Partial Replacement of Fishmeal with Poultry By-Product Meal in Diets for Coho Salmon (Oncorhynchus kisutch) Post-Smolts
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Ingredients and Diets
2.2. Fish and Feeding Management
2.3. Sample Collections
2.4. Analytical Methods
2.4.1. Composition Analysis
2.4.2. Biochemical Tissue Analysis
2.5. Calculation Methods
2.6. Statistics Analysis
3. Results
3.1. Growth Performance and Diet Utilization
3.2. Muscle Composition and EAA Profile
3.3. Serum Biochemical Parameters
3.4. Hepatic MDA Content and Liver Anti-oxidative Enzyme Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bulbul, M.; Koshio, S.; Ishikawa, M.; Yokoyama, S.; Kader, M.A. Growth performance of juvenile kuruma shrimp, Marsupenaeus japonicus (Bate) fed diets replacing fishmeal with soybean meal. Aquac. Res. 2013, 46, 572–580. [Google Scholar] [CrossRef]
- Maiolo, S.; Parisi, G.; Biondi, N.; Lunelli, F.; Tibaldi, E.; Pastres, R. Fishmeal partial substitution within aquafeed formulations: Life cycle assessment of four alternative protein sources. Int. J. Life Cycle Assess 2020, 25, 1455–1471. [Google Scholar] [CrossRef]
- Burr, G.S.; Wolters, W.R.; Barrows, F.T.; Donkin, A.W. Evaluation of a canola protein concentrate as a replacement for fishmeal and poultry by-product meal in a commercial production diet for Atlantic salmon (Salmo salar). Int. Aquat. Res. 2013, 5, 5. [Google Scholar] [CrossRef]
- Chaklader, M.R.; Chung, W.H.; Howieson, J.; Fotedar, R. A combination of Hermetia illucens reared on fish waste and poultry by-product meal improves sensory and physicochemical quality of farmed barramundi fillets. Fron. Nutr. 2022, 8, 788064. [Google Scholar] [CrossRef]
- Debnath, D.; Pal, A.K.; Sahu, N.P.; Yengkokpam, S.; Baruah, K.; Choudhury, D.; Venkateshwarlu, G. Digestive enzymes and metabolic profile of Labeo rohita fingerlings fed diets with different crude protein levels. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2007, 146, 107–114. [Google Scholar] [CrossRef]
- Galkanda-Arachchige, H.S.; Wilson, A.E.; Davis, D.A. Success of fishmeal replacement through poultry by-product meal in aquaculture feed formulations: A meta-analysis. Rev. Aquacul. 2020, 12, 1624–1636. [Google Scholar] [CrossRef]
- Torrecillas, S.; Mompel, D.; Caballero, M.J.; Montero, D.; Merrifield, D.; Rodiles, A.; Robaina, L.; Zamorano, M.J.; Karalazos, V.; Izquierdo, M. Effect of fishmeal and fish oil replacement by vegetable meals and oils on gut health of European sea bass (Dicentrarchus labrax). Aquaculture 2017, 468, 386–398. [Google Scholar] [CrossRef]
- Xu, D.D.; He, G.; Mai, K.S.; Zhou, H.H.; Xu, W.; Song, F. Postprandial nutrient-sensing and metabolic responses after partial dietary fishmeal replacement by soyabean meal in turbot (Scophthalmus maximus L.). Br. J. Nutr. 2016, 115, 379–388. [Google Scholar] [CrossRef]
- Zhou, Z.Y.; Yao, W.; Ye, B.; Wu, X.Y.; Li, X.J.; Dong, Y. Effects of replacing fishmeal protein with poultry by-product meal protein and soybean meal protein on growth, feed intake, feed utilization, gut and liver histology of hybrid grouper (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂) juveniles. Aquaculture 2020, 516, 734503. [Google Scholar] [CrossRef]
- Giri, S.S.; Sahoo, S.K.; Mohanty, S.N. Replacement of by-catch fishmeal with dried chicken viscera meal in extruded feeds: Effect on growth, nutrient utilization and carcass composition of catfish Clarias batrachus (Linn.) fingerlings. Aquacult. Int. 2010, 18, 539–544. [Google Scholar] [CrossRef]
- Hekmatpour, F.; Kochanian, P.; Marammazi, J.G.; Zakeri, M.; Mousavi, S.M. Inclusion of poultry by-product meal in the diet of Sparidentex hasta: Effects on production performance, digestibility and nutrient retention. Anim. Feed Sci. Technol. 2018, 241, 173–183. [Google Scholar] [CrossRef]
- Rojas, O.J.; Stein, H.H. Concentration of digestible and metabolizable energy and digestibility of amino acids in chicken meal, poultry byproduct meal, hydrolyzed porcine intestines, a spent hen-soybean meal mixture, and conventional soybean meal fed to weanling pigs. J. Anim. Sci. 2013, 91, 3220–3230. [Google Scholar] [CrossRef]
- Abdel-Warith, A.A.; Russell, P.M.; Davies, S.J. Inclusion of a commercial poultry by-product meal as a protein replacement of fish meal in practical diets for African catfish Clarias gariepinus (Burchell 1822). Aquac. Res. 2001, 32, 296–305. [Google Scholar] [CrossRef]
- Donadelli, R.A.; Aguilar, F.A.A.; Sonoda, D.Y.; Cyrino, J.E.P. Poultry by-product meal as dietary protein source for dourado, Salminus brasiliensis: An economic appraisal. Sci. Agric. 2019, 76, 190–197. [Google Scholar] [CrossRef]
- Rossi, W.; Davis, D. Replacement of fishmeal with poultry by-product meal in the diet of Florida pompano Trachinotus carolinus L. Aquaculture 2012, 338–341, 160–166. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, X.Z.; Wang, F.; Wu, Y.B.; Qin, J.G.; Li, P. Supplementations of poultry by-product meal and selenium yeast increase fish meal replacement by soybean meal in golden pompano (Trachinotus ovatus) diet. Aquac. Res. 2017, 48, 1904–1914. [Google Scholar] [CrossRef]
- Shapawi, R.; Ng, W.K.; Mustafa, S. Replacement of fish meal with poultry by-product meal in diets formulated for the humpback grouper, Cromileptes altivelis. Aquaculture 2007, 273, 118–126. [Google Scholar] [CrossRef]
- Samocha, T.M.; Davis, D.A.; Saoud, I.P.; DeBault, K. Substitution of fish meal by co-extruded soybean poultry by-product meal in practical diets for the Pacific white shrimp, Litopenaeus vannamei. Aquaculture 2004, 231, 197–203. [Google Scholar] [CrossRef]
- Jiang, X.R.; Yao, W.X.; Yang, H.; Tan, S.M.; Leng, X.J.; Li, X.Q. Dietary effects of Clostridium autoethanogenum protein substituting fish meal on growth, intestinal histology and immunity of Pacific white shrimp (Litopenaeus vannamei) based on transcriptome analysis. Fish Shellfish Immunol. 2021, 119, 635–644. [Google Scholar] [CrossRef]
- Rostamian, N.; Eagderi, S.; Masoudi, E.; Asadian, N.; Salar, I. Complete replacement of fish meal with poultry by-product in diet formulated for rainbow trout (Oncorhynchus mykiss). Anim. Biol. Anim. Husb. 2016, 8, 34. [Google Scholar]
- Steffens, W. Replacing fish meal with poultry by-product meal in diets for rainbow trout, Oncorhynchus mykiss. Aquaculture 1994, 124, 27–34. [Google Scholar] [CrossRef]
- Kureshy, N.; Davis, D.A.; Arnold, C.R. Partial replacement of fish meal with meat-and-bone meal, flash-dried poultry by-product meal, and enzyme-digested poultry by-product meal in practical diets for juvenile red drum. N. Am. J. Aquacult. 2000, 62, 266–272. [Google Scholar] [CrossRef]
- El-Sayed, A. Evaluation of soybean meal, spirulina meal and chicken offal meal as protein sources for silver seabream (Rhabdosargus sarba) fingerlings. Aquaculture 1994, 127, 169–176. [Google Scholar] [CrossRef]
- Hekmatpour, F.; Kochanian, P.; Ghafle, M.J.; Zakeri, M.; Mousavi, S.M. Potential of poultry by-product meal as a main protein source in diets formulated for juvenile sobaity (Sparidentex hasta). Iran J. Fish. Sci. 2019, 18, 873–890. [Google Scholar]
- Appelbaum, S.; Birkan, V.; Prilutzky, A. Use of chicken meal as a substitute for fish meal in the diet of young eels. Ghana J. Agric. Sci. 1996, 4, 141–145. [Google Scholar] [CrossRef]
- Bįlgüven, M. Possibilities of using poultry by-product meal instead of fish meal as an alternative protein source in rainbow trout (Oncorhynchus mykiss, W.) feeds: Growth performance and unit production cost. J. Agric. Fac. Gaziosmanpaşa Univ. (JAFAG) 2022, 39, 65–70. [Google Scholar] [CrossRef]
- Chaklader, M.R.; Fotedar, R.; Howieson, J.; Siddik, M.A.B.; Foysal, M.J. The ameliorative effects of various fish protein hydrolysates in poultry by-product meal based diets on muscle quality, serum biochemistry and immunity in juvenile barramundi, Lates calcarifer. Fish Shellfish Immunol. 2020, 104, 567–578. [Google Scholar] [CrossRef]
- Chaklader, M.R.; Siddik, M.A.B.; Fotedar, R. Total replacement of fishmeal with poultry by-product meal affected the growth, muscle quality, histological structure, antioxidant capacity and immune response of juvenile barramundi, Lates calcarifer. PLoS ONE 2020, 15, e0242079. [Google Scholar] [CrossRef]
- Hong, Y.C.; Chu, J.H.; Kirby, R.; Sheen, S.S.; Chien, A. The effects of replacing fish meal protein with a mixture of poultry by-product meal and fermented soybean meal on the growth performance and tissue nutritional composition of Asian seabass (Lates calcarifer). Aquac. Res. 2021, 52, 4105–4115. [Google Scholar] [CrossRef]
- Parlapani, F.F.; Boziaris, I.S.; Meziti, A.; Michailidou, S.; Haroutounian, S.A.; Argiriou, A.; Karapanagiotidis, I.T. Microbiological status based on 454-pyrosequencing and volatilome analysis of gilthead seabream (Sparus aurata) fed on diets with hydrolyzed feather meal and poultry by-product meal as fishmeal replacers. Eur. Food Res. Technol. 2019, 245, 1409–1420. [Google Scholar] [CrossRef]
- Psofakis, P.; Meziti, A.; Berillis, P.; Mente, E.; Kormas, K.A.; Karapanagiotidis, I.T. Effects of dietary fishmeal replacement by poultry by-product meal and hydrolyzed feather meal on liver and intestinal histomorphology and on intestinal microbiota of gilthead seabream (Sparus aurata). Appl. Sci. 2021, 11, 8806. [Google Scholar] [CrossRef]
- Ridwanudin, A.; Sheen, S.S. Evaluation of dietary fish silage combined with poultry by-product meal or soybean meal to replace fish meal for orange-spotted grouper Epinephelus coioides. J. Fish Soc. Taiwan 2014, 41, 287–297. [Google Scholar]
- Øverland, M.; Sørensen, M.; Storebakken, T.; Penn, M.; Krogdahl, Å.; Skrede, A. Pea protein concentrate substituting fish meal or soybean meal in diets for Atlantic salmon (Salmo salar)-Effect on growth performance, nutrient digestibility, carcass composition, gut health, and physical feed quality. Aquaculture 2009, 288, 305–311. [Google Scholar] [CrossRef]
- Mahnken, C.V.W.; Spinelli, J.; Waknitz, F.W. Evaluation of an alkane yeast (Candida sp.) as a substitute for fish meal in oregon moist pellet: Feeding trials with coho salmon (Oncorhynchus kisutch) and rainbow trout (Salmo gairdneri). Aquaculture 1980, 20, 41–56. [Google Scholar] [CrossRef]
- Twibell, R.G.; Gannam, A.L.; Hyde, N.M.; Holmes, J.S.A.; Poole, J.B. Effects of fish meal- and fish oil-free diets on growth responses and fatty acid composition of juvenile coho salmon (Oncorhynchus kisutch). Aquaculture 2012, 360, 69–77. [Google Scholar] [CrossRef]
- AOAC (Association of Official Analytical Chemists). Official Methods of Analysis of Official Analytical Chemists International, 16th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2005. [Google Scholar] [CrossRef]
- Reitman, S.; Frankel, S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am. J. Clin. Pathol. 1957, 28, 56–63. [Google Scholar] [CrossRef]
- Hardisari, R.; Koiriyah, B. Gambaran kadar Trigliserida (Metode Gpo-Pap) pada sampel serum dan plasma EDTA. J. Teknol. Lab. 2016, 5, 27–31. [Google Scholar]
- Grant, G.H.; Silverman, L.M.; Christenson, R.H. Amino acids and proteins. In Fundamentals of Clinical Chemistry; Tietz, N.Z., Ed.; WB Saunders: Philadelphia, PA, USA, 1987; pp. 291–345. [Google Scholar]
- Doumas, B.T.; Watson, W.A.; Biggs, H.G. Albumin standards and the measurement of serum albumin with bromcresol green. Clin. Chim. Acta 1971, 31, 87–96. [Google Scholar] [CrossRef]
- Ayhanci, A.; Günes, S.; Sahinturk, V.; Appak, S.; Uyar, R.; Cengiz, M.; Altuner, Y.; Yaman, S. Seleno L-methionine acts on cyclophosphamide-induced kidney toxicity. Biol. Trace Elem. Res. 2010, 136, 171–179. [Google Scholar] [CrossRef]
- Kosik-Bogacka, D.I.; Baranowska-Bosiacka, I.; Noceń, I.; Jakubowska, K.; Chlubek, D. Hymenolepis diminuta: Activity of antioxidant enzymes in different parts of rat gastrointestinal tract. Exp. Parasitol. 2011, 128, 265–271. [Google Scholar] [CrossRef]
- Kader, M.; Koshio, S.; Ishikawa, M.; Yokoyama, S.; Bulbul, M.; Honda, Y.; Mamauag, R.E.; Laining, A. Growth, nutrient utilization, oxidative condition, and element composition of juvenile red sea bream Pagrus major fed with fermented soybean meal and scallop by-product blend as fishmeal replacement. Fish. Sci. 2011, 77, 119–128. [Google Scholar] [CrossRef]
- Ma, X.Z.; Wang, F.; Han, H.; Wang, Y.; Lin, Y.Y. Replacement of dietary fish meal with poultry by-product meal and soybean meal for golden pompano, Trachinotus ovatus, reared in net pens. J. World Aquacult. Soc. 2014, 45, 662–671. [Google Scholar] [CrossRef]
- Hekmatpour, F.; Kochanian, P.; Marammazi, J.G.; Zakeri, M.; Mousavi, S.M. Changes in serum biochemical parameters and digestive enzyme activity of juvenile sobaity sea bream (Sparidentex hasta) in response to partial replacement of dietary fish meal with poultry by-product meal. Fish Physiol. Biochem. 2019, 45, 599–611. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Xie, S.Q.; Cui, Y.B.; Zhu, X.M.; Lei, W.; Yang, Y.X. Partial and total replacement of fishmeal with poultry by-product meal in diets for gibel carp, Carassius auratus gibelio Bloch. Aquac. Res. 2006, 37, 40–48. [Google Scholar] [CrossRef]
- Amirkolaie, K.A.; Shahsavari, M.; Hedayatyfard, M. Full replacement of fishmeal by poultry by–product meal in rainbow trout, Oncorhynchus mykiss (Walbaum, 1972) diet. Iran. J. Fish. Sci. 2014, 13, 1069–1081. Available online: http://hdl.handle.net/1834/11816 (accessed on 16 June 2023).
- Abdul-Halim, H.H.; Aliyu-Paiko, M.; Hashim, R. Partial replacement of fish meal with poultry by-product meal in diets for snakehead, Channa striata (Bloch, 1793), fingerlings. J. World Aquacult. Soc. 2014, 45, 233–241. [Google Scholar] [CrossRef]
- Wang, Z.; Qian, X.Q.; Xie, S.Q.; Yun, B. Changes of growth performance and plasma biochemical parameters of hybrid grouper (Epinephelus lanceolatus ♂ × Epinephelus fuscoguttatus ♀) in response to substitution of dietary fishmeal with poultry by-product meal. Aquac. Rep. 2020, 18, 100516. [Google Scholar] [CrossRef]
- Hill, J.C.; Alam, M.S.; Watanabe, W.O.; Carroll, P.M.; Bourdelais, A.J. Replacement of menhaden fish meal by poultry by product meal in the diet of juvenile red porgy, Pagrus pagrus. N. Am. J. Aquacult. 2019, 81, 81–93. [Google Scholar] [CrossRef]
- Webster, C.D.; Thompson, K.R.; Morgan, A.M.; Grisby, E.J.; Gannam, A.L. Use of hempseed meal, poultry by-product meal, and canola meal in practical diets without fish meal for sunshine bass (Morone chrysops × M. saxatilis). Aquaculture 2000, 188, 299–309. [Google Scholar] [CrossRef]
- Sabbagh, M.; Schiavone, R.; Brizzi, G.; Sicuro, B.; Vilella, S. Poultry by-product meal as an alternative to fish meal in the juvenile gilthead seabream (Sparus aurata) diet. Aquaculture 2019, 511, 734220. [Google Scholar] [CrossRef]
- Yang, Y.; Xie, S.Q.; Cui, Y.B.; Lei, W.; Zhu, X.M.; Yu, Y. Effect of replacement of dietary fish meal by meat and bone meal and poultry by-product meal on growth and feed utilization of gibel carp, Carassius auratus gibelio. Aquacult. Nutr. 2004, 10, 289–294. [Google Scholar] [CrossRef]
- Cruz-Suárez, L.E.; Nieto-López, M.; Guajardo-Barbosa, C.; Tapia-Salazar, M.; Scholz, U.; Ricque-Marie, D. Replacement of fish meal with poultry by-product meal in practical diets for Litopenaeus vannamei, and digestibility of the tested ingredients and diets. Aquaculture 2007, 272, 466–476. [Google Scholar] [CrossRef]
- Dong, F.M.; Hardy, R.W.; Haard, N.F.; Barrows, F.T.; Rasco, B.A.; Fairgrieve, W.T.; Forster, I.P. Chemical composition and protein digestibility of poultry by-product meals for salmonid diets. Aquaculture 1993, 116, 149–158. [Google Scholar] [CrossRef]
- Dawood, M.A.O.; Magouz, F.I.; Mansour, M.; Saleh, A.A.; Asely, A.M.E.; Fadl, S.E.; Ahmed, H.A.; Al-Ghanim, K.A.; Mahboob, S.; Al-Misned, F. Evaluation of yeast fermented poultry by-product meal in Nile tilapia (Oreochromis niloticus) feed: Effects on growth performance, digestive enzymes activity, innate immunity, and antioxidant capacity. Front. Vet. Sci. 2020, 6, 516. [Google Scholar] [CrossRef]
- Luo, J.X.; Huang, W.W.; Yuan, Y.; Li, C.C.; Zhu, T.; Zhou, Q. Effects of fish meal replacement with poultry by-product meal on growth performance, feed utilization, digestive enzyme activities and antioxidant capacity of juvenile yellow catfish (Pelteobagrus fulvidraco). Chin. J. Anim. Nutr. 2017, 29, 3970–3979. [Google Scholar]
- Barnes, M.E.; Brown, M.L.; Bruce, T.; Sindelar, S.; Neiger, R. Rainbow trout rearing performance, intestinal morphology, and immune response after long-term feeding of high levels of fermented soybean meal. Aquaculture 2014, 76, 333–345. [Google Scholar] [CrossRef]
- Dou, B.S.; Liang, M.Q.; Zheng, K.K.; Chen, Z.; Wang, X.X. Effects of dietary carbohydrate level on growth, physiology and body composition of Japanese seabass Lateolabrax japonicus. Prog. Fish. Sci. 2014, 35, 46–54. [Google Scholar]
- Kim, J.D.; Lall, S.P. Effects of dietary protein level on growth and utilization of protein and energy by juvenile haddock (Melanogrammus aeglefinus). Aquaculture 2001, 195, 311–319. [Google Scholar] [CrossRef]
- Rasmussen, R.S. Quality of farmed salmonids with emphasis on proximate composition, yield and sensory characteristics. Aquac. Res. 2001, 32, 767–786. [Google Scholar] [CrossRef]
- Palupi, E.T.; Setiawati, M.; Lumlertdacha, S.; Suprayudi, M.A. Growth performance, digestibility, and blood biochemical parameters of Nile tilapia (Oreochromis niloticus) reared in floating cages and fed poultry by-product meal. J. Appl. Aquac. 2019, 32, 16–33. [Google Scholar] [CrossRef]
- Karapanagiotidis, I.T.; Psofakis, P.; Mente, E.; Malandrakis, E.; Golomazou, E. Effect of fishmeal replacement by poultry by-product meal on growth performance, proximate composition, digestive enzyme activity, haematological parameters and gene expression of gilthead seabream (Sparus aurata). Aquacult. Nutr. 2019, 25, 3–14. [Google Scholar] [CrossRef]
- Panicz, R.; Żochowska-Kujawska, J.; Sadowski, J.; Sobczak, M. Effect of feeding various levels of poultry by-product meal on the blood parameters, filet composition and structure of female tenches (Tinca tinca). Aquac. Res. 2017, 48, 5373–5384. [Google Scholar] [CrossRef]
- Hernández, C.; Sánchez-Gutiérrez, Y.; Hardy, R.W.; Benitez-Hernández, A.; Domínguez-Jimenez, P.; González-Rodríguez, B.; Osuna-Osuna, L.; Tortoledo, O. The potential of pet-grade poultry by-product meal to replace fish meal in the diet of the juvenile spotted rose snapper Lutjanus guttatus (Steindachner, 1869). Aquacult. Nutr. 2014, 20, 623–631. [Google Scholar] [CrossRef]
- Sugita, T.; Gavile, A.; Gavile, B.; Sumbing, J.G. Efficacy of poultry by-product meal as an effective alternative to fish meal in aquaculture feed for milkfish Chanos chanos. JPN Agric. Res. Q. 2020, 54, 277–284. [Google Scholar] [CrossRef]
- Moloudinia, B.; Noverian, H.A.; Sajjadi, M.; Pajand, Z.; Hassani, H.S. Replacement of fish meal with poultry by-product meal and its effects on growth and body composition of juvenile Siberian sturgeon, Acipenser baerii (Brandt, 1869). J. Aquat. Ecol. 2019, 8, 73–83. [Google Scholar]
- Hassani, M.H.S.; Banavreh, A.; Jourdehi, A.Y.; Mohseni, M.; Shokri, M.M.; Rastekenari, H.Y. The feasibility of partial replacement fish meal with poultry by-products in practical diets of juvenile great sturgeon, Huso huso: Effects on growth performance, body composition, physiometabolic indices, digestibility and digestive enzymes. Aquac. Res. 2021, 52, 3605–3616. [Google Scholar] [CrossRef]
- Cunnane, S.C.; Crawford, M.A. Survival of the fattest: Fat babies were the key to evolution of the large human brain. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2003, 136, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Irm, M.; Taj, S.; Jin, M.; Luo, J.; Andriamialinirina, H.J.T.; Zhou, Q.C. Effects of replacement of fish meal by poultry by-product meal on growth performance and gene expression involved in protein metabolism for juvenile black sea bream (Acanthoparus schlegelii). Aquaculture 2020, 528, 735544. [Google Scholar] [CrossRef]
- Esmaeili, M. Blood performance: A new formula for fish growth and health. Biology 2021, 10, 1236. [Google Scholar] [CrossRef]
- Mirghaed, A.T.; Ghelichpour, M.; Mirzargar, S.S.; Joshaghani, H.; Mousavi, H.E. Toxic effects of indoxacarb on gill and kidney histopathology and biochemical indicators in common carp (Cyprinus carpio). Aquac. Res. 2018, 49, 1616–1627. [Google Scholar] [CrossRef]
- Soltanzadeh, S.; Fereidouni, A.E.; Ouraji, H.; Jani-Khalili, K. Growth performance, body composition, hematological, and serum biochemical responses of beluga (Huso huso) juveniles to different dietary inclusion levels of faba bean (Vicia faba) meal. Aquacult. Int. 2016, 24, 395–413. [Google Scholar] [CrossRef]
- Endo, H.; Maita, M.; Takikawa, M.; Ren, H.; Mitsubayashi, K. Enzyme sensor system for determination of total cholesterol in fish plasma. Fish. Sci. 2003, 69, 1194–1199. [Google Scholar] [CrossRef]
- Pham, H.D.; Siddik, M.A.B.; Phan, U.V.; Le, H.M.; Rahman, M.A. Enzymatic tuna hydrolysate supplementation modulates growth, nutrient utilisation and physiological response of pompano (Trachinotus blochii) fed high poultry-by product meal diets. Aquac. Rep. 2021, 21, 100875. [Google Scholar] [CrossRef]
- Siddik, M.A.B.; Chungu, P.; Fotedar, R.; Howieson, J. Bioprocessed poultry by-product meals on growth, gut health and fatty acid synthesis of juvenile barramundi, Lates calcarifer (Bloch). PLoS ONE 2019, 14, e0215025. [Google Scholar] [CrossRef]
- Rio, D.D.; Stewart, A.J.; Pellegrini, N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr., Metab. Cardiovasc. Dis. NMCD 2005, 15, 316–328. [Google Scholar] [CrossRef] [PubMed]
- Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell Longev. 2014, 360–438. [Google Scholar] [CrossRef] [PubMed]
- Tehrani, H.S.; Moosavi-Movahedi, A.A. Catalase and its mysteries. Prog. Biophys. Mol. Bio. 2018, 140, 5–12. [Google Scholar] [CrossRef]
- Oyarzún, R.; Martínez, D.; Soto-Dávila, M.; Muñoz, J.L.P.; Dantagnan, P.; Vargas-Chacoff, L. Effect of ration level on growth performance, body composition, intermediary metabolism and serum parameters in juvenile Patagonian blennie Eleginops maclovinus. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2019, 230, 122–130. [Google Scholar] [CrossRef]
- Wang, Y.; Branicky, R.; Noë, A.; Hekimi, S. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. J. Cell Biol. 2018, 217, 1915–1928. [Google Scholar] [CrossRef]
- Zhou, Q.C.; Zhao, J.; Li, P.; Wang, H.L.; Wang, L.G. Evaluation of poultry by-product meal in commercial diets for juvenile cobia (Rachycentron canadum). Aquaculture 2011, 322–323, 122–127. [Google Scholar] [CrossRef]
Ingredients | Fish Meal | Poultry by-Product Meal |
---|---|---|
Proximate composition and pepsin in vitro protein digestibility | ||
Moisture (%) | 8.27 | 5.52 |
Crude protein (%) | 70.21 | 66.52 |
Crude lipid (%) | 11.55 | 13.63 |
Ash (%) | 17.08 | 12.57 |
Gross energy (MJ/kg) | 21.80 | 22.87 |
Pepsin in vitro digestibility (%) | 84.03 | 92.41 |
EAA profile (g/kg crude protein) | ||
Arginine | 64.73 | 56.28 |
Histidine | 26.79 | 23.73 |
Isoleucine | 50.84 | 41.97 |
Leucine | 70.43 | 57.12 |
Lysine | 80.96 | 63.72 |
Methionine | 29.94 | 23.97 |
Phenylalanine | 53.76 | 42.39 |
Threonine | 39.85 | 36.51 |
Valine | 51.03 | 45.45 |
Cystine | 8.30 | 9.66 |
Tyrosine | 40.52 | 37.96 |
Ingredients | Diets (Designated Percentage of PBPM Replacement Levels) | ||||
---|---|---|---|---|---|
PBPM0 (Control) | PBPM10 | PBPM20 | PBPM40 | PBPM60 | |
Peru fish meal | 40.00 | 36.00 | 32.00 | 24.00 | 16.00 |
Poultry by-product meal | 0.00 | 4.20 | 8.40 | 16.80 | 25.20 |
Antarctic krill meal 1 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 |
Soybean meal 1 | 15.00 | 15.00 | 15.00 | 15.00 | 15.00 |
Corn gluten meal 1 | 6.00 | 6.00 | 6.00 | 6.00 | 6.00 |
High-gluten wheat flour 1 | 16.25 | 16.25 | 16.25 | 16.25 | 16.25 |
α-starch 1 | 2.50 | 2.50 | 2.50 | 2.50 | 2.50 |
Soybean lecithin 1 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Soybean oil 1 | 4.00 | 3.92 | 3.84 | 3.68 | 3.52 |
Fish oil 1 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 |
Mono-calcium phosphate 1 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Mineral premix 2 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Vitamin premix 3 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Choline chloride | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 |
Ascorbic acid phosphate (35%) | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 |
α-cellulose | 0.72 | 0.60 | 0.48 | 0.24 | 0.00 |
Ethoxyquin (60%) | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 |
Proximate composition | |||||
Dry matter | 89.14 | 90.04 | 88.95 | 91.23 | 90.35 |
Crude protein | 46.95 | 46.76 | 46.41 | 46.10 | 46.43 |
Crude lipid | 15.15 | 15.55 | 15.25 | 15.36 | 15.75 |
Ash | 9.81 | 9.66 | 9.47 | 8.93 | 8.56 |
Gross energy (MJ/kg) | 18.71 | 18.77 | 18.63 | 18.47 | 18.49 |
EAAs 1 | Diets (Designated Percentage of PBPM Replacement Levels) | ||||
---|---|---|---|---|---|
PBPM0 (Control) | PBPM10 | PBPM20 | PBPM40 | PBPM60 | |
Arginine | 62.27 | 62.05 | 61.82 | 61.46 | 61.08 |
Histidine | 24.07 | 23.98 | 23.85 | 23.63 | 23.45 |
Isoleucine | 49.72 | 49.60 | 49.45 | 49.07 | 48.69 |
Leucine | 82.66 | 82.43 | 82.17 | 81.79 | 81.36 |
Lysine | 68.92 | 68.51 | 68.25 | 67.56 | 67.03 |
Methionine | 28.70 | 28.48 | 28.17 | 27.87 | 27.51 |
Phenylalanine | 54.63 | 54.47 | 54.25 | 53.94 | 53.57 |
Threonine | 46.67 | 46.54 | 46.44 | 46.29 | 46.02 |
Valine | 50.08 | 49.91 | 49.76 | 49.55 | 49.26 |
Cystine | 9.44 | 9.47 | 9.52 | 9.68 | 9.87 |
Tyrosine | 39.33 | 39.18 | 38.91 | 38.87 | 38.79 |
Parameters | Diets (Designated Percentage of PBPM Replacement Levels) | ||||
---|---|---|---|---|---|
PBPM0 (Control) | PBPM10 | PBPM20 | PBPM40 | PBPM60 | |
SR (%) | 96.67 ± 0.57 | 100 ± 0.00 | 100 ± 0.00 | 96.67 ± 0.58 | 96.67 ± 0.58 |
IBW (g) | 180.62 ± 1.47 | 179.09 ± 0.92 | 179.73 ± 1.15 | 180.21 ± 1.87 | 181.02 ± 1.19 |
FBW (g) | 550.49 ± 5.07 b | 545.02 ± 3.51 b | 540.15 ± 3.29 b | 525.74 ± 2.93 a | 514.75 ± 4.73 a |
SGR (%/day) | 1.33 ± 0.01 b | 1.32 ± 0.01 b | 1.31 ± 0.01 b | 1.27 ± 0.01 a | 1.24 ± 0.01 a |
FCR | 1.56 ± 0.03 a | 1.59 ± 0.01 a | 1.58 ± 0.01 a | 1.78 ± 0.02 b | 1.79 ± 0.03 b |
PER | 1.29 ± 0.02 b | 1.28 ± 0.01 b | 1.28 ± 0.01 b | 1.21 ± 0.03 a | 1.18 ± 0.03 a |
CF (g/cm3) | 1.67 ± 0.07 | 1.68 ± 0.05 | 1.60 ± 0.04 | 1.65 ± 0.02 | 1.64 ± 0.05 |
HSI (%) | 1.01 ± 0.03 | 1.07 ± 0.04 | 1.06 ± 0.03 | 0.97 ± 0.03 | 0.99 ± 0.03 |
VSI (%) | 7.72 ± 0.23 | 7.32 ± 0.46 | 7.30 ± 0.35 | 7.43 ± 0.53 | 8.00 ± 0.32 |
Parameters | Diets (Designated Percentage of PBPM Replacement Levels) | ||||
---|---|---|---|---|---|
PBPM0 (Control) | PBPM10 | PBPM20 | PBPM40 | PBPM60 | |
Proximate composition (% wet weight) | |||||
Moisture (%) | 73.40 ± 0.37 | 73.26 ± 0.25 | 73.39 ± 0.32 | 73.14 ± 0.21 | 73.18 ± 0.46 |
Crude protein (%) | 20.69 ± 0.14 | 20.51 ± 0.28 | 20.35 ± 0.19 | 20.63 ± 0.22 | 20.65 ± 0.26 |
Crude lipid (%) | 3.38 ± 0.15 | 3.49 ± 0.16 | 3.46 ± 0.14 | 3.27 ± 0.16 | 3.35 ± 0.12 |
Ash (%) | 2.43 ± 0.12 | 2.35 ± 0.15 | 2.50 ± 0.15 | 2.34 ± 0.09 | 2.26 ± 0.10 |
EAAs profile (g/kg crude protein) | |||||
Arginine | 74.41 ± 0.39 | 75.59 ± 0.23 | 73.68 ± 0.25 | 73.96 ± 0.30 | 73.73 ± 0.44 |
Histidine | 28.64 ± 0.22 | 28.21 ± 0.17 | 27.69 ± 0.31 | 28.25 ± 0.28 | 28.07 ± 0.26 |
Isoleucine | 58.48 ± 0.35 | 58.22 ± 0.29 | 57.97 ± 0.21 | 57.83 ± 0.23 | 56.97 ± 0.16 |
Leucine | 97.53 ± 0.37 b | 96.67 ± 0.42 ab | 96.13 ± 0.34 a | 95.75 ± 0.25 a | 95.11 ± 0.28 a |
Lysine | 82.65 ± 0.26 b | 82.22 ± 0.33 ab | 81.77 ± 0.52 a | 81.39 ± 0.65 a | 80.55 ± 0.22 a |
Methionine | 34.18 ± 0.25 b | 33.12 ± 0.34 ab | 32.61 ± 0.27 a | 32.06 ± 0.36 a | 31.97 ± 0.20 a |
Phenylalanine | 65.46 ± 0.31 | 65.69 ± 0.23 | 64.80 ± 0.46 | 64.55 ± 0.24 | 64.21 ± 0.53 |
Threonine | 55.52 ± 0.29 | 55.16 ± 0.22 | 54.63 ± 0.25 | 54.51 ± 0.54 | 56.66 ± 0.33 |
Valine | 59.65 ± 0.23 | 60.07 ± 0.35 | 59.26 ± 0.36 | 58.67 ± 0.39 | 57.19 ± 0.47 |
Cystine | 12.23 ± 0.15 | 11.73 ± 0.21 | 12.36 ± 0.27 | 12.91 ± 0.10 | 12.84 ± 0.12 |
Tyrosine | 45.90 ± 0.39 | 45.54 ± 0.37 | 45.29 ± 0.33 | 45.89 ± 0.18 | 45.94 ± 0.30 |
Parameters | Diets (Designated Percentage of PBPM Replacement Levels) | ||||
---|---|---|---|---|---|
PBPM0 (Control) | PBPM10 | PBPM20 | PBPM40 | PBPM60 | |
ALB mg/mL | 26.15 ± 0.79 c | 22.27 ± 0.89 b | 21.79 ± 1.01 ab | 20.98 ± 0.69 ab | 18.70 ± 0.93 a |
ALT U/mL | 6.37 ± 0.31 a | 6.59 ± 0.28 a | 6.83 ± 0.24 a | 7.96 ± 0.27 b | 8.51 ± 0.19 b |
AST U/mL | 5.42 ± 0.34 a | 6.45 ± 0.27 ab | 7.27 ± 0.28 b | 8.74 ± 0.33 c | 9.80 ± 0.36 c |
HDL nmol/mL | 0.37 ± 0.02 b | 0.35 ± 0.02 b | 0.32 ± 0.02 ab | 0.29 ± 0.02 ab | 0.26 ± 0.01 a |
LDL nmol/mL | 0.93 ± 0.04 b | 0.87 ± 0.03 b | 0.81 ± 0.04 ab | 0.75 ± 0.03 ab | 0.70 ± 0.03 a |
TC nmol/mL | 8.54 ± 0.28 c | 7.35 ± 0.24 b | 7.29 ± 0.19 b | 6.22 ± 0.33 a | 5.84 ± 0.29 a |
TG nmol/mL | 1.90 ± 0.11 b | 1.75 ± 0.07 ab | 1.72 ± 0.12 ab | 1.66 ± 0.05 a | 1.60 ± 0.08 a |
TP nmol/mL | 48.59 ± 0.53 b | 47.97 ± 0.38 b | 46.87 ± 0.40 ab | 45.39 ± 0.45 ab | 43.71 ± 0.36 a |
Parameters | Diets (Designated Percentage of PBPM Replacement Levels) | ||||
---|---|---|---|---|---|
PBPM0 (Control) | PBPM10 | PBPM20 | PBPM40 | PBPM60 | |
MDA (nmol/mg) | 8.22 ± 0.86 a | 9.68 ± 1.02 a | 9.79 ± 0.87 a | 12.56 ± 0.83 b | 15.10 ± 1.42 c |
SOD (U/mg) | 209.55 ± 22.33 b | 163.18 ± 29.83 ab | 150.57 ± 21.22 a | 131.20± 19.25 a | 117.91 ± 25.33 a |
CAT (U/mg) | 35.77 ± 1.33 b | 33.94 ± 2.24 b | 30.56 ± 1.56 b | 23.23 ± 1.03 a | 21.53 ± 0.66 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, H.; Li, M.; Yu, L.; Ma, X.; Wang, S.; Yuan, Z.; Li, L. Partial Replacement of Fishmeal with Poultry By-Product Meal in Diets for Coho Salmon (Oncorhynchus kisutch) Post-Smolts. Animals 2023, 13, 2789. https://doi.org/10.3390/ani13172789
Yu H, Li M, Yu L, Ma X, Wang S, Yuan Z, Li L. Partial Replacement of Fishmeal with Poultry By-Product Meal in Diets for Coho Salmon (Oncorhynchus kisutch) Post-Smolts. Animals. 2023; 13(17):2789. https://doi.org/10.3390/ani13172789
Chicago/Turabian StyleYu, Hairui, Min Li, Leyong Yu, Xuejun Ma, Shuliang Wang, Ziyi Yuan, and Lingyao Li. 2023. "Partial Replacement of Fishmeal with Poultry By-Product Meal in Diets for Coho Salmon (Oncorhynchus kisutch) Post-Smolts" Animals 13, no. 17: 2789. https://doi.org/10.3390/ani13172789
APA StyleYu, H., Li, M., Yu, L., Ma, X., Wang, S., Yuan, Z., & Li, L. (2023). Partial Replacement of Fishmeal with Poultry By-Product Meal in Diets for Coho Salmon (Oncorhynchus kisutch) Post-Smolts. Animals, 13(17), 2789. https://doi.org/10.3390/ani13172789