African Swine Fever Shock: China’s Hog Industry’s Resilience and Its Influencing Factors
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods and Materials
2.1. Methods
2.1.1. Hog Industry Resilience Measurement Method
2.1.2. Geodetector
2.2. Materials
3. Results and Discussion
3.1. Spatial and Temporal Characteristics of Hog Industry Resilience
3.2. Factors Influencing Hog Industry Resilience
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boisvert, R.N.; Kay, D.; Turvey, C.G. Macroeconomic costs to large scale disruptions of food production: The case of foot-and-mouth disease in the United States. Econ. Model. 2012, 29, 1921–1930. [Google Scholar] [CrossRef]
- Fadiga, M.L.; Katjiuongua, H.B. Issues and strategies in ex-post evaluation of intervention against animal disease outbreaks and spread. Food Policy 2014, 49, 418–424. [Google Scholar] [CrossRef]
- Mason-D’Croz, D.; Bogard, J.R.; Herrero, M.; Robinson, S.; Sulser, T.B.; Wiebe, K.; Willenbockel, D.; Godfray, H.C.J. Modelling the global economic consequences of a major African swine fever outbreak in China. Nat. Food 2020, 1, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Rassy, D.; Smith, R.D. The economic impact of H1N1 on Mexico’s tourist and pork sectors. Health Econ. 2013, 22, 824–834. [Google Scholar] [CrossRef] [PubMed]
- Taha, F.A.; Hahn, W.F. The impact of BSE on U.S. exports of beef and pork. Agribusiness 2014, 30, 5–16. [Google Scholar] [CrossRef]
- Pitts, N.; Whitnall, T. Impact of African swine fever on global markets. Agric. Commod. 2019, 9, 52–54. [Google Scholar]
- Carriquiry, M.; Elobeid, A.; Hayes, D.J.; Zhang, W.D. Impact of African swine fever on US and world commodity markets. Agric. Policy Rev. 2019, 3, 1–2. [Google Scholar]
- Shi, Z.Z.; Li, J.R.; Hu, X.D. The impact of pig epidemics on China’s pork supply and demand. J. Agrotech. Econ. 2023, 3, 4–17. [Google Scholar]
- Zhu, Z.Y.; Li, M.X.; Zhang, X.B. Analysis on effects of African swine fever on China’s pig market and industry development. Trans. Chin. Soc. Agric. Eng. 2019, 35, 205–210. [Google Scholar]
- Kang, H.Q.; Xiao, H.F. The economic impacts of recent pork price increase in China caused by the African swine fever. Res. Agric. Mod. 2020, 41, 493–501. [Google Scholar]
- Nie, Y.B.; Gao, X.; Li, B.L.; Qiao, J. Farmers’ production decision under the background of African swine flu: Thoughts on the recovery and development of hog production. Res. Agric. Mod. 2020, 41, 1031–1039. [Google Scholar]
- Zhou, X.Z.; Li, G.D.; Meng, X.H.; Yang, J.L.; Lu, J. Decision-making behaviors and influence factors of pig farmers at different scales against African swine fever. Trans. Chin. Soc. Agric. Eng. 2020, 36, 316–324. [Google Scholar]
- Wang, J.M.; Hu, X.D. Factors influencing disease prevention and control behaviours of hog farmers. Animals 2023, 13, 787. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.H.; Wang, M.L.; Li, X.J.; Jiang, H. Impact of African swine fever epidemic on the cost intensity of pork production in China. Agriculture 2023, 13, 497. [Google Scholar] [CrossRef]
- Li, H.S.; Hu, C.P.; Lv, Z.; Li, M.Q.; Guo, X.Z. African swine fever and meat prices fluctuation: An empirical study in China based on TVP-VAR model. J. Integr. Agric. 2021, 20, 2289–2301. [Google Scholar] [CrossRef]
- Li, J.R.; Shi, Z.Z.; Hu, X.D. Analysis of the impact of epidemic shock on China’s hog market volatility. J. Agro-For. Econ. Manag. 2022, 21, 453–462. [Google Scholar]
- Chen, Y.F.; Hua, J.G.; Zhang, J.H. Study on shock and spillover effect of swine epidemic change on pork price. J. Agrotech. Econ. 2022, 7, 48–63. [Google Scholar]
- Wang, M.L.; Li, W.Y. Circular decomposition of hog prices trend and measure on the effect of random shocks. J. Agrotech. Econ. 2010, 12, 68–77. [Google Scholar]
- Shi, Z.Z.; Wang, M.L.; Hu, X.D. Uncertainty of economic policy and price fluctuation of animal products in China. Chin. Rural Econ. 2016, 8, 42–55. [Google Scholar]
- Shi, Z.Z.; Zhou, H.; Hu, X.D. The impacts of disease shocks on the price volatility of China’s livestock products. Res. Agric. Mod. 2020, 41, 863–871. [Google Scholar]
- Shi, Z.Z.; Hu, X.D. Epidemic shock, policy regulation, and China’s hog market price volatility. Res. Agric. Mod. 2023, 44, 130–141. [Google Scholar]
- Miao, S.S. The impact of emergency information on pork price volatility. Manag. Rev. 2018, 30, 246–255. [Google Scholar]
- Zhang, X.C.; Zhang, L.X.; Bian, Q.S. External shocks’ impact on the price fluctuations in the pig industry chain and the regulatory mechanism. J. Agrotech. Econ. 2012, 7, 22–31. [Google Scholar]
- Duan, C.C.; Liu, L.Z. The dynamic relationship of price fluctuation of livestock and poultry products with the influence of African swine fever in China: From the perspective of public opinion management. Res. Agric. Mod. 2020, 41, 678–686. [Google Scholar]
- Scott, A.; Christie, M.; Midmore, P. Impact of the 2001 foot-and-mouth disease outbreak in Britain: Implications for rural studies. J. Rural Stud. 2004, 20, 1–14. [Google Scholar] [CrossRef]
- Shi, Z.Z.; Li, J.R.; Hu, X.D. Risk assessment and response strategy for pig epidemics in China. Vet. Sci. 2023, 10, 485. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.Z.; Li, J.R.; Hu, X.D. From large to powerful: International comparison, challenges and strategic choices for China’s livestock industry. Agriculture 2023, 13, 1298. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, C.; Jiang, H.P. Study on effect and mechanism of China’s agricultural economic resilience on agricultural high-quality development. Agric. Econ. Manag. 2022, 1, 20–32. [Google Scholar]
- Han, Z.L.; Zhu, W.C.; Li, B. Synergistic analysis of economic resilience and efficiency of marine fishery in China. Geogr. Res. 2022, 41, 406–419. [Google Scholar]
- Zhao, W.; Xu, X.W. Effect and mechanism of digital economy on the resilience of agricultural economy. J. South China Agric. Univ. (Soc. Sci. Ed.) 2023, 22, 87–96. [Google Scholar]
- He, Y.L.; Yang, S.C. Study on ductile forging of agricultural industry chain under the “dual circulation”. Issues Agric. Econ. 2021, 10, 78–89. [Google Scholar]
- Zhang, M.D.; Hui, L.W. Spatial disparities and identification of influencing factors on agricultural economic resilience in China. World Agric. 2022, 1, 36–50. [Google Scholar]
- Jiang, H.; Chen, Y.; Liu, Z.Y. Spatiotemporal pattern and influencing factors of grain production resilience in China. Econ. Geogr. 2023, 43, 126–134. [Google Scholar]
- Hao, A.M.; Tan, J.Y. Empowering agricultural resilience by rural industrial integration: Influence mechanism and effect analysis. J. Agrotech. Econ. 2023, 7, 88–107. [Google Scholar]
- Di, Q.B.; Chen, K.Q.; Chen, X.L. The economic resilience measurement of Beijing’s tourism industry and its influencing factors under the impact of the COVID-19 pandemic. Econ. Geogr. 2023, 43, 133–140. [Google Scholar]
- Zong, H.M.; Zhang, J.M.; Liu, H.M. Spatial pattern and influencing factors of China’s foreign trade resilience under the COVID-19 pandemic. Geogr. Res. 2021, 40, 3349–3363. [Google Scholar]
- Li, L.G.; Hu, X.H. Analysis on the spatial-temporal pattern and influencing factors of regional economic resilience in China under the COVID-19 pandemic. World Reg. Stud. 2023, 32, 64–75. [Google Scholar]
- Yu, J.Y.; Zhang, Y.N.; Liu, W.D.; Xiao, Z.P. Research on spatio-temporal heterogeneity of global cross-border e-commerce logistics resilience under the impact of the COVID-19 epidemic. Geogr. Res. 2021, 40, 3333–3348. [Google Scholar]
- Wang, J.F.; Xu, C.D. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar]
Type | Indicator | Unit | Interpretation of Indicators |
---|---|---|---|
Development foundation | Economic level | CNY | GDP per capita |
Industrial structure | % | Share of the hog industry’s output value in the total agricultural output value | |
Market share | % | Share of the region’s hog inventory in the national inventory | |
Per capita consumption | kg | Per capita household consumption of pork | |
Scientific and technological support | Slaughter rate | % | Ratio of number of hogs slaughtered to the total number of hogs |
Carcass weight | kg/head | Ratio of pork production to the number of hogs slaughtered | |
Scale level | % | Share of farms with more than 500 heads in total farms | |
Labor productivity | CNY | Ratio of the average gross value added per hog to the number of workers | |
Basic security | Comparative benefit | — | Ratio of hog prices to corn prices |
Resource carrying | head/ha | Ratio of hog inventory to grain acreage | |
Technical service | head | Ratio of hog inventory to the number of employees in the township’s animal husbandry and veterinary stations | |
Epidemic shock | Cases | head | Number of cases due to African swine fever outbreaks |
Mortality rate | % | Ratio of deaths to total cases due to African swine fever outbreaks | |
Culling rate | % | Ratio of culls due to African swine fever outbreaks to total hog inventory |
Province | Hog | Breeding Sow | ||||||
---|---|---|---|---|---|---|---|---|
Resistance (2018) | Resistance (2019) | Recoverability (2020) | Recoverability (2021) | Resistance (2018) | Resistance (2019) | Recoverability (2020) | Recoverability (2021) | |
Beijing | −0.5950 | −0.7097 | 1.4397 | 0.8350 | −0.6136 | −0.7255 | 1.1429 | 0.8333 |
Tianjin | 0.0942 | −0.3690 | 0.3064 | 0.0545 | 0.0698 | −0.3696 | 0.3241 | −0.0260 |
Hebei | −0.0700 | −0.2210 | 0.2330 | 0.0350 | −0.0701 | −0.1869 | 0.3225 | −0.0160 |
Shanxi | 0.0099 | −0.1785 | 0.2614 | 0.3000 | 0.0126 | −0.1365 | 0.3162 | 0.1139 |
Inner Mongolia | −0.0164 | −0.1362 | 0.2433 | 0.0582 | −0.0853 | −0.0329 | 0.2571 | −0.0226 |
Liaoning | −0.0350 | −0.1640 | 0.2170 | 0.0190 | −0.0781 | −0.1552 | 0.2562 | −0.0152 |
Jilin | −0.0447 | −0.0891 | 0.1340 | 0.2653 | −0.0855 | −0.0946 | 0.1714 | 0.2024 |
Heilongjiang | −0.0563 | −0.1330 | 0.1687 | 0.0329 | −0.0457 | −0.1603 | 0.2203 | −0.0270 |
Shanghai | −0.1327 | −0.4741 | 0.6342 | −0.0123 | −0.1667 | −0.2933 | 0.7358 | −0.3587 |
Jiangsu | −0.0538 | −0.6279 | 1.3810 | 0.0784 | −0.0578 | −0.4996 | 1.1990 | −0.0471 |
Zhejiang | −0.0475 | −0.1732 | 0.4687 | 0.0202 | −0.0903 | −0.0716 | 0.4453 | 0.1928 |
Anhui | −0.0430 | −0.1950 | 0.3000 | 0.1150 | −0.0357 | −0.1695 | 0.4000 | 0.1088 |
Fujian | −0.1322 | −0.1980 | 0.4199 | 0.0293 | −0.1667 | −0.1906 | 0.5390 | 0.0237 |
Jiangxi | −0.0210 | −0.3660 | 0.5600 | 0.0722 | −0.0525 | −0.3210 | 0.5105 | 0.1198 |
Shandong | −0.0180 | −0.2710 | 0.3480 | 0.0740 | −0.0568 | −0.3500 | 0.5499 | −0.0701 |
Henan | −0.0120 | −0.2690 | 0.2260 | 0.1300 | −0.0529 | −0.2780 | 0.3367 | −0.0050 |
Hubei | −0.0220 | −0.3585 | 0.3360 | 0.1706 | −0.0620 | −0.3201 | 0.3582 | 0.1246 |
Hunan | −0.0368 | −0.2940 | 0.3840 | 0.1252 | −0.0437 | −0.3451 | 0.4177 | 0.0469 |
Guangdong | −0.0509 | −0.3411 | 0.3250 | 0.1744 | −0.0497 | −0.3991 | 0.4099 | 0.0352 |
Guangxi | 0.0020 | −0.3040 | 0.1430 | 0.1640 | 0.0031 | −0.3098 | 0.1679 | 0.0449 |
Hainan | −0.0430 | −0.5741 | 0.5262 | 0.2494 | −0.0169 | −0.5973 | 0.6635 | 0.1425 |
Chongqing | −0.0205 | −0.2104 | 0.1750 | 0.0895 | −0.0274 | −0.2250 | 0.2392 | 0.0622 |
Sichuan | −0.0270 | −0.3259 | 0.3500 | 0.0980 | −0.0630 | −0.3199 | 0.3580 | 0.0890 |
Guizhou | −0.0298 | −0.2440 | 0.1646 | 0.1220 | −0.0113 | −0.2317 | 0.2614 | 0.0377 |
Yunnan | 0.0087 | −0.2334 | 0.3321 | 0.0639 | 0.0057 | −0.2611 | 0.2157 | 0.1103 |
Tibet | −0.0828 | −0.1970 | 0.6100 | 0.2373 | −0.1519 | −0.2687 | 0.0306 | 0.3564 |
Shaanxi | −0.0180 | −0.0517 | 0.0680 | 0.0418 | 0.0304 | −0.1157 | 0.0935 | 0.0391 |
Gansu | −0.0111 | −0.1190 | 0.2950 | 0.1014 | −0.0112 | −0.1570 | 0.2668 | −0.0409 |
Qinghai | −0.0544 | −0.5568 | 1.0799 | 0.0712 | −0.0889 | −0.5244 | 1.4103 | −0.0319 |
Ningxia | −0.0900 | −0.0052 | 0.2269 | −0.0502 | −0.1383 | 0.0864 | 0.3182 | −0.2586 |
Xinjiang | −0.0201 | −0.0862 | 0.2245 | 0.1607 | 0.0633 | −0.0174 | 0.3182 | −0.0785 |
Indicator | Hog | Breeding Sow | ||||||
---|---|---|---|---|---|---|---|---|
Resistance (2018) | Resistance (2019) | Recoverability (2020) | Recoverability (2021) | Resistance (2018) | Resistance (2019) | Recoverability (2020) | Recoverability (2021) | |
Economic level | 0.5852 | 0.3471 | 0.4294 | 0.2781 | 0.5573 | 0.2012 | 0.3097 | 0.1031 |
Industrial structure | 0.0782 | 0.1208 | 0.5410 | 0.1327 | 0.0943 | 0.2493 | 0.2992 | 0.1079 |
Market share | 0.1868 | 0.2456 | 0.3615 | 0.0926 | 0.2631 | 0.2992 | 0.2543 | 0.0368 |
Per capita consumption | 0.1035 | 0.6027 | 0.3218 | 0.3112 | 0.1236 | 0.5388 | 0.2130 | 0.3815 |
Slaughter rate | 0.9143 | 0.6145 | 0.4723 | 0.5590 | 0.8773 | 0.4428 | 0.2553 | 0.5927 |
Carcass weight | 0.3682 | 0.1022 | 0.1749 | 0.0736 | 0.4597 | 0.0478 | 0.1861 | 0.1916 |
Scale level | 0.2903 | 0.3694 | 0.2574 | 0.8110 | 0.3269 | 0.3312 | 0.1879 | 0.7669 |
Labor productivity | 0.0779 | 0.3073 | 0.2860 | 0.2265 | 0.1430 | 0.3596 | 0.3829 | 0.3338 |
Comparative benefit | 0.0846 | 0.2528 | 0.2501 | 0.2672 | 0.0875 | 0.3108 | 0.1600 | 0.1848 |
Resource carrying | 0.2238 | 0.2758 | 0.4051 | 0.3662 | 0.2078 | 0.3069 | 0.4692 | 0.2624 |
Technical service | 0.2637 | 0.3083 | 0.3524 | 0.1621 | 0.2372 | 0.3832 | 0.2419 | 0.1375 |
Cases | 0.2127 | 0.3360 | 0.2037 | 0.1052 | 0.2026 | 0.2583 | 0.1249 | 0.0577 |
Mortality rate | 0.3820 | 0.2555 | 0.1931 | 0.1204 | 0.3770 | 0.2042 | 0.1102 | 0.0205 |
Culling rate | 0.2919 | 0.2570 | 0.4323 | 0.0847 | 0.3442 | 0.2326 | 0.3120 | 0.0363 |
Indicator | Economic Level | Industrial Structure | Market Share | Per Capita Consumption | Slaughter Rate | Carcass Weight | Scale Level | Labor Productivity | Comparative Benefit | Resource Carrying | Technical Service | Cases | Mortality Rate | Culling Rate |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Economic level | 0.5852 | |||||||||||||
Industrial structure | 0.9802 | 0.0782 | ||||||||||||
Market share | 0.7055 | 0.3442 | 0.1868 | |||||||||||
Per capita consumption | 0.9991 | 0.3501 | 0.2824 | 0.1035 | ||||||||||
Slaughter rate | 0.9802 | 0.9832 | 0.9924 | 0.9755 | 0.9143 | |||||||||
Carcass weight | 0.9800 | 0.9801 | 0.9271 | 0.9466 | 0.9736 | 0.3682 | ||||||||
Scale level | 0.9816 | 0.3462 | 0.3475 | 0.3444 | 0.9824 | 0.9899 | 0.2903 | |||||||
Labor productivity | 0.9858 | 0.2378 | 0.2996 | 0.3474 | 0.9926 | 0.5296 | 0.3377 | 0.0779 | ||||||
Comparative benefit | 0.9852 | 0.3486 | 0.2950 | 0.3497 | 0.9684 | 0.9907 | 0.3430 | 0.2181 | 0.0846 | |||||
Resource carrying | 0.9681 | 0.4041 | 0.9960 | 0.9459 | 0.9746 | 0.6889 | 0.9840 | 0.9918 | 0.5643 | 0.2238 | ||||
Technical service | 0.9948 | 0.9871 | 0.4900 | 0.5432 | 0.9709 | 0.9659 | 0.9898 | 0.6305 | 0.6205 | 0.9616 | 0.2637 | |||
Cases | 0.9289 | 0.9800 | 0.9964 | 0.9992 | 0.9929 | 0.5427 | 0.9980 | 0.5284 | 0.9803 | 0.9971 | 0.5424 | 0.2127 | ||
Mortality rate | 0.9993 | 0.9742 | 0.6186 | 0.5666 | 0.9760 | 0.9809 | 0.9920 | 0.9821 | 0.9836 | 0.9806 | 0.9720 | 0.9781 | 0.3820 | |
Culling rate | 0.9968 | 0.9957 | 0.9987 | 0.5722 | 0.9819 | 0.7074 | 0.9983 | 0.9998 | 0.4731 | 0.7071 | 0.9682 | 0.9700 | 0.9979 | 0.2919 |
Indicator | Economic Level | Industrial Structure | Market Share | Per Capita Consumption | Slaughter Rate | Carcass Weight | Scale Level | Labor Productivity | Comparative Benefit | Resource Carrying | Technical Service | Cases | Mortality Rate | Culling Rate |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Economic level | 0.3471 | |||||||||||||
Industrial structure | 0.8503 | 0.1208 | ||||||||||||
Market share | 0.8542 | 0.6745 | 0.2456 | |||||||||||
Per capita consumption | 0.9610 | 0.9765 | 0.9552 | 0.6027 | ||||||||||
Slaughter rate | 0.9366 | 0.9687 | 0.9612 | 0.8183 | 0.6145 | |||||||||
Carcass weight | 0.8073 | 0.8968 | 0.9917 | 0.9019 | 0.9482 | 0.1022 | ||||||||
Scale level | 0.7635 | 0.8041 | 0.9995 | 0.9535 | 0.9922 | 0.8350 | 0.3694 | |||||||
Labor productivity | 0.8163 | 0.7001 | 0.8338 | 0.9724 | 0.9487 | 0.9512 | 0.7941 | 0.3073 | ||||||
Comparative benefit | 0.9491 | 0.9017 | 0.9009 | 0.9465 | 0.9846 | 0.8537 | 0.7758 | 0.8685 | 0.2528 | |||||
Resource carrying | 0.9804 | 0.8120 | 0.8075 | 0.7923 | 0.8318 | 0.8958 | 0.9946 | 0.9205 | 0.8821 | 0.2758 | ||||
Technical service | 0.8629 | 0.6026 | 0.8374 | 0.9613 | 0.9448 | 0.8211 | 0.7291 | 0.7987 | 0.8462 | 0.9736 | 0.3083 | |||
Cases | 0.9198 | 0.9655 | 0.8692 | 0.9373 | 0.9236 | 0.5746 | 0.9506 | 0.8072 | 0.8640 | 0.8538 | 0.9692 | 0.3360 | ||
Mortality rate | 0.7950 | 0.6482 | 0.9939 | 0.8608 | 0.8972 | 0.8553 | 0.8228 | 0.6949 | 0.8294 | 0.8886 | 0.9483 | 0.6319 | 0.2555 | |
Culling rate | 0.7848 | 0.7632 | 0.9478 | 0.9355 | 0.8238 | 0.7633 | 0.8214 | 0.7298 | 0.7716 | 0.9423 | 0.9725 | 0.6897 | 0.5375 | 0.2570 |
Indicator | Economic Level | Industrial Structure | Market Share | Per Capita Consumption | Slaughter Rate | Carcass Weight | Scale Level | Labor Productivity | Comparative Benefit | Resource Carrying | Technical Service | Cases | Mortality Rate | Culling Rate |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Economic level | 0.4294 | |||||||||||||
Industrial structure | 0.8442 | 0.5410 | ||||||||||||
Market share | 0.8553 | 0.8768 | 0.3615 | |||||||||||
Per capita consumption | 0.9839 | 0.9871 | 0.9924 | 0.3218 | ||||||||||
Slaughter rate | 0.9601 | 0.8817 | 0.6651 | 0.9981 | 0.4723 | |||||||||
Carcass weight | 0.9132 | 0.9824 | 0.7597 | 0.5763 | 0.9690 | 0.1749 | ||||||||
Scale level | 0.9151 | 0.9465 | 0.9484 | 0.9598 | 0.9540 | 0.8814 | 0.2574 | |||||||
Labor productivity | 0.8982 | 0.9994 | 0.9998 | 0.8329 | 0.9955 | 0.6587 | 0.8083 | 0.2860 | ||||||
Comparative benefit | 0.9755 | 0.8917 | 0.8983 | 0.6917 | 0.8345 | 0.8664 | 0.6607 | 0.9762 | 0.2501 | |||||
Resource carrying | 0.9558 | 0.8272 | 0.9828 | 0.8476 | 0.9895 | 0.8444 | 0.9738 | 0.7536 | 0.9092 | 0.4051 | ||||
Technical service | 0.9464 | 0.8713 | 0.6552 | 0.8677 | 0.6803 | 0.6976 | 0.7886 | 0.9946 | 0.7875 | 0.9670 | 0.3524 | |||
Cases | 0.7452 | 0.7725 | 0.7384 | 0.6957 | 0.8885 | 0.5009 | 0.9262 | 0.8400 | 0.7873 | 0.9833 | 0.5157 | 0.2037 | ||
Mortality rate | 0.9999 | 0.8796 | 0.7669 | 0.9824 | 0.8413 | 0.8160 | 0.5150 | 0.7551 | 0.8474 | 0.9993 | 0.7286 | 0.7830 | 0.1931 | |
Culling rate | 0.8504 | 0.8823 | 0.8504 | 0.6835 | 0.8911 | 0.6396 | 0.6592 | 0.6717 | 0.8272 | 0.9773 | 0.8905 | 0.6857 | 0.6993 | 0.4323 |
Indicator | Economic Level | Industrial Structure | Market Share | Per Capita Consumption | Slaughter Rate | Carcass Weight | Scale Level | Labor Productivity | Comparative Benefit | Resource Carrying | Technical Service | Cases | Mortality Rate | Culling Rate |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Economic level | 0.2781 | |||||||||||||
Industrial structure | 0.9189 | 0.1327 | ||||||||||||
Market share | 0.4921 | 0.3213 | 0.0926 | |||||||||||
Per capita consumption | 0.8924 | 0.9019 | 0.9285 | 0.3112 | ||||||||||
Slaughter rate | 0.9764 | 0.9345 | 0.6849 | 0.9480 | 0.5590 | |||||||||
Carcass weight | 0.9938 | 0.9085 | 0.9351 | 0.5960 | 0.9777 | 0.0736 | ||||||||
Scale level | 0.8972 | 0.9245 | 0.9647 | 0.9477 | 0.9033 | 0.9919 | 0.8110 | |||||||
Labor productivity | 0.9624 | 0.9949 | 0.7545 | 0.9849 | 0.7154 | 0.5853 | 0.9265 | 0.2265 | ||||||
Comparative benefit | 0.9302 | 0.9443 | 0.8962 | 0.9772 | 0.9440 | 0.8873 | 0.9795 | 0.9924 | 0.2672 | |||||
Resource carrying | 0.9947 | 0.8981 | 0.9552 | 0.8841 | 0.9846 | 0.8789 | 0.9588 | 0.9680 | 0.6356 | 0.3662 | ||||
Technical service | 0.9680 | 0.3570 | 0.3945 | 0.9555 | 0.9560 | 0.9893 | 0.9440 | 0.9930 | 1.0000 | 0.9865 | 0.1621 | |||
Cases | 0.4991 | 0.4157 | 0.3126 | 0.9599 | 0.6538 | 0.4626 | 0.9427 | 0.4628 | 0.9207 | 0.9340 | 0.4452 | 0.1052 | ||
Mortality rate | 0.4724 | 0.4545 | 0.3005 | 0.9671 | 0.9673 | 0.5552 | 0.9280 | 0.5847 | 0.9946 | 0.9946 | 0.4696 | 0.2372 | 0.1204 | |
Culling rate | 0.4874 | 0.4133 | 0.3180 | 0.5978 | 0.7545 | 0.3046 | 0.9793 | 0.5333 | 0.9097 | 0.9325 | 0.4360 | 0.2323 | 0.2814 | 0.0847 |
Indicator | Economic Level | Industrial Structure | Market Share | Per Capita Consumption | Slaughter Rate | Carcass Weight | Scale Level | Labor Productivity | Comparative Benefit | Resource Carrying | Technical Service | Cases | Mortality Rate | Culling Rate |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Economic level | 0.5573 | |||||||||||||
Industrial structure | 0.9366 | 0.0943 | ||||||||||||
Market share | 0.7490 | 0.4376 | 0.2631 | |||||||||||
Per capita consumption | 0.9997 | 0.4432 | 0.3925 | 0.1236 | ||||||||||
Slaughter rate | 0.9307 | 0.9453 | 0.9968 | 0.9891 | 0.8773 | |||||||||
Carcass weight | 0.9553 | 0.9759 | 0.9240 | 0.9744 | 0.9658 | 0.4597 | ||||||||
Scale level | 0.9369 | 0.4421 | 0.4383 | 0.4235 | 0.9819 | 0.9872 | 0.3269 | |||||||
Labor productivity | 0.9682 | 0.3445 | 0.4154 | 0.4235 | 0.9882 | 0.6452 | 0.3965 | 0.1430 | ||||||
Comparative benefit | 0.9665 | 0.4445 | 0.4095 | 0.4452 | 0.9886 | 0.9846 | 0.4136 | 0.3192 | 0.0875 | |||||
Resource carrying | 0.9563 | 0.4421 | 0.9964 | 0.9019 | 0.9693 | 0.7420 | 0.9690 | 0.9734 | 0.5789 | 0.2078 | ||||
Technical service | 0.9825 | 0.9300 | 0.6013 | 0.6207 | 0.9792 | 0.9756 | 0.9911 | 0.7334 | 0.7175 | 0.9440 | 0.2372 | |||
Cases | 0.9234 | 0.9713 | 0.9943 | 0.9737 | 0.9917 | 0.6553 | 0.9900 | 0.6608 | 0.9566 | 0.9663 | 0.4300 | 0.2026 | ||
Mortality rate | 0.9945 | 0.9667 | 0.7011 | 0.5603 | 0.9783 | 0.9825 | 0.9763 | 0.9684 | 0.9694 | 0.9691 | 0.9568 | 0.9628 | 0.3770 | |
Culling rate | 0.9576 | 0.9888 | 0.9828 | 0.6567 | 0.9950 | 0.7497 | 0.9921 | 0.9994 | 0.5040 | 0.7607 | 0.9805 | 0.9397 | 0.9903 | 0.3442 |
Indicator | Economic Level | Industrial Structure | Market Share | Per Capita Consumption | Slaughter Rate | Carcass Weight | Scale Level | Labor Productivity | Comparative Benefit | Resource Carrying | Technical Service | Cases | Mortality Rate | Culling Rate |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Economic level | 0.2012 | |||||||||||||
Industrial structure | 0.8782 | 0.2493 | ||||||||||||
Market share | 0.8121 | 0.6779 | 0.2992 | |||||||||||
Per capita consumption | 0.9210 | 0.9950 | 0.9746 | 0.5388 | ||||||||||
Slaughter rate | 0.9070 | 0.9606 | 0.9424 | 0.7702 | 0.4428 | |||||||||
Carcass weight | 0.7520 | 0.8966 | 0.9841 | 0.8824 | 0.9152 | 0.0478 | ||||||||
Scale level | 0.6932 | 0.8015 | 0.9999 | 0.8927 | 0.9648 | 0.9014 | 0.3312 | |||||||
Labor productivity | 0.7937 | 0.7634 | 0.8419 | 0.9784 | 0.9196 | 0.9417 | 0.8351 | 0.3596 | ||||||
Comparative benefit | 0.9307 | 0.8702 | 0.8794 | 0.9329 | 0.9604 | 0.8848 | 0.7667 | 0.8814 | 0.3108 | |||||
Resource carrying | 0.9804 | 0.7734 | 0.7805 | 0.7829 | 0.8190 | 0.9096 | 0.9889 | 0.9488 | 0.8894 | 0.3069 | ||||
Technical service | 0.8852 | 0.6883 | 0.8675 | 0.9842 | 0.9049 | 0.8445 | 0.8155 | 0.8403 | 0.8884 | 0.9356 | 0.3832 | |||
Cases | 0.8610 | 0.9450 | 0.9207 | 0.9205 | 0.9409 | 0.4364 | 0.8560 | 0.7935 | 0.8351 | 0.8929 | 0.9897 | 0.2583 | ||
Mortality rate | 0.7492 | 0.6003 | 0.9969 | 0.8896 | 0.8818 | 0.7904 | 0.7033 | 0.6977 | 0.7521 | 0.9226 | 0.9467 | 0.5767 | 0.2042 | |
Culling rate | 0.7258 | 0.7061 | 0.9453 | 0.8718 | 0.7927 | 0.6944 | 0.6648 | 0.7283 | 0.8326 | 0.9471 | 0.9662 | 0.6909 | 0.4879 | 0.2326 |
Indicator | Economic Level | Industrial Structure | Market Share | Per Capita Consumption | Slaughter Rate | Carcass Weight | Scale Level | Labor Productivity | Comparative Benefit | Resource Carrying | Technical Service | Cases | Mortality Rate | Culling Rate |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Economic level | 0.3097 | |||||||||||||
Industrial structure | 0.5905 | 0.2992 | ||||||||||||
Market share | 0.6519 | 0.6376 | 0.2543 | |||||||||||
Per capita consumption | 0.9835 | 0.9738 | 0.9093 | 0.2130 | ||||||||||
Slaughter rate | 0.6811 | 0.6170 | 0.4633 | 0.9946 | 0.2553 | |||||||||
Carcass weight | 0.7490 | 0.9793 | 0.8482 | 0.5788 | 0.9652 | 0.1861 | ||||||||
Scale level | 0.6343 | 0.6752 | 0.6755 | 0.9464 | 0.6623 | 0.7147 | 0.1879 | |||||||
Labor productivity | 0.7989 | 0.9917 | 0.9997 | 0.8701 | 0.9975 | 0.8215 | 0.8806 | 0.3829 | ||||||
Comparative benefit | 0.9657 | 0.7928 | 0.7982 | 0.6193 | 0.7123 | 0.9051 | 0.6397 | 0.9543 | 0.1600 | |||||
Resource carrying | 0.9699 | 0.8585 | 0.9895 | 0.8756 | 0.9826 | 0.9009 | 0.9780 | 0.8442 | 0.7861 | 0.4692 | ||||
Technical service | 0.6768 | 0.6131 | 0.4479 | 0.7485 | 0.4772 | 0.7729 | 0.5828 | 0.9993 | 0.6017 | 0.9379 | 0.2419 | |||
Cases | 0.5183 | 0.5550 | 0.5508 | 0.6273 | 0.6326 | 0.6432 | 0.6379 | 0.8849 | 0.5915 | 0.9840 | 0.3900 | 0.1249 | ||
Mortality rate | 0.9986 | 0.7365 | 0.5808 | 0.9675 | 0.7035 | 0.9207 | 0.5556 | 0.8834 | 0.7311 | 1.0000 | 0.6963 | 0.5919 | 0.1102 | |
Culling rate | 0.5978 | 0.6318 | 0.5764 | 0.6267 | 0.6216 | 0.5496 | 0.4501 | 0.7089 | 0.7626 | 0.9583 | 0.6255 | 0.4915 | 0.7165 | 0.3120 |
Indicator | Economic Level | Industrial Structure | Market Share | Per Capita Consumption | Slaughter Rate | Carcass Weight | Scale Level | Labor Productivity | Comparative Benefit | Resource Carrying | Technical Service | Cases | Mortality Rate | Culling Rate |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Economic level | 0.1031 | |||||||||||||
Industrial structure | 0.9572 | 0.1079 | ||||||||||||
Market share | 0.3173 | 0.4077 | 0.0368 | |||||||||||
Per capita consumption | 0.9015 | 0.8801 | 0.9889 | 0.3815 | ||||||||||
Slaughter rate | 0.9492 | 0.8861 | 0.8414 | 0.8835 | 0.5927 | |||||||||
Carcass weight | 0.9690 | 0.9867 | 0.8270 | 0.6734 | 0.9748 | 0.1916 | ||||||||
Scale level | 0.8572 | 0.9575 | 0.9208 | 0.9401 | 0.9560 | 0.9813 | 0.7669 | |||||||
Labor productivity | 0.9699 | 0.9988 | 0.8819 | 0.9508 | 0.8705 | 0.6763 | 0.9299 | 0.3338 | ||||||
Comparative benefit | 0.9052 | 0.9664 | 0.7257 | 0.9515 | 0.8528 | 0.7852 | 0.9708 | 0.9900 | 0.1848 | |||||
Resource carrying | 0.9982 | 0.9781 | 0.9976 | 0.9179 | 0.8335 | 0.8329 | 0.9557 | 0.8954 | 0.5841 | 0.2624 | ||||
Technical service | 0.9220 | 0.3384 | 0.3863 | 0.9764 | 0.9827 | 0.9141 | 0.8859 | 0.9813 | 1.0000 | 0.9741 | 0.1375 | |||
Cases | 0.3648 | 0.4755 | 0.1946 | 0.9900 | 0.7962 | 0.4750 | 0.9667 | 0.6419 | 0.7386 | 0.9817 | 0.4786 | 0.0577 | ||
Mortality rate | 0.3659 | 0.3978 | 0.2452 | 0.9829 | 0.9339 | 0.6415 | 0.9901 | 0.6783 | 0.9940 | 0.9962 | 0.4073 | 0.1913 | 0.0205 | |
Culling rate | 0.3624 | 0.4291 | 0.1918 | 0.7476 | 0.8490 | 0.3919 | 0.9542 | 0.6034 | 0.7175 | 0.9017 | 0.4626 | 0.1602 | 0.2400 | 0.0363 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Z.; Hu, X. African Swine Fever Shock: China’s Hog Industry’s Resilience and Its Influencing Factors. Animals 2023, 13, 2817. https://doi.org/10.3390/ani13182817
Shi Z, Hu X. African Swine Fever Shock: China’s Hog Industry’s Resilience and Its Influencing Factors. Animals. 2023; 13(18):2817. https://doi.org/10.3390/ani13182817
Chicago/Turabian StyleShi, Zizhong, and Xiangdong Hu. 2023. "African Swine Fever Shock: China’s Hog Industry’s Resilience and Its Influencing Factors" Animals 13, no. 18: 2817. https://doi.org/10.3390/ani13182817
APA StyleShi, Z., & Hu, X. (2023). African Swine Fever Shock: China’s Hog Industry’s Resilience and Its Influencing Factors. Animals, 13(18), 2817. https://doi.org/10.3390/ani13182817