; Neto, V.F.A.; Lanza, D.C. An Alternative Nested-PCR Assay for the Detection of Toxoplasma Gondii Strains Based on GRA7 Gene Sequences. Acta Trop. 2016, 159, 120–124. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.Y.C.; Mangan, J.; Holliman, R.E.; Butcher, P.D. Quantitation of Toxoplasma Gondii DNA in a Competitive Nested Polymerase Chain Reaction. J. Clin. Pathol. 1999, 52, 61. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.-H.; Chen, T.-C.; Kuo, T.-T.; Tseng, C.-C.; Tseng, C.-P. Real-Time PCR for Quantitative Detection of Toxoplasma Gondii. J. Clin. Microbiol. 2000, 38, 4121–4125. [Google Scholar] [CrossRef] [PubMed]
- Travaillé, E.; La Carbona, S.; Gargala, G.; Aubert, D.; Guyot, K.; Dumètre, A.; Villena, I.; Houssin, M. Development of a QRT-PCR Method to Assess the Viability of Giardia Intestinalis Cysts, Cryptosporidium Spp. and Toxoplasma Gondii Oocysts. Food Control 2016, 59, 359–365. [Google Scholar] [CrossRef]
- Ranucci, D.; Battisti, E.; Veronesi, F.; Diaferia, M.; Morganti, G.; Branciari, R.; Ferroglio, E.; Valiani, A.; Chiesa, F. Absence of Viable Toxoplasma Gondii in Artisanal Raw-Milk Ewe Cheese Derived from Naturally Infected Animals. Microorganisms 2020, 8, 143. [Google Scholar] [CrossRef] [PubMed]
- Villegas, E.N.; Augustine, S.A.J.; Villegas, L.F.; Ware, M.W.; See, M.J.; Lindquist, H.D.A.; Schaefer, F.W.; Dubey, J.P. Using Quantitative Reverse Transcriptase PCR and Cell Culture Plaque Assays to Determine Resistance of Toxoplasma Gondii Oocysts to Chemical Sanitizers. J. Microbiol. Methods 2010, 81, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Kalambhe, D.; Gill, J.P.S.; Singh, B.B. Molecular Detection of Toxoplasma Gondii in the Slaughter Sheep and Goats from North India. Vet. Parasitol. 2017, 241, 35–38. [Google Scholar] [CrossRef]
- Amdouni, Y.; Rjeibi, M.R.; Rouatbi, M.; Amairia, S.; Awadi, S.; Gharbi, M. Molecular Detection of Toxoplasma Gondii Infection in Slaughtered Ruminants (Sheep, Goats and Cattle) in Northwest Tunisia. Meat Sci. 2017, 133, 180–184. [Google Scholar] [CrossRef]
- Rouatbi, M.; Amdouni, Y.; Amairia, S.; Rjeibi, M.R.; Sammoudi, S.; Rekik, M.; Gharbi, M. Molecular Detection and Phylogenetic Analyses of Toxoplasma Gondii from Naturally Infected Sheep in Northern and Central Tunisia. Vet. Med. Sci. 2017, 3, 22. [Google Scholar] [CrossRef]
- Gorji, G.R.S.; Rassouli, M.; Staji, H. Prevalence of Cerebral Toxoplasmosis among Slaughtered Sheep in Semnan, Iran. Ann. Parasitol. 2018, 64, 37–42. [Google Scholar]
- Rouatbi, M.; Amairia, S.; Lahmer, M.; Lassoued, N.; Rekik, M.; Wieland, B.; Mwacharo, J.M.; Gharbi, M. Detection of Toxoplasma Gondii Infection in Semen of Rams Used for Natural Mating in Commercial Sheep Farms in Tunisia. Vet. Parasitol. Reg. Stud. Reports 2019, 18, 100341. [Google Scholar] [CrossRef]
- Hamid, N.A.; Sadiq, M.B.; Ramanoon, S.Z.; Mansor, R.; Watanabe, M.; Mahiza, N.; Isa, M.; Kamaludeen, J.; Syed-Hussain, S.S. Seroprevalence and Risk Factors of Toxoplasma Gondii in Ruminant Meats from Wet Markets in Klang Valley and Abattoirs in Selangor, Malaysia. Animals 2020, 10, 1139. [Google Scholar] [CrossRef]
- Gazzonis, A.L.; Zanzani, S.A.; Villa, L.; Manfredi, M.T. Toxoplasma Gondii Infection in Meat-Producing Small Ruminants: Meat Juice Serology and Genotyping. Parasitol. Int. 2020, 76, 102060. [Google Scholar] [CrossRef] [PubMed]
- Ai, K.; Huang, C.-Q.; Guo, J.-J.; Cong, H.; He, S.-Y.; Zhou, C.-X.; Cong, W. Molecular Detection of Toxoplasma Gondii in the Slaughter Sheep and Goats from Shandong Province, Eastern China. Vector-Borne Zoonotic Dis. 2020, 20, 193–196. [Google Scholar] [CrossRef]
- Ait Issad, N.; Abdelouahed, K.; Bekhouche, S.; Boubeuker, R.; Hamoudi Adjmi, H.; Ouchene-Khelifi, N.A.; Ouchene, N.; Ait Oudhia, K.; Khelef, D. Molecular Detection of the B1 Gene of Toxoplasma Gondii in Blood Samples of Female Sheep and Goats in Tebessa, Northeastern Algeria. Comp. Immunol. Microbiol. Infect. Dis. 2020, 72, 101530. [Google Scholar] [CrossRef] [PubMed]
- Dawson, A.C.; Ashander, L.M.; Appukuttan, B.; Woodman, R.J.; Dubey, J.P.; Whiley, H.; Smith, J.R. Lamb as a Potential Source of Toxoplasma Gondii Infection for Australians. Aust. N. Z. J. Public Health 2020, 44, 49–52. [Google Scholar] [CrossRef] [PubMed]
- Yousefvand, A.; Mirhosseini, S.A.; Ghorbani, M.; Mohammadzadeh, T.; Moghaddam, M.M.; Mohammadyari, S. Molecular and Serological Detection and of Toxoplasma Gondii in Small Ruminants of Southwest Iran and the Potential Risks for Consumers. J. Consum. Prot. Food Saf. 2021, 16, 117–127. [Google Scholar] [CrossRef]
- Rouatbi, M.; Amairia, S.; Samed, S.; Rekik, M.; Darghouth, M.A.; Jeljli, A.; Gharbi, M. High Toxoplasma Gondii Frequency of Infection in the Genital Tract of Ewes Previously Positive for the Parasite DNA in Meat, in Sidi Bouzid, Tunisia. Vet. Parasitol. 2021, 300, 109593. [Google Scholar] [CrossRef]
- Bahreh, M.; Hajimohammadi, B.; Eslami, G. Toxoplasma Gondii in Sheep and Goats from Central Iran. BMC Res. Notes 2021, 14, 46. [Google Scholar] [CrossRef]
- Aziz, M.N.; Iqbal, R.K.; Irfan, M.; Parveen, A.; Asif, M.; Ozubek, S.; Aktas, M.; Said, M.B.; Iqbal, F. First Report on Molecular Epidemiology, Seasonality and Phylogeny of Toxoplasma Gondii Infecting Goats from Khanewal District in Punjab, Pakistan. Acta Trop. 2022, 228, 106304. [Google Scholar] [CrossRef]
- Khattab, R.A.H.; Barghash, S.M.; Mostafa, O.M.S.; Allam, S.A.; Taha, H.A.H.; Ashour, A.A.E.B. Seroprevalence and Molecular Characterization of Toxoplasma Gondii Infecting Ruminants in the North-West of Egypt. Acta Trop. 2022, 225, 106139. [Google Scholar] [CrossRef]
- Silva, A.F.; Frazão-Teixeira, E.; Oliveira, F.C.R.; Fonseca, A.B.M.; Ferreira, A.M.R. Toxoplasma Gondii in Tissues of Sheep Slaughtered for Human Consumption in a Highly Endemic Area for Toxoplasmosis in Brazil. Vet. Parasitol. Reg. Stud. Rep. 2022, 29, 100688. [Google Scholar] [CrossRef]
- Paștiu, A.I.; Mircean, V.; Mercier, A.; Passebosc-Faure, K.; Plault, N.; Dardé, M.L.; Blaga, R.; Villena, I.; Pusta, D.L.; Cozma-Petruț, A.; et al. Toxoplasma Gondii Infection in Sheep from Romania. Parasit. Vectors 2023, 16, 24. [Google Scholar] [CrossRef] [PubMed]
- Mazuz, M.L.; Weiss, A.; Beer, O.; Tirosh-Levy, S.; Riklis, I.; Dveyrin, Z.; Rorman, E.; Cohen, N.Z.; Markovich, M.P.; Baneth, G. High Infection Rates of Toxoplasma Gondii in Cattle, Sheep and Pigs from Israel. Comp. Immunol. Microbiol. Infect. Dis. 2023, 92, 101928. [Google Scholar] [CrossRef] [PubMed]
- Ji, M.-J.; Cho, H.-C.; Park, Y.-J.; Jang, D.-H.; Park, J.; Choi, K.-S. Molecular Detection of Toxoplasma Gondii in Blood Samples of Domestic Livestock in the Republic of Korea. Pathogens 2023, 12, 547. [Google Scholar] [CrossRef]
- Riemann, H.P.; Meyer, M.E.; Theis, J.H.; Kelso, G.; Behymer, D.E. Toxoplasmosis in an Infant Fed Unpasteurized Goat Milk. J. Pediatr. 1975, 87, 573–576. [Google Scholar] [CrossRef]
- Sacks, J.J.; Roberto, R.R.; Brooks, N.F. Toxoplasmosis Infection Associated with Raw Goat’s Milk. JAMA 1982, 248, 1728–1732. [Google Scholar] [CrossRef]
- Skinner, L.J.; Timperley, A.C.; Wightman, D.; Chatterton, J.M.W.; Ho-Yen, D.O. Simultaneous Diagnosis of Toxoplasmosis in Goats and Goatowner’s Family. Scand. J. Infect. Dis. 1990, 22, 359–361. [Google Scholar] [CrossRef]
- Jones, J.L.; Dargelas, V.; Roberts, J.; Press, C.; Remington, J.S.; Montoya, J.G. Risk Factors for Toxoplasma Gondii Infection in the United States. Clin. Infect. Dis. 2009, 49, 878–884. [Google Scholar] [CrossRef] [PubMed]
- Flatt, A.; Shetty, N. Seroprevalence and Risk Factors for Toxoplasmosis among Antenatal Women in London: A Re-Examination of Risk in an Ethnically Diverse Population. Eur. J. Public Health 2013, 23, 648–652. [Google Scholar] [CrossRef]
- Patton, S.; Johnson, S.S.; Puckett, K. Prevalence of Toxoplasma Gondii Antibodies in Nine Populations of Dairy Goats: Compared Titers Using Modified Direct Agglutination and Indirect Hemagglutination. J. Parasitol. 1990, 76, 74–77. [Google Scholar] [CrossRef]
- Da Silva, J.G.; Alves, B.H.L.S.; Melo, R.P.B.; Kim, P.C.P.; Neto, O.L.S.; Bezerra, M.J.G.; Sá, S.G.; Mota, R.A. Occurrence of Anti-Toxoplasma Gondii Antibodies and Parasite DNA in Raw Milk of Sheep and Goats of Local Breeds Reared in Northeastern Brazil. Acta Trop. 2015, 142, 145–148. [Google Scholar] [CrossRef]
- Sroka, J.; Kusyk, P.; Bilska-Zajác, E.; Karamon, J.; Dutkiewicz, J.; Wójcik-Fatla, A.; Zajác, V.; Stojecki, K.; Rózycki, M.; Cencek, T. Seroprevalence of Toxoplasma Gondii Infection in Goats from the South-West Region of Poland and the Detection of T. Gondii DNA in Goat Milk. Folia Parasitol. 2017, 64, 023. [Google Scholar] [CrossRef] [PubMed]
- Amairia, S.; Rouatbi, M.; Rjeibi, M.R.; Nouasri, H.; Sassi, L.; Mhadhbi, M.; Gharbi, M. Molecular Prevalence of Toxoplasma Gondii DNA in Goats’ Milk and Seroprevalence in Northwest Tunisia. Vet. Med. Sci. 2016, 2, 154–160. [Google Scholar] [CrossRef]
- Dubey, J.P.; Verma, S.K.; Ferreira, L.R.; Oliveira, S.; Cassinelli, A.B.; Ying, Y.; Kwok, O.C.H.; Tuo, W.; Chiesa, O.A.; Jones, J.L. Detection and Survival of Toxoplasma Gondii in Milk and Cheese from Experimentally Infected Goats 3. J. Food Prot. 2014, 77, 1747–1753. [Google Scholar] [CrossRef]
- Mancianti, F.; Nardoni, S.; D’Ascenzi, C.; Pedonese, F.; Mugnaini, L.; Franco, F.; Papini, R. Seroprevalence, Detection of DNA in Blood and Milk, and Genotyping of Toxoplasma Gondii in a Goat Population in Italy. Biomed Res. Int. 2013, 2013, 905326. [Google Scholar] [CrossRef] [PubMed]
- Luptakova, L.; Benova, K.; Rencko, A.; Petrovova, E. DNA Detection of Toxoplasma Gondii in Sheep Milk and Blood Samples in Relation to Phase of Infection. Vet. Parasitol. 2014, 208, 250–253. [Google Scholar] [CrossRef]
- Vismarra, A.; Barilli, E.; Miceli, M.; Mangia, C.; Bacci, C.; Brindani, F.; Kramer, L. Toxoplasma Gondii and Pre-Treatment Protocols for Polymerase Chain Reaction Analysis of Milk Samples: A Field Trial in Sheep from Southern Italy. Ital. J. Food Saf. 2017, 6, 45–48. [Google Scholar] [CrossRef] [PubMed]
- Koethe, M.; Schade, C.; Fehlhaber, K.; Ludewig, M. Survival of Toxoplasma Gondii Tachyzoites in Simulated Gastric Fluid and Cow’s Milk. Vet. Parasitol. 2017, 233, 111–114. [Google Scholar] [CrossRef]
- Asgari, Q.; Mehrabani, D.; Motazedian, M.H.; Kalantari, M.; Nouroozi, J.; Adnani Sadati, S.J. The Viability and Infectivity of Toxoplasma Gondii Tachyzoites in Dairy Products Undergoing Food Processing. Asian J. Anim. Sci. 2011, 5, 202–207. [Google Scholar] [CrossRef]
- Camossi, L.G.; Greca-Júnior, H.; Corrêa, A.P.F.L.; Richini-Pereira, V.B.; Silva, R.C.; Da Silva, A.V.; Langoni, H. Detection of Toxoplasma Gondii DNA in the Milk of Naturally Infected Ewes. Vet. Parasitol. 2011, 177, 256–261. [Google Scholar] [CrossRef]
- Cisak, E.; Zając, V.; Sroka, J.; Sawczyn, A.; Kloc, A.; Dutkiewicz, J.; Wójcik-Fatla, A. Presence of Pathogenic Rickettsiae and Protozoan in Samples of Raw Milk from Cows, Goats, and Sheep. Foodborne Pathog. Dis. 2017, 14, 189–194. [Google Scholar] [CrossRef]
- Iacobucci, E.; Taus, N.S.; Ueti, M.W.; Sukhbaatar, L.; Bastsukh, Z.; Papageorgiou, S.; Fritz, H. Detection and Genotypic Characterization of Toxoplasma Gondii DNA within the Milk of Mongolian Livestock. Parasitol. Res. 2019, 118, 2005. [Google Scholar] [CrossRef]
- Deljavan, N.; Moosavy, M.-H.; Hajipour, N. Molecular Detection of Toxoplasma Gondii DNA in Goats (Capra Hircus), Sheep (Ovis Aries), and Donkey (Equus Asinus) Milk Using PCR in East Azerbaijan Province, Iran. Res. Vet. Sci. 2022, 152, 58–60. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, M.J.G.; Kim, P.C.P.; Moraes, E.P.B.X.; Sá, S.G.; Albuquerque, P.P.F.; Silva, J.G.; Alves, B.H.L.S.; Mota, R.A. Detection of Toxoplasma Gondii in the Milk of Naturally Infected Goats in the Northeast of Brazil. Transbound. Emerg. Dis. 2015, 62, 421–424. [Google Scholar] [CrossRef]
- Gazzonis, A.L.; Zanzani, S.A.; Villa, L.; Manfredi, M.T. Toxoplasma Gondii in Naturally Infected Goats: Monitoring of Specific IgG Levels in Serum and Milk during Lactation and Parasitic DNA Detection in Milk. Prev. Vet. Med. 2019, 170, 104738. [Google Scholar] [CrossRef]
- Khamsian, E.M.; Hajimohammadi, B.; Eslami, G.; Fallahzadeh, M.H.; Hosseini, S.S. Toxoplasma Gondii in Milk of Human and Goat from the Desert Area in Central Iran. Iran. J. Parasitol. 2021, 16, 601. [Google Scholar] [CrossRef] [PubMed]
- Del Bono, V.; Canessa, A.; Bruzzi, P.; Fiorelli, M.A.; Terragna, A. Significance of Specific Immunoglobulin M in the Chronological Diagnosis of 38 Cases of Toxoplasmic Lymphadenopathy. J. Clin. Microbiol. 1989, 27, 2133–2135. [Google Scholar] [CrossRef] [PubMed]
- Liesenfeld, O.; Montoya, J.G.; Tathineni, N.J.; Davis, M.; Brown, B.W.; Cobb, K.L.; Parsonnet, J.; Remington, J.S. Confirmatory Serologic Testing for Acute Toxoplasmosis and Rate of Induced Abortions among Women Reported to Have Positive Toxoplasma Immunoglobulin M Antibody Titers. Am. J. Obstet. Gynecol. 2001, 184, 140–145. [Google Scholar] [CrossRef]
- Fricker-Hidalgo, H.; Cimon, B.; Chemla, C.; Darde, M.L.; Delhaes, L.; L’Ollivier, C.; Godineau, N.; Houze, S.; Paris, L.; Quinio, D.; et al. Toxoplasma Seroconversion with Negative or Transient Immunoglobulin M in Pregnant Women: Myth or Reality? A French Multicenter Retrospective Study. J. Clin. Microbiol. 2013, 51, 2103–2111. [Google Scholar] [CrossRef]
- Dhakal, R.; Gajurel, K.; Pomares, C.; Talucod, J.; Press, C.J.; Montoya, J.G. Significance of a Positive Toxoplasma Immunoglobulin M Test Result in the United States. J. Clin. Microbiol. 2015, 53, 3601–3605. [Google Scholar] [CrossRef] [PubMed]
- Ybañez, R.H.D.; Ybañez, A.P.; Nishikawa, Y. Review on the Current Trends of Toxoplasmosis Serodiagnosis in Humans. Front. Cell. Infect. Microbiol. 2020, 10, 529812. [Google Scholar] [CrossRef]
- Holec-Gąsior, L.; Sołowińska, K. IgG Avidity Test as a Tool for Discrimination between Recent and Distant Toxoplasma Gondii Infection—Current Status of Studies. Antibodies 2022, 11, 52. [Google Scholar] [CrossRef]
- Sager, H.; Gloor, M.; Tenter, A.; Maley, S.; Hässig, M.; Gottstein, B. Immunodiagnosis of Primary Toxoplasma Gondii Infection in Sheep by the Use of a P30 IgG Avidity ELISA. Parasitol. Res. 2003, 91, 171–174. [Google Scholar] [CrossRef]
- Clementino, M.M.; Souza, M.F.; Neto, V.F.A. Seroprevalence and Toxoplasma Gondii-IgG Avidity in Sheep from Lajes, Brazil. Vet. Parasitol. 2007, 146, 199–203. [Google Scholar] [CrossRef]
- Holec-Gasior, L. Toxoplasma Gondii Recombinant Antigens as Tools for Serodiagnosis of Human Toxoplasmosis: Current Status of Studies. Clin. Vaccine Immunol. 2013, 20, 1343–1351. [Google Scholar] [CrossRef]
- Ferra, B.; Holec-Gasior, L.; Graźlewska, W. Toxoplasma Gondii Recombinant Antigens in the Serodiagnosis of Toxoplasmosis in Domestic and Farm Animals. Animals 2020, 10, 1245. [Google Scholar] [CrossRef]
- Tenter, A.M.; Vietmeyer, C.; Johnson, A.M. Development of ELISAs Based on Recombinant Antigens for the Detection of Toxoplasma Gondii-Specific Antibodies in Sheep and Cats. Vet. Parasitol. 1992, 43, 189–201. [Google Scholar] [CrossRef] [PubMed]
- Holec-Gasior, L.; Ferra, B.; Hiszczyńska-Sawicka, E.; Kur, J. The Optimal Mixture of Toxoplasma Gondii Recombinant Antigens (GRA1, P22, ROP1) for Diagnosis of Ovine Toxoplasmosis. Vet. Parasitol. 2014, 206, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Ferra, B.; Holec-Gasior, L.; Kur, J. Serodiagnosis of Toxoplasma Gondii Infection in Farm Animals (Horses, Swine, and Sheep) by Enzyme-Linked Immunosorbent Assay Using Chimeric Antigens. Parasitol. Int. 2015, 64, 288–294. [Google Scholar] [CrossRef]
- Ferra, B.; Holec-Gąsior, L.; Kur, J. A New Toxoplasma Gondii Chimeric Antigen Containing Fragments of SAG2, GRA1, and ROP1 Proteins—Impact of Immunodominant Sequences Size on Its Diagnostic Usefulness. Parasitol. Res. 2015, 114, 3291. [Google Scholar] [CrossRef]
- Holec-Ga̧sior, L.; Ferra, B.; Drapała, D. MIC1-MAG1-SAG1 Chimeric Protein, a Most Effective Antigen for Detection of Human Toxoplasmosis. Clin. Vaccine Immunol. 2012, 19, 1977. [Google Scholar] [CrossRef] [PubMed]
- Holec-Ga̧sior, L.; Ferra, B.; Drapała, D.; Lautenbach, D.; Kur, J. A New MIC1-MAG1 Recombinant Chimeric Antigen Can Be Used Instead of the Toxoplasma Gondii Lysate Antigen in Serodiagnosis of Human Toxoplasmosis. Clin. Vaccine Immunol. 2012, 19, 57–63. [Google Scholar] [CrossRef]
- Drapała, D.; Holec-Gasior, L.; Kur, J. New Recombinant Chimeric Antigens, P35-MAG1, MIC1-ROP1, and MAG1-ROP1, for the Serodiagnosis of Human Toxoplasmosis. Diagn. Microbiol. Infect. Dis. 2015, 82, 34–39. [Google Scholar] [CrossRef]
- Ferra, B.; Holec-Gąsior, L.; Gatkowska, J.; Dziadek, B.; Dzitko, K.; Grąźlewska, W.; Lautenbach, D. The First Study on the Usefulness of Recombinant Tetravalent Chimeric Proteins Containing Fragments of SAG2, GRA1, ROP1 and AMA1 Antigens in the Detection of Specific Anti-Toxoplasma Gondii Antibodies in Mouse and Human Sera. PLoS ONE 2019, 14, e0217866. [Google Scholar] [CrossRef] [PubMed]
- Holec-Gąsior, L.; Ferra, B.; Grąźlewska, W. Toxoplasma Gondii Tetravalent Chimeric Proteins as Novel Antigens for Detection of Specific Immunoglobulin G in Sera of Small Ruminants. Animals 2019, 9, 1146. [Google Scholar] [CrossRef] [PubMed]
- Velmurugan, G.V.; Tewari, A.K.; Rao, J.R.; Baidya, S.; Kumar, M.U.; Mishra, A.K. High-Level Expression of SAG1 and GRA7 Gene of Toxoplasma Gondii (Izatnagar Isolate) and Their Application in Serodiagnosis of Goat Toxoplasmosis. Vet. Parasitol. 2008, 154, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Tumurjav, B.; Terkawi, M.A.; Zhang, H.; Zhang, G.; Jia, H.; Goo, Y.-K.; Yamagishi, J.; Nishikawa, Y.; Igarashi, I.; Sugimoto, C.; et al. Serodiagnosis of Ovine Toxoplasmosis in Mongolia by an Enzyme-Linked Immunosorbent Assay with Recombinant Toxoplasma Gondii Matrix Antigen 1. Jpn. J. Vet. Res. 2010, 58, 111–119. [Google Scholar] [CrossRef]
- Singh, H.; Tewari, A.K.; Mishra, A.K.; Maharana, B.; Sudan, V.; Raina, O.K.; Rao, J.R. Detection of Antibodies to Toxoplasma Gondii in Domesticated Ruminants by Recombinant Truncated SAG2 Enzyme-Linked Immunosorbent Assay. Trop. Anim. Health Prod. 2015, 47, 171–178. [Google Scholar] [CrossRef]
- Zhou, M.; Cao, S.; Sevinc, F.; Sevinc, M.; Ceylan, O.; Liu, M.; Wang, G.; Moumouni, P.F.A.; Jirapattharasate, C.; Suzuki, H.; et al. Enzyme-Linked Immunosorbent Assays Using Recombinant TgSAG2 and NcSAG1 to detect Toxoplasma Gondii and Neospora Caninum-Specific in Domestic Animals in Turkey. J. Vet. Med. Sci. 2016, 78, 1877. [Google Scholar] [CrossRef] [PubMed]
- Fereig, R.M.; Mahmoud, H.Y.A.H.; Mohamed, S.G.A.; AbouLaila, M.R.; Abdel-Wahab, A.; Osman, S.A.; Zidan, S.A.; El-Khodary, S.A.; Mohamed, A.E.A.; Nishikawa, Y. Seroprevalence and Epidemiology of Toxoplasma Gondii in Farm Animals in Different Regions of Egypt. Vet. Parasitol. Reg. Stud. Rep. 2016, 3–4, 1–6. [Google Scholar] [CrossRef]
- Bachan, M.; Deb, A.R.; Maharana, B.R.; Sudhakar, N.R.; Sudan, V.; Saravanan, B.C.; Tewari, A.K. High Seroprevalence of Toxoplasma Gondii in Goats in Jharkhand State of India. Vet. Parasitol. Reg. Stud. Rep. 2018, 12, 61–68. [Google Scholar] [CrossRef]
- Jirapattharasate, C.; Udonsom, R.; Prachasuphap, A.; Jongpitisub, K.; Dhepakson, P. Development and Evaluation of Recombinant GRA8 Protein for the Serodiagnosis of Toxoplasma Gondii Infection in Goats. BMC Vet. Res. 2021, 17, 27. [Google Scholar] [CrossRef]
- Qi, T.; Ai, J.; Sun, Y.; Ma, H.; Kang, M.; You, X.; Li, J. Application of Toxoplasma Gondii-Specific SAG1, GRA7 and BAG1 Proteins in Serodiagnosis of Animal Toxoplasmosis. Front. Cell. Infect. Microbiol. 2022, 12, 1029768. [Google Scholar] [CrossRef] [PubMed]
- Buxton, D. Toxoplasmosis: The First Commercial Vaccine. Parasitol. Today 1993, 9, 335–337. [Google Scholar] [CrossRef] [PubMed]
- Buxton, D.; Thomson, K.M.; Maley, S.; Wright, S.; Bos, H.J. Experimental Challenge of Sheep 18 Months after Vaccination with a Live (S48) Toxoplasma Gondii Vaccine. Vet. Rec. 1993, 133, 310–312. [Google Scholar] [CrossRef]
- Kijlstra, A.; Jongert, E. Toxoplasma-Safe Meat: Close to Reality? Trends Parasitol. 2009, 25, 18–22. [Google Scholar] [CrossRef]
- Heiss, K.; Heidepriem, J.; Fischer, N.; Weber, L.K.; Dahlke, C.; Jaenisch, T.; Loeffler, F.F. Rapid Responseto Pandemic Threats: Immunogenic Epitope of Pandemic Pathogens for Diagnostics and Vaccine Development Peptide Microarrays. J. Proteome Res. 2020, 19, 4339. [Google Scholar] [CrossRef]
- Bai, Y.; He, S.; Zhao, G.; Chen, L.; Shi, N.; Zhou, H.; Cong, H.; Zhao, Q.; Zhu, X.Q. Toxoplasma Gondii: Bioinformatics Analysis, Cloning and Expression of a Novel Protein TgIMP1. Exp. Parasitol. 2012, 132, 458–464. [Google Scholar] [CrossRef] [PubMed]
- Nayeri, T.; Sarvi, S.; Moosazadeh, M.; Daryani, A. The Global Prevalence of Neospora Caninum Infection in Sheep and Goats That Had an Abortion and Aborted Fetuses: A Systematic Review and Meta-Analysis. Front. Vet. Sci. 2022, 9, 870904. [Google Scholar] [CrossRef]
Recombinant Antigen Used in Test | Serologic Test 1 | No. of Examined Sera | Results | Reference, Publication Year |
---|---|---|---|---|
H4 H11 | IgG ELISA | 26 (sheep) | Compared with an ELISA based on traditional parasite antigen, the ELISA for sheep sera had a sensitivity of 79% and 43% for H4 and H11 recombinant antigens, respectively, while the specificity was 100% for both proteins. | [110], 1992 |
H11 | IgG ELISA | 92 (sheep) | Compared with an ELISA based on traditional parasite antigen, the H11-ELISA for sheep sera had a sensitivity of 34% and the specificity was 89%. | [106], 2003 |
surface antigen 1—SAG1 granule dense antigen 7—GRA7 | IgG ELISA | 56 (goat) | The sensitivity of the SAG1-ELISA and GRA7-ELISA was 83.3%% and 80.0%, respectively, while the specificity was 88.4% for both tests. | [119], 2008 |
matrix antigen 1—MAG1 | IgG ELISA | 175 (sheep) | 24% of sheep serum samples were detected as positive for T. gondii-specific antibodies. Results of rTgMAG1-ELISA were compared to LAT test, and the same result was obtained for both LAT and ELISA for 27 (15.4%) sera. | [120], 2010 |
19 proteins: granule dense antigens—GRA1; GRA2ex2; GRA4; GRA5; GRA6; GRA9; surface antigens—SAG1; P22; SAG4; BSR4; rhoptry antigens—ROP1; ROP9; microneme antigens—MIC1ex2; MIC1ex34; MIC3; matrix antigen 1—MAG1; bradyzoite antigen 1—BAG1; lactate dehydrogenase—LDH1; LDH2 | IgG ELISA | 108 (sheep) | Preliminary evaluation of 19 single recombinant antigens in IgG ELISA with 2 positive and 2 negative serum samples. 8 antigens (GRA1, GRA9, SAG1, P22, SAG4, MIC1ex2, MIC3, and ROP1) were selected for further analysis with a pool of 108 serum samples. 3 antigens (GRA1, P22, ROP1) were selected with sensitivity (98.9–100%) and specificity (100%). | [111], 2014 |
surface antigen 2—SAG2 | IgG ELISA | 63 (goat) 60 (sheep) |
50% sheep serum samples and 41.26% goat samples were detected as positive for
T. gondii-specific antibodies. Compared to IFAT, the sensitivity of the rec-SAG2-ELISA was 82.1% and 81.3% for goats and sheep, respectively. Compared to IFAT, the specificity of the rec-SAG2-ELISA was 91.4% and 85.7% for goats and sheep, respectively. | [121], 2015 |
surface antigen 2—SAG2 | IgG ELISA | 249 (goat) 610 (sheep) | 20% sheep serum samples and 12.9% goat samples were detected as positive for T. gondii-specific antibodies. Serum samples were not tested by any commercial assay. | [122], 2016 |
granule dense antigen 7—GRA7 | IgG ELISA | 94 (goat) 111 (sheep) | 51.4% sheep serum samples and 39.4% goat samples were detected as positive for T. gondii-specific antibodies. Results of TgGRA7-ELISA were compared to LAT test, and the same result was obtained for both LAT and ELISA for 27 (28.7%) and 43 (38.7%) goat and sheep sera, respectively. | [123], 2016 |
surface antigen 1—SAG1 | IgG ELISA | 445 (sheep) |
42.5% sheep serum samples were detected as positive for
T. gondii
-specific antibodies. Compared to IFAT, the sensitivity and specificity of the rSAG1-ELISA were 92.7% and 90.7%, respectively. | [124], 2018 |
granule dense antigen 8—GRA8 | IgG ELISA | 306 (goat) | 15.40% of goat serum samples were positive for IgG T. gondii-specific antibodies. | [125], 2021 |
surface antigen 1—SAG1 granule dense antigen 7—GRA7 bradyzoite antigen 1—BAG1 | IgG ELISA IgM ELISA | 904 (Tibetan sheep) |
18%, 9.7% and 4.1% of sheep serum samples were detected as positive for IgG
T. gondii
-specific antibodies in rSAG1-ELISA, rGRA7-ELISA and rBAG1-ELISA, respectively. 1.4%, 0.7% and 1.2% of sheep serum samples were detected as positive for IgM T. gondii -specific antibodies in rSAG1-ELISA, rGRA7-ELISA and rBAG1-ELISA, respectively. | [126], 2022 |
Recombinant Antigens Used in Test | Serologic Test 1 | No. of Examined Sera | Results | Reference, Publication Year |
---|---|---|---|---|
Mixture: SAG1 + GRA7 | IgG ELISA | 56 (goat) | The sensitivity and specificity of the IgG ELISA were 88.6% and 88.4%, respectively. | [119], 2008 |
Mixtures: M1: GRA1 + ROP1; M2: GRA1 + P22; M3: P22 + ROP1; M4: GRA1 + P22 + ROP1 | IgG ELISA | 236 (sheep) | Mixtures were initially tested with a pool of 108 serum samples. The sensitivity of all IgG ELISAs was equal to 100%, while the specificity was varied and was 100% for M1-ELISA and M4-ELISA and 95% for M2-ELISA and M3-ELISA. The M4 mixture showed the highest reactivity and was tested with a new pool of 128 sera. 100% sheep serum samples were detected as positive for T. gondii-specific antibodies. The specificity of M4-ELISA was also 100%. | [111], 2014 |
Mixtures: M1: SAG1 + MIC1 + MAG1; M2: SAG2 + GRA1 + ROP1; M3: GRA1 + GRA2 + GRA6 | IgG ELISA | 191 (sheep) | The sensitivity of M1-ELISA, M2-ELISA and M3-ELISA was 77.9%, 100% and 92.1%, respectively. The specificity of M1-ELISA, M2-ELISA and M3-ELISA was 92.2%, 100% and 100%, respectively. | [112], 2015 |
Chimeric proteins: MIC1-MAG1-SAG1S; SAG1L-MIC1-MAG1; SAG2-GRA1-ROP1S; SAG2-GRA1-ROP1L; GRA1-GRA2-GRA6 | IgG ELISA | 191 (sheep) | The specificity of all IgG ELISAs was equal to 100%. The sensitivity of three IgG ELISAs with the use of SAG1L-MIC1-MAG1, SAG2-GRA1-ROP1S, SAG2-GRA1-ROP1 was 100%, while the sensitivity of two IgG ELISAs based on MIC1-MAG1-SAG1S and GRA1-GRA2-GRA6 was 97.9% and 92.1%, respectively. | [112], 2015 |
Chimeric proteins: AMA1N-SAG2-GRA1-ROP1; AMA1C-SAG2-GRA1-ROP1; AMA1-SAG2-GRA1-ROP1; SAG2-GRA1-ROP1-GRA2 | IgG ELISA | 86 (goat) 90 (sheep) | The sensitivity of the IgG ELISA based on AMA1N-SAG2-GRA1-ROP1 was 88.9% and 97.9% for goats and sheep, respectively. The sensitivity of the IgG ELISA based on AMA1C-SAG2-GRA1-ROP1 was 95.6% and 95.8% for goats and sheep, respectively. The sensitivity of the IgG ELISA based on AMA1-SAG2-GRA1-ROP1was 95.6% and 97.9% for goats and sheep, respectively. The sensitivity of the IgG ELISA based on SAG2-GRA1-ROP1-GRA2 was 57.8% and 97.9% for goats and sheep, respectively. The specificity of all IgG ELISA tests varied from 95.1% to 100%. | [118], 2019 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holec-Gąsior, L.; Sołowińska, K. Detection of Toxoplasma gondii Infection in Small Ruminants: Old Problems, and Current Solutions. Animals 2023, 13, 2696. https://doi.org/10.3390/ani13172696
Holec-Gąsior L, Sołowińska K. Detection of Toxoplasma gondii Infection in Small Ruminants: Old Problems, and Current Solutions. Animals. 2023; 13(17):2696. https://doi.org/10.3390/ani13172696
Chicago/Turabian StyleHolec-Gąsior, Lucyna, and Karolina Sołowińska. 2023. "Detection of Toxoplasma gondii Infection in Small Ruminants: Old Problems, and Current Solutions" Animals 13, no. 17: 2696. https://doi.org/10.3390/ani13172696
APA StyleHolec-Gąsior, L., & Sołowińska, K. (2023). Detection of Toxoplasma gondii Infection in Small Ruminants: Old Problems, and Current Solutions. Animals, 13(17), 2696. https://doi.org/10.3390/ani13172696