Thermal Response of Laboratory Rats (Rattus norvegicus) during the Application of Six Methods of Euthanasia Assessed by Infrared Thermography
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Location and Ethical Statement
2.2. Animals and Housing Conditions
2.3. Experimental Design
2.4. Assessed Parameters
2.4.1. Infrared Thermography (IRT)
2.4.2. Time to Death
2.5. Procedures
2.6. Statistical Analyses
- Y = variable response (IRT);
- τi = fixed effect (G1, G2, G3, G4, G5, G6);
- τj = evaluation times (basal, Ti1, Ti2, Ti3, and Ti4);
- β = aleatory effect (rat);
- µ = general mean;
- e = error.
3. Results
3.1. Ocular Surface Temperature (T°Ocu)
3.2. Auricular Surface Temperature (T°ear)
3.3. Interscapular Surface Temperature T°Dor
3.4. Tail Surface Temperature (T°Tai)
3.5. Effect of Sex on the Thermal Response of the Rats
4. Discussion
4.1. T°ocu
4.2. T°ear
4.3. T°dor
4.4. T°tai
4.5. Effect of Sex on the Thermal Response of Animals during Euthanasia Methods
4.6. Time of Death and Additional Findings
4.7. Limitations and Future Recommendations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hobson-West, P.; Davies, A. Societal Sentience: Constructions of the public in animal research policy and practice. Sci. Technol. Hum. Values 2018, 43, 671–693. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Oliva, A.; Hernández-Ávalos, I.; Martínez-Burnes, J.; Olmos-Hernández, A.; Verduzco-Mendoza, A.; Mota-Rojas, D. The Importance of Animal Models in Biomedical Research: Current Insights and Applications. Animals 2023, 13, 1223. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, Y. Recent Trends in the Number of Laboratory Animals Used in Japan. Altern. Lab. Anim. 2004, 32, 299–301. [Google Scholar] [CrossRef] [PubMed]
- National Association for Biomedical Research. The Importance of Animal Testing in Biomedical Research. Available online: https://www.nabr.org/biomedical-research/importance-biomedical-research (accessed on 17 August 2021).
- Franco, N.H. Animal Experiments in Biomedical Research: A Historical Perspective. Animals 2013, 3, 238. [Google Scholar] [CrossRef]
- Marquardt, N.; Feja, M.; Hünigen, H.; Plendl, J.; Menken, L.; Fink, H.; Bert, B. Euthanasia of laboratory mice: Are isoflurane and sevoflurane real alternatives to carbon dioxide? PLoS ONE 2018, 13, e0203793. [Google Scholar] [CrossRef]
- Baumans, V. Use of animals in experimental research: An ethical dilemma? Gene Ther. 2004, 11, S64–S66. [Google Scholar] [CrossRef]
- American Veterinary Medical Association (AVMA). AVMA Guidelines for the Euthanasia of Animals; AVMA: Schaumburg, IL, USA, 2020. [Google Scholar]
- Makowska, I.J.; Weary, D.M. Using Rat Behavior to Assess Aversion to Euthanasia Agents. ALTEX 2012, 1, 465–467. [Google Scholar]
- Chisholm, J.M.; Pang, D.S.J. Assessment of Carbon Dioxide, Carbon Dioxide/Oxygen, Isoflurane and Pentobarbital Killing Methods in Adult Female Sprague-Dawley Rats. PLoS ONE 2016, 11, e0162639. [Google Scholar] [CrossRef]
- Hickman, D.; Fitz, S.; Bernabe, C.; Caliman, I.; Haulcomb, M.; Federici, L.; Shekhar, A.; Johnson, P. Evaluation of Low versus High Volume per Minute Displacement CO2 Methods of Euthanasia in the Induction and Duration of Panic-Associated Behavior and Physiology. Animals 2016, 6, 45. [Google Scholar] [CrossRef]
- Boivin, G.P.; Hickman, D.L.; Creamer-Hente, M.A.; Pritchett-Corning, K.R.; Bratcher, N.A. Review of CO₂ as a Euthanasia Agent for Laboratory Rats and Mice. J. Am. Assoc. Lab. Anim. Sci. 2017, 56, 491–499. [Google Scholar]
- Turner, P.V.; Hickman, D.L.; van Luijk, J.; Ritskes-Hoitinga, M.; Sargeant, J.M.; Kurosawa, T.M.; Agui, T.; Baumans, V.; Choi, W.S.; Choi, Y.-K.; et al. Welfare Impact of Carbon Dioxide Euthanasia on Laboratory Mice and Rats: A Systematic Review. Front. Vet. Sci. 2020, 7, 411. [Google Scholar] [CrossRef] [PubMed]
- De la Torre, C.; Jiménez, P.; Ramos, M.M.; De la Torre, G. Anestesia para colonoscopia: Anestesia inhalatoria con sevoflurano frente a anestesia intravenosa con propofol. Sanid. Mil. 2012, 68, 27–32. [Google Scholar] [CrossRef]
- Makowska, I.J.; Weary, D.M. Rat aversion to induction with inhalant anaesthetics. Appl. Anim. Behav. Sci. 2009, 119, 229–235. [Google Scholar] [CrossRef]
- Flecknell, P. Laboratory Animal Anaesthesia, 4th ed.; Elsevier: Kidlington, UK, 2016; p. 350. [Google Scholar]
- Reimer, J.N.; Schuster, C.J.; Knight, C.G.; Pang, D.S.J.; Leung, V.S.Y. Intraperitoneal injection of sodium pentobarbital has the potential to elicit pain in adult rats (Rattus norvegicus). PLoS ONE 2020, 15, e0238123. [Google Scholar] [CrossRef]
- Zatroch, K.K.; Knight, C.G.; Reimer, J.N.; Pang, D.S.J. Refinement of intraperitoneal injection of sodium pentobarbital for euthanasia in laboratory rats (Rattus norvegicus). BMC Vet. Res. 2016, 13, 60. [Google Scholar] [CrossRef]
- Hohlbaum, K.; Bert, B.; Dietze, S.; Palme, R.; Fink, H.; Thöne-Reineke, C. Impact of repeated anesthesia with ketamine and xylazine on the well-being of C57BL/6JRj mice. PLoS ONE 2018, 13, e0203559. [Google Scholar] [CrossRef]
- Wellington, D.; Mikaelian, I.; Singer, L. Comparison of ketamine-xylazine and ketamine-dexmedetomidine anesthesia and intraperitoneal tolerance in rats. J. Am. Assoc. Lab. Anim. Sci. 2013, 52, 481–487. [Google Scholar]
- Kongara, K.; McIlhone, A.; Kells, N.; Johnson, C. Electroencephalographic evaluation of decapitation of the anaesthetized rat. Lab. Anim. 2014, 48, 15–19. [Google Scholar] [CrossRef]
- Derr, R. Pain perception in decapitated rat brain. Life Sci. 1991, 49, 1399–1402. [Google Scholar] [CrossRef]
- Huggins, J.; Rakobowchuk, M. Utility of lacrimal caruncle infrared thermography when monitoring alterations in autonomic activity in healthy humans. Eur. J. Appl. Physiol. 2019, 119, 531–538. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; Olmos-Hernández, A.; Verduzco-Mendoza, A.; Lecona-Butrón, H.; Martínez-Burnes, J.; Mora-Medina, P.; Gómez-Prado, J.; Orihuela, A. Infrared thermal imaging associated with pain in laboratory animals. Exp. Anim. 2021, 70, 1–12. [Google Scholar] [CrossRef] [PubMed]
- National Research Council. National Association for Biomedical Research Recognition and Alleviation of Pain in Laboratory Animals. Available online: https://www.ncbi.nlm.nih.gov/books/NBK32654/ (accessed on 1 September 2022).
- Nichols, K.E.; Holliday-White, K.L.; Bogie, H.M.; Swearingen, K.M.; Fine, M.S.; Doyle, J.; Tiesma, S.R. Cardiovascular and Metabolic Responses to Carbon Dioxide Euthanasia in Conscious and Anesthetized Rats. J. Am. Assoc. Lab. Anim. Sci. 2020, 59, 742–749. [Google Scholar] [CrossRef] [PubMed]
- López-Moraga, A.; Beckers, T.; Luyten, L. The effects of stress on avoidance in rodents: An unresolved matter. Front. Behav. Neurosci. 2022, 16, 983026. [Google Scholar] [CrossRef] [PubMed]
- Faraji, J.; Metz, G.A.S. Infrared Thermography Reveals Sex-Specific Responses to Stress in Mice. Front. Behav. Neurosci. 2020, 14, 79. [Google Scholar] [CrossRef]
- Verduzco-Mendoza, A.; Bueno-Nava, A.; Wang, D.; Martínez-Burnes, J.; Olmos-Hernández, A.; Casas, A.; Domínguez, A.; Mota-Rojas, D. Experimental Applications and Factors Involved in Validating Thermal Windows Using Infrared Thermography to Assess the Health and Thermostability of Laboratory Animals. Animals 2021, 11, 3448. [Google Scholar] [CrossRef]
- Gjendal, K.; Franco, N.H.; Ottesen, J.L.; Sørensen, D.B.; Olsson, I.A.S. Eye, body or tail? Thermography as a measure of stress in mice. Physiol. Behav. 2018, 196, 135–143. [Google Scholar] [CrossRef]
- Whittaker, A.L.; Muns, R.; Wang, D.; Martínez-Burnes, J.; Hernández-Ávalos, I.; Casas-Alvarado, A.; Domínguez-Oliva, A.; Mota-Rojas, D. Assessment of Pain and Inflammation in Domestic Animals Using Infrared Thermography: A Narrative Review. Animals 2023, 13, 2065. [Google Scholar] [CrossRef]
- Lecorps, B.; Rödel, H.G.; Féron, C. Assessment of anxiety in open field and elevated plus maze using infrared thermography. Physiol. Behav. 2016, 157, 209–216. [Google Scholar] [CrossRef]
- Zevgolis, Y.G.; Zannetos, S.P.; Akriotis, T. Physiological response of a wild rodent to experimental manipulations in its natural environment using infrared thermography. Hystrix It. J. Mamm. 2022, 33, 80–91. [Google Scholar] [CrossRef]
- Wokke, E.S. Refinement: Evaluating Stress and Accuracy of Different Intraperitoneal Techniques in Mice. Master’s Thesis, University of Utrecht, Utrecht, The Netherlands, February 2017. [Google Scholar]
- International Committee on Veterinary Gross Anatomical Nomenclature. Nomina Anatomica Veterinaria; World Association of Veterinary Anatomist: Hanover, Germany, 2017; pp. 1–178. [Google Scholar]
- Hutu, I.; Paras, I.; Gherghel, D.; Lungu, B.; Mircu, C. Application of Infrared Thermography in Rabbit Orthopaedic Models; Universitatea de Științe Agricole și Medicină Veterinară: Iași, Romania, 2018. [Google Scholar]
- Lezama-García, K.; Mota-Rojas, D.; Martínez-Burnes, J.; Villanueva-García, D.; Domínguez-Oliva, A.; Gómez-Prado, J.; Mora-Medina, P.; Casas-Alvarado, A.; Olmos-Hernández, A.; Soto, P.; et al. Strategies for Hypothermia Compensation in Altricial and Precocial Newborn Mammals and Their Monitoring by Infrared Thermography. Vet. Sci. 2022, 9, 246. [Google Scholar] [CrossRef]
- Mousovich-Neto, F.; Matos, M.S.; Costa, A.C.R.; Melo Reis, R.A.; Atella, G.C.; Miranda-Alves, L.; Carvalho, D.P.; Ketzer, L.A.; Corrêa da Costa, V.M. Brown adipose tissue remodelling induced by corticosterone in male Wistar rats. Exp. Physiol. 2019, 104, 514–528. [Google Scholar] [CrossRef]
- Jackson, D.; Hambly, C.; Trayhurn, P.; Speakman, J. Can non-shivering thermogenesis in brown adipose tissue following NA injection be quantified by changes in overlying surface temperatures using infrared thermography? J. Therm. Biol. 2001, 26, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Kataoka, N.; Shima, Y.; Nakajima, K.; Nakamura, K. A central master driver of psychosocial stress responses in the rat. Science 2020, 367, 1105–1112. [Google Scholar] [CrossRef] [PubMed]
- Owens, N.C.; Ootsuka, Y.; Kanosue, K.; McAllen, R.M. Thermoregulatory Control of Sympathetic Fibres Supplying the Rat’s Tail. J. Physiol. 2002, 543, 849–858. [Google Scholar] [CrossRef] [PubMed]
- Blenkuš, U.; Gerós, A.F.; Carpinteiro, C.; de Aguiar, P.C.; Olsson, I.A.S.; Franco, N.H. Non-Invasive Assessment of Mild Stress-Induced Hyperthermia by Infrared Thermography in Laboratory Mice. Animals 2022, 12, 177. [Google Scholar] [CrossRef] [PubMed]
- Redaelli, V.; Papa, S.; Marsella, G.; Grignaschi, G.; Bosi, A.; Ludwig, N.; Luzi, F.; Vismara, I.; Rimondo, S.; Veglianese, P.; et al. A refinement approach in a mouse model of rehabilitation research. Analgesia strategy, reduction approach and infrared thermography in spinal cord injury. PLoS ONE 2019, 14, e0224337. [Google Scholar] [CrossRef]
- Gariepy, C.; Amiot, J.; Nadai, S. Ante-mortem detection of PSE and DFD by infrared thermography of pigs before stunning. Meat Sci. 1989, 25, 37–41. [Google Scholar] [CrossRef]
- Flores-Peinado, S.; Mota-Rojas, D.; Guerrero-Legarreta, I.; Mora-Medina, P.; Cruz-Monterrosa, R.; Gómez-Prado, J.; Guadalupe Hernández, M.; Cruz-Playas, J.; Martínez-Burnes, J. Physiological responses of pigs to preslaughter handling: Infrared and thermal imaging applications. Int. J. Vet. Sci. Med. 2020, 8, 71–84. [Google Scholar] [CrossRef]
- Diario Oficial de la Federación Normal Oficial Mexicana (NOM-062-ZOO-1999). Especificaciones Técnicas para la Producción, Cuidado y Uso de los Animales de Laboratorio. Available online: https://www.gob.mx/cms/uploads/attachment/file/203498/NOM-062-ZOO-1999_220801.pdf (accessed on 20 June 2023).
- Kovalcsik, R.; Devlin, T.; Loux, S.; Martinek, M.; May, J.; Pickering, T.; Tapp, R.; Wilson, S.; Serota, D. Animal reuse: Balancing scientific integrity and animal welfare. Lab. Anim. 2006, 35, 49–53. [Google Scholar] [CrossRef]
- Lofgren, J.L.; Foley, P.L.; Golledge, H.D.R. Anesthesia, analgesia, and euthanasia. In The Laboratory Rat; Suckow, M.A., Hankenson, R., Wilson, R., Foley, P.L., Eds.; Academic Press: London, UK, 2020; pp. 699–745. [Google Scholar]
- Risling, T.E.; Caulkett, N.A.; Florence, D. Open-drop anesthesia for small laboratory animals. Can. Vet. J. Rev. Vet. Can. 2012, 53, 299–302. [Google Scholar]
- de Brito, C.F.; Evangelista, A.A.; Felippe, R.M.; Cascabulho, C.; Fragoso, V.M.; de Oliveira, G.M. Laboratory Mice Euthanasia: Speed Death and Animal Welfare. Am. J. Biomed. Sci. Res. 2020, 8, 341–355. [Google Scholar] [CrossRef]
- Ko, M.J.; Mulia, G.E.; van Rijn, R.M. Commonly Used Anesthesia/Euthanasia Methods for Brain Collection Differentially Impact MAPK Activity in Male and Female C57BL/6 Mice. Front. Cell. Neurosci. 2019, 13, 96. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, S.; Hickman, D. Isoflurane and Carbon Dioxide Elicit Similar Behavioral Responses in Rats. Animals 2020, 10, 1431. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Uh, J.; Brier, M.R.; Hart, J.; Yezhuvath, U.S.; Gu, H.; Yang, Y.; Lu, H. The Influence of Carbon Dioxide on Brain Activity and Metabolism in Conscious Humans. J. Cereb. Blood Flow Metab. 2011, 31, 58–67. [Google Scholar] [CrossRef]
- Leach, M.C.; Bowell, V.A.; Allan, T.F.; Morton, D.B. Degrees of aversion shown by rats and mice to different concentrations of inhalational anaesthetics. Vet. Rec. 2002, 150, 808–815. [Google Scholar] [CrossRef] [PubMed]
- Hickman, D.L. Interpreting Neuroendocrine Hormones, Corticosterone, and Blood Glucose to Assess the Wellbeing of Anesthetized Rats during Euthanasia. J. Am. Assoc. Lab. Anim. Sci. 2018, 57, 725–728. [Google Scholar] [CrossRef]
- Borovsky, V.; Herman, M.; Dunphy, G.; Caplea, A.; Ely, D. CO2 asphyxia increases plasma norepinephrine in rats via sympathetic nerves. Am. J. Physiol. Integr. Comp. Physiol. 1998, 274, R19–R22. [Google Scholar] [CrossRef]
- Powell, K.; Ethun, K.; Taylor, D.K. The effect of light level, CO2 flow rate, and anesthesia on the stress response of mice during CO2 euthanasia. Lab. Anim. 2016, 45, 386–395. [Google Scholar] [CrossRef]
- Khokhlova, O.N.; Borozdina, N.A.; Sadovnikova, E.S.; Pakhomova, I.A.; Rudenko, P.A.; Korolkova, Y.V.; Kozlov, S.A.; Dyachenko, I.A. Comparative Study of the Aftereffect of CO2 Inhalation or Tiletamine–Zolazepam–Xylazine Anesthesia on Laboratory Outbred Rats and Mice. Biomedicines 2022, 10, 512. [Google Scholar] [CrossRef]
- Hackbarth, H.; Küppers, N.; Bohnet, W. Euthanasia of rats with carbon dioxide-animal welfare aspects. Lab. Anim. 2000, 34, 91–96. [Google Scholar] [CrossRef]
- Hampton, A. Euthanizing agents. In Veterinary Pharmacology & Therapeutics; Riviere, J., Papich, M., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2018; pp. 387–394. [Google Scholar]
- Sio, L.C.O.; Varbanova, M.; Bautista, A. Isoflurane: Mechanisms and applications. In Treatments, Mechanisms, and Adverse Reactions of Anesthetics and Analgesics; Rajendram, R., Patel, V.B., Preedy, V.R., Martin, C.R., Eds.; Elsevier: London, UK, 2022; pp. 101–108. [Google Scholar]
- Frost, K.; Shah, M.; Leung, V.S.Y.; Pang, D.S.J. Aversion to Desflurane and Isoflurane in Sprague-Dawley Rats (Rattus norvegicus). Animals 2020, 10, 950. [Google Scholar] [CrossRef] [PubMed]
- Boivin, G.P.; Bottomley, M.A.; Schiml, P.A.; Goss, L.; Grobe, N. Physiologic, behavioral, and histologic responses to various euthanasia methods in C57BL76NTac male mice. J. Am. Assoc. Lab. Anim. Sci. 2017, 56, 69–78. [Google Scholar] [PubMed]
- Valentine, H.; Williams, W.O.; Maurer, K.J. Sedation or inhalant anesthesia before euthanasia with CO2 does not reduce behavioral or physiologic signs of pain and stress in mice. J. Am. Assoc. Lab. Anim. Sci. 2012, 51, 50–57. [Google Scholar] [PubMed]
- Zardooz, H.; Rostamkhani, F.; Zaringhalam, J.; Faraji, S. Plasma corticosterone, insulin and glucose changes induced by brief exposure to isoflurane, diethyl ether and CO2 in male rats. Physiol. Res. 2010, 59, 973–978. [Google Scholar] [CrossRef]
- Angilletta, M.J.; Youngblood, J.P.; Neel, L.K.; VandenBrooks, J.M. The neuroscience of adaptive thermoregulation. Neurosci. Lett. 2019, 692, 127–136. [Google Scholar] [CrossRef]
- Wright, C.L.; Boulant, J.A. Carbon dioxide and pH effects on temperature-sensitive and -insensitive hypothalamic neurons. J. Appl. Physiol. 2007, 102, 1357–1366. [Google Scholar] [CrossRef]
- Creamer-Hente, M.A.; Lao, F.K.; Dragos, Z.P.; Waterman, L.L. Sex- and Strain-related Differences in the Stress Response of Mice to CO2 Euthanasia. J. Am. Assoc. Lab. Anim. Sci. 2018, 57, 513–519. [Google Scholar] [CrossRef]
- Moffitt, A.D.; Brignolo, L.L.; Ardeshir, A.; Creamer-Hente, M.A. The Role of Emotional Contagion in the Distress Exhibited by Grouped Mice Exposed to CO2. J. Am. Assoc. Lab. Anim. Sci. 2019, 58, 430–437. [Google Scholar] [CrossRef]
- Altholtz, L.Y.; Fowler, K.A.; Badura, L.L.; Kovacs, M.S. Comparison of the stress response in rats to repeated isoflurane or CO2:O2 anesthesia used for restraint during serial blood collection via the jugular vein. J. Am. Assoc. Lab. Anim. Sci. 2006, 45, 17–22. [Google Scholar]
- Nazari, S.; Kourosh-Arami, M.; Komaki, A.; Hajizadeh, S. Relative contribution of central and peripheral factors in superficial blood flow regulation following cold exposure. Physiol. Pharmacol. 2020, 24, 89–100. [Google Scholar] [CrossRef]
- Sutherland, M.A.; Worth, G.M.; Dowling, S.K.; Lowe, G.L.; Cave, V.M.; Stewart, M. Evaluation of infrared thermography as a non-invasive method of measuring the autonomic nervous response in sheep. PLoS ONE 2020, 15, e0233558. [Google Scholar] [CrossRef] [PubMed]
- Casas-Alvarado, A.; Mota-Rojas, D.; Hernández-Avalos, I.; Martínez-Burnes, J.; Rosas, M.; Miranda-Cortés, A.E.; Domínguez-Oliva, A.; Mora-Medina, P. Assessment of thermal response, cardiorespiratory parameters and postoperative analgesia in dogs undergoing ovariohysterectomy with different combinations of epidural anesthesia and isoflurane. J. Anim. Behav. Biometeorol. 2023, 11, e2023009. [Google Scholar] [CrossRef]
- Vogel, B.; Wagner, H.; Gmoser, J.; Wörner, A.; Löschberger, A.; Peters, L.; Frey, A.; Hofmann, U.; Frantz, S. Touch-free measurement of body temperature using close-up thermography of the ocular surface. MethodsX 2016, 3, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Vianna, D.M.L.; Carrive, P. Changes in cutaneous and body temperature during and after conditioned fear to context in the rat. Eur. J. Neurosci. 2005, 21, 2505–2512. [Google Scholar] [CrossRef]
- Nijland, N. The Influence of Different Types of Behaviour on the Eye Temperature of Mice using Infrared Thermograohy. Master’s Thesis, Utrecht University, Utrecht, The Netherlands, 2021. [Google Scholar]
- Wirth, S.; Gebhardt-Henrich, S.; Riemer, S.; Hattendorf, J.; Zinsstag, J.; Hediger, K. The influence of human interaction on guinea pigs: Behavioral and thermographic changes during animal-assisted therapy. Physiol. Behav. 2020, 225, 113076. [Google Scholar] [CrossRef]
- Wongsaengchan, C.; McCafferty, D.J.; Evans, N.P.; McKeegan, D.E.F.; Nager, R.G. Body surface temperature of rats reveals both magnitude and sex differences in the acute stress response. Physiol. Behav. 2023, 264, 114138. [Google Scholar] [CrossRef]
- Insler, S.R.; Sessler, D.I. Perioperative Thermoregulation and Temperature Monitoring. Anesthesiol. Clin. N. Am. 2006, 24, 823–837. [Google Scholar] [CrossRef]
- Jaén-Téllez, J.A.; Sánchez-Guerrero, M.J.; López-Campos, J.I.; Valera, M.; González-Redondo, P. Acute stress assessment using infrared thermography in fattening rabbits reacting to handling under winter and summer conditions. Span. J. Agric. Res. 2020, 18, e0502. [Google Scholar] [CrossRef]
- Xu, Z.; Agbigbe, O.; Nigro, N.; Yakobi, G.; Shapiro, J.; Ginosar, Y. Use of high-resolution thermography as a validation measure to confirm epidural anesthesia in mice: A cross-over study. Int. J. Obstet. Anesth. 2021, 46, 102981. [Google Scholar] [CrossRef]
- Miyazono, S.; Hasegawa, K.; Miyazaki, S.; Sakakima, H.; Konno, S.; Meguro, S.; Sasajima, H.; Noguchi, T.; Osada, K.; Kashiwayanagi, M. Etizolam attenuates the reduction in cutaneous temperature induced in mice by exposure to synthetic predator odor. Eur. J. Pharmacol. 2018, 824, 157–162. [Google Scholar] [CrossRef]
- Weitkamp, J. Effect of Tickling and Gentling on Eye and Tail Temperature of Laboratory Rats during Manual Restraint, using Infrared Thermography. Master’s Thesis, Utrecht University, Utrecht, The Netherlands, 2020. [Google Scholar]
- Munting, L.P.; Derieppe, M.P.P.; Suidgeest, E.; Denis de Senneville, B.; Wells, J.A.; Weerd, L. Influence of different isoflurane anesthesia protocols on murine cerebral hemodynamics measured with pseudo-continuous arterial spin labeling. NMR Biomed. 2019, 32, e4105. [Google Scholar] [CrossRef] [PubMed]
- Faraji, J.; Ambeskovic, M.; Sauter, N.; Toly, J.; Whitten, K.; Lopes, N.A.; Olson, D.M.; Metz, G.A.S. Sex-specific stress and biobehavioral responses to human experimenters in rats. Front. Neurosci. 2022, 16, 965500. [Google Scholar] [CrossRef] [PubMed]
- Hickman, D.L. Minimal Exposure Times for Irreversible Euthanasia with Carbon Dioxide in Mice and Rats. J. Am. Assoc. Lab. Anim. Sci. 2022, 61, 283–286. [Google Scholar] [CrossRef]
- Van Rijn, C.M.; Krijnen, H.; Menting-Hermeling, S.; Coenen, A.M.L. Decapitation in Rats: Latency to Unconsciousness and the ‘Wave of Death’. PLoS ONE 2011, 6, e16514. [Google Scholar] [CrossRef] [PubMed]
- Hudetz, J.A.; Pagel, P.S. Neuroprotection by Ketamine: A Review of the Experimental and Clinical Evidence. J. Cardiothorac. Vasc. Anesth. 2010, 24, 131–142. [Google Scholar] [CrossRef]
- Miranda-Cortés, A.E.; Ruiz-García, A.G.; Olivera-Ayub, A.E.; Garza-Malacara, G.; Ruiz-Cervantes, J.G.; Toscano-Zapien, J.A.; Hernández-Avalos, I. Cardiorespiratory effects of epidurally administered ketamine or lidocaine in dogs undergoing ovariohysterectomy surgery: A comparative study. Iran. J. Vet. Res. 2020, 21, 92–96. [Google Scholar] [PubMed]
- Gómez-Hernández, A.; Beneit, N.; Díaz-Castroverde, S.; Escribano, Ó. Differential Role of Adipose Tissues in Obesity and Related Metabolic and Vascular Complications. Int. J. Endocrinol. 2016, 2016, 1216783. [Google Scholar] [CrossRef] [PubMed]
- Mota-Rojas, D.; Titto, C.G.; de Mira Geraldo, A.; Martínez-Burnes, J.; Gómez, J.; Hernández-Ávalos, I.; Casas, A.; Domínguez, A.; José, N.; Bertoni, A.; et al. Efficacy and Function of Feathers, Hair, and Glabrous Skin in the Thermoregulation Strategies of Domestic Animals. Animals 2021, 11, 3472. [Google Scholar] [CrossRef]
Groups | Basal | Ti1 | Ti2 | Ti3 | Ti4 | p-Value | |
---|---|---|---|---|---|---|---|
T°max | G1 (n = 10) | 36.62 ± 0.56 a,1 | 35.85 ± 0.84 a,1 | 35.88 ± 0.83 a,1 | 36.44 ± 0.36 a,2,3 | 36.25 ± 0.38 a,3 | p = 0.97 |
G2 (n = 10) | 36.03 ± 0.76 b,1 | 35.93 ± 0.65 b,1 | 34.10 ± 1.65 a,b,2 | 34.90 ± 0.91 a,b,2 | 33.78 ± 1.18 a,2 | p = 0.007 | |
G3 (n = 10) | 36.62 ± 0.39 a,1 | 36.26 ± 0.56 a,1 | 35.60 ± 1.25 a,1 | 35.97 ± 0.52 a,2,3 | ND | p = 0.98 | |
G4 (n = 10) | 36.46 ± 0.39 b,1 | 35.82 ± 0.48 b,1 | 29.76 ± 1.61 a,2 | 29.9 ± 1.34 a,1 | 30.41 ± 0.96 a,1 | p = 0.0001 | |
G5 (n = 10) | 36.52 ± 0.39 a,1 | 36.66 ± 1.08 a,1 | 36.50 ± 1.16 a,1 | 36.83 ± 0.81 a,3 | 36.54 ± 0.52 a,3 | p = 0.99 | |
G6 (n = 10) | 36.88 ± 0.69 a,1 | 36.18 ± 1.07 a,1 | 36.19 ± 1.03 a,1 | 36.80 ± 0.10 a,3 | 35.85 ± 0.90 a,3 | p = 0.11 | |
p-value | p = 0.89 | p = 0.88 | p = 0.0005 | p = 0.0006 | p = 0.0001 | ||
T°min | G1 (n = 10) | 34.04 ± 0.90 a,2 | 33.28 ± 0.88 a,1 | 33.42 ± 0.56 a,3 | 34.26 ± 0.59 a,3 | 34.23 ± 0.47 a,3 | p = 0.49 |
G2 (n = 10) | 32.91 ± 0.77 a,1,2 | 33.33 ± 0.47 c,1 | 30.78 ± 1.22 a,1,2 | 32.34 ± 0.97 b,c,2 | 31.24 ± 1.24 a,b,2 | p = 0.0042 | |
G3 (n = 10) | 33.94 ± 0.55 a,1,2 | 33.55 ± 0.68 a,1 | 32.05 ± 1.06 a,2,3 | 32.88 ± 1.01 a,2,3 | ND | p = 0.12 | |
G4 (n = 10) | 32.73 ± 0.94 b,1,2 | 31.93 ± 0.93 b,1 | 28.35 ± 1.30 a,1 | 28.50 ± 1.10 a,1 | 28.87 ± 0.83 a,1 | p = 0.0001 | |
G5 (n = 10) | 32.49 ± 0.93 a,1 | 32.45 ± 0.77 a,1 | 32.66 ± 1.21 a,2,3 | 32.70 ± 1.07 a,2,3 | 32.47 ± 0.89 a,2 | p = 0.99 | |
G6 (n = 10) | 34.48 ± 0.97 a,1,2 | 33.64 ± 1.35 a,1 | 34.09 ± 1.18 a,3 | 34.69 ± 1.00 a,3 | 33.78 ± 1.59 a,2 | p = 0.99 | |
p-value | p = 0.0023 | p = 0.99 | p = 0.0002 | p = 0.0007 | p = 0.0010 | ||
T°mean | G1 (n = 10) | 35.58 ± 0.61 a,1 | 34.75 ± 0.96 a,1 | 34.88 ± 0.73 a,2,3 | 35.48 ± 0.31 a,3,4 | 35.36 ±0.38 a,3 | p = 0.99 |
G2 (n = 10) | 34.88 ± 0.71 a,b,1 | 34.90 ± 0.47 b,1 | 32.89 ± 1.44 a,b,1,2 | 33.79 ± 0.92 a,b,2 | 32.73 ±1.21 a,2 | p = 0.0097 | |
G3 (n = 10) | 35.51 ± 0.40 a,1 | 35.10 ± 0.49 a,1 | 34.15 ± 1.40 a,2,3 | 34.88 ± 0.49 a,2,3 | ND | p = 0.98 | |
G4 (n = 10) | 34.96 ± 0.62 a,1 | 34.21 ± 0.54 a,1 | 29.14 ± 1.46 b,1 | 29.30 ± 1.23 b,1 | 29.77 ± 0.88 b,1 | p = 0.0001 | |
G5 (n = 10) | 34.84 ± 0.46 a,1 | 34.79 ± 0.94 a,1 | 34.94 ± 1.20 a,2,3 | 35.10 ± 0.86 a,3,4 | 34.89 ± 0.66 a,2,3 | p = 0.99 | |
G6 (n = 10) | 35.90 ± 0.77 a,1 | 35.05 ± 1.25 a,1 | 35.38 ± 1.18 a,3 | 35.96 ± 0.47 a,4 | 34.98 ± 1.23 a,3 | p = 0.67 | |
p-value | p = 0.20 | p = 0.24 | p = 0.0007 | p = 0.0002 | p = 0.0019 |
Groups | Basal | Ti1 | Ti2 | Ti3 | Ti4 | p-Value | |
---|---|---|---|---|---|---|---|
T°max | G1 (n = 10) | 38.42 ± 0.57 a,1 | 37.70 ± 0.37 a,1 | 37.41 ± 0.96 a,2 | 38.47 ± 0.37 a,3 | 38.35 ± 0.81 a,2 | p = 0.09 |
G2 (n = 10) | 36.06 ± 0.89 a,2,4 | 36.63 ± 0.70 a,1 | 33.80 ± 3.95 a,1,2 | 34.72 ± 1.80 a,2 | 32.64 ± 4.40 a,1,2 | p = 0.68 | |
G3 (n = 10) | 36.68 ± 0.64 a,2,3 | 37.26 ± 0.66 a,1 | 36.03 ± 2.16 a,2 | 36.44 ± 1.64 a,2,3 | ND | p = 0.95 | |
G4 (n = 10) | 36.99 ± 1.16 b,1,3,4 | 36.87 ± 0.97 b,1 | 29.76 ± 2.10 a,1 | 30.54 ± 2.08 a,1 | 30.90 ± 1.21 a,1 | p = 0.0003 | |
G5 (n = 10) | 37.47 ± 0.70 a,1,3 | 37.13 ± 1.37 a,1 | 35.37 ± 2.37 a,1,2 | 37.73 ± 1.41 a,2,3 | 38.04 ± 0.89 a,2 | p = 0.20 | |
G6 (n = 10) | 38.15 ± 0.71 a,1 | 37.70 ± 0.58 a,1 | 37.89 ± 0.87 a,2 | 38.67 ± 0.48 a,3 | 37.44 ± 1.38 a,2 | p = 0.13 | |
p-value | p = 0.0119 | p = 0.1226 | p = 0.0003 | p = 0.0001 | p = 0.0003 | ||
T°min | G1 (n = 10) | 32.25 ± 1.27 a,1 | 31.36 ± 0.91 a,1 | 31.97 ± 1.57 a,2 | 32.53 ± 0.88 a,3 | 31.92 ± 1.04 a,3 | p = 0.92 |
G2 (n = 10) | 30.24 ± 0.94 b,2 | 29.78 ± 1.15 a,b,1 | 28.89 ± 3.58 a,b,1,2 | 27.67 ± 1.43 a,b,1 | 27.53 ± 1.30 a,1 | p = 0.03 | |
G3 (n = 10) | 30.19 ± 0.94 a,2 | 30.22 ± 1.09 a,1 | 29.77 ± 1.71 a,1,2 | 31.17 ± 1.2 a,2,3 | ND | p = 0.87 | |
G4 (n = 10) | 31.95 ± 0.99 b,1 | 31.22 ± 0.75 b,1 | 27.81 ± 1.15 a,1 | 28.31 ± 1.50 a,1,2 | 28.88 ± 1.06 a,1,2 | p = 0.0023 | |
G5 (n = 10) | 32.06 ± 0.83 a,1 | 31.57 ± 1.73 a,1 | 31.90 ± 1.97 a,1,2 | 31.44 ± 1.81 a,2,3 | 32.61 ± 1.57 a,3 | p = 0.82 | |
G6 (n = 10) | 32.56 ± 1.22 a,1 | 31.61 ± 0.97 a,1 | 32.80 ± 1.34 a,2 | 32.35 ± 0.74 a,3 | 30.99 ± 1.98 a,2,3 | p = 0.59 | |
p-value | p = 0.0004 | p = 0.4742 | p = 0.0005 | p = 0.0010 | p = 0.0018 | ||
T°mean | G1 (n = 10) | 35.85 ± 0.84 a,1 | 35.0 ± 0.65 a,1,2 | 34.70 ± 1.09 a,2 | 36.24 ± 0.63 a,2 | 35.77 ± 0.80 a,3 | p = 0.08 |
G2 (n = 10) | 33.60 ± 0.92 a,1 | 33.78 ± 0.69 a,1 | 30.80 ± 2.83 a,1,2 | 31.60 ± 1.61 a,1 | 31.49 ± 2.42 a,1,2 | p = 0.25 | |
G3 (n = 10) | 34.08 ± 0.94 a,1 | 34.32 ± 0.82 a,1,2 | 33.55 ± 1.15 a,2 | 34.40 ± 1.64 a,2 | ND | p = 0.91 | |
G4 (n = 10) | 34.82 ± 0.54 a,1 | 34.47 ± 0.92 a,1,2 | 29.0 ± 1.76 b,1 | 29.78 ± 1.90 b,1 | 30.05 ± 1.20 b,1 | p = 0.0011 | |
G5 (n = 10) | 35.27 ± 0.75 a,1 | 34.85 ± 1.45 a,1,2 | 33.78 ± 2.23 a,2 | 35.21 ± 1.67 a,2 | 36.02 ± 1.22 a,1,2 | p = 0.43 | |
G6 (n = 10) | 35.88 ± 0.99 a,1 | 35.11 ± 0.62 a,2 | 35.06 ± 2.26 a,2 | 35.58 ± 2.04 a,2 | 34.57 ± 1.85 a,2,3 | p = 0.98 | |
p-value | p = 0.06 | p = 0.02 | p = 0.0005 | p = 0.001 | p = 0.04 |
Groups | Basal | Ti1 | Ti2 | Ti3 | Ti4 | p-Value | |
---|---|---|---|---|---|---|---|
T°max | G1 (n = 10) | 33.28 ± 0.78 a,1 | 32.04 ± 1.14 a,1 | 33.07 ± 0.94 a,2 | 32.57 ± 0.67 a,2 | 33.07 ± 0.87 a,2 | p = 0.89 |
G2 (n = 10) | 32.88 ± 1.10 b,1 | 31.47 ± 0.91 a,1 | 30.41 ± 0.98 a,1 | 31.37 ± 1.39 a,2 | 31.20 ± 0.75 a,1 | p = 0.01 | |
G3 (n = 10) | 33.58 ± 0.84 a,b,1 | 32.09 ± 1.57 a,1 | 34.78 ± 0.82 b,2 | 34.76 ± 1.14 b,3 | ND | p = 0.001 | |
G4 (n = 10) | 32.97 ± 0.94 b,1 | 30.91 ± 0.78 a,1 | 29.04 ± 1.21 a,1 | 29.32 ± 1.01 a,1 | 29.62 ± 0.66 a,1 | p = 0.0004 | |
G5 (n = 10) | 32.55 ± 0.62 a,1 | 31.79 ± 1.22 a,1 | 33.44 ± 0.76 a,2 | 33.04 ± 1.05 a,2,3 | 33.08 ± 0.51 a,2 | p = 0.09 | |
G6 (n = 10) | 32.91 ± 0.72 b,1 | 31.77 ± 0.55 a,1 | 33.01 ± 1.30 a,2 | 32.73 ± 1.02 a,b,2,3 | 31.51 ± 1.06 a,1,2 | p = 0.06 | |
p-value | p = 0.16 | p = 0.47 | p = 0.005 | p = 0.002 | p = 0.008 | ||
T°min | G1 (n = 10) | 31.51 ± 0.59 a,1 | 30.32 ± 0.81 a,1 | 30.35 ± 0.53 a,2 | 30.75 ± 0.48 a,3 | 31.23 ± 0.73 a,3 | p = 0.15 |
G2 (n = 10) | 30.98 ± 0.96 b,1 | 29.54 ± 0.62 a,1 | 28.89 ± 3.37 b,1 | 28.13 ± 0.88 b,1 | 28.39 ± 1.51 b,1 | p = 0.01 | |
G3 (n = 10) | 31.80 ± 0.56 a,1 | 30.20 ± 0.65 a,1 | 30.15 ± 1.97 a,2 | 29.97 ± 2.43 a,2 | ND | p = 0.07 | |
G4 (n = 10) | 31.27 ± 1.22 b,1 | 29.55 ± 0.90 a,1 | 28.17 ± 1.34 a,1 | 28.30 ± 0.88 a,1,2 | 28.64 ± 0.78 a,1 | p = 0.008 | |
G5 (n = 10) | 31.18 ± 0.49 a,1 | 29.89 ± 1.51 a,1 | 31.38 ± 1.36 a,3 | 30.88 ± 1.16 a,3 | 30.72 ± 0.50 a,2 | p = 0.50 | |
G6 (n = 10) | 31.54 ± 0.61 c,1 | 30.20 ± 0.74 b,1 | 30.88 ± 0.70 b,2,3 | 30.63 ± 1.37 b,2,3 | 28.77 ± 0.73 a,1 | p = 0.007 | |
p-value | p = 0.73 | p = 0.33 | p = 0.01 | p = 0.02 | p = 0.003 | ||
T°mean | G1 (n = 10) | 32.46 ± 0.75 c,1 | 31.06 ± 0.82 a,1 | 31.58 ± 0.73 a,b,2 | 31.62 ± 0.41 a,b,c,3 | 32.12 ± 0.75 b,c,2 | p = 0.007 |
G2 (n = 10) | 31.83 ± 1.01 b,1 | 30.58 ± 0.73 a,1 | 29.08 ± 1.05 a,1 | 29.35 ± 0.91 a,1,2 | 29.24 ± 0.68 a,1 | p = 0.009 | |
G3 (n = 10) | 32.58 ± 0.62 a,1 | 31.25 ± 1.03 a,1 | 32.48 ± 0.93 a,2 | 32.27 ± 1.05 a,3 | ND | p = 0.22 | |
G4 (n = 10) | 32.15 ± 1.01 b,1 | 30.21 ± 0.83 a,b,1 | 28.59 ± 1.28 a,1 | 28.78 ± 0.91 a,1 | 29.10 ± 0.72 a,1 | p = 0.001 | |
G5 (n = 10) | 31.84 ± 0.53 a,1 | 30.95 ± 1.27 a,1 | 32.43 ± 1.05 a,2 | 31.85 ± 0.97 a,3 | 31.78 ± 0.41 a,2 | p = 0.07 | |
G6 (n = 10) | 32.21 ± 0.66 c,1 | 31.0 ± 0.61 a,b,1 | 31.97 ± 0.64 b,c,2 | 31.24 ± 1.06 a,b,c,2,3 | 30.06 ± 0.67 a,1 | p = 0.004 | |
p-value | p = 0.57 | p = 0.99 | p = 0.0001 | p = 0.001 | p = 0.0009 |
Groups | Basal | Ti1 | Ti2 | Ti3 | Ti4 | p-Value | |
---|---|---|---|---|---|---|---|
T°prox | G1 (n = 10) | 33.42 ± 1.76 b,1 | 28.81 ± 3.2 a,1,2 | 29.69 ± 2.52 a,1,2 | 28.80 ± 1.97 b,1 | 27.99 ± 1.23 b,1 | p = 0.005 |
G2 (n = 10) | 28.09 ± 2.31 a,b,2 | 28.59 ± 1.92 a,2 | 26.14 ± 2.02 a,2 | 26.35 ± 1.88 a,1 | 25.71 ± 1.62 a,1 | p = 0.07 | |
G3 (n = 10) | 31.30 ± 1.60 a,b,2 | 31.61 ± 0.75 b,1 | 29.18 ± 0.85 a,1,2 | 28.82 ± 0.98 a,1 | ND | p = 0.004 | |
G4 (n = 10) | 31.70 ± 1.64 b,2 | 30.74 ± 1.50 b,1,2 | 26.42 ± 0.51 a,2 | 26.75 ± 0.94 a,1 | 27.36 ± 0.84 a,1 | p = 0.002 | |
G5 (n = 10) | 29.99 ± 0.65 a,2 | 29.62 ± 1.28 a,1,2 | 30.22 ± 2.01 a,1 | 29.75 ± 1.62 a,1 | 29.23 ± 1.50 a,1 | p = 0.53 | |
G6 (n = 10) | 30.31 ± 1.28 a,2 | 29.97 ± 2.11 a,1,2 | 30.01 ± 2.25 a,1,2 | 29.17 ± 2.31 a,1 | 27.82 ± 3.28 a,1 | p = 0.79 | |
p-value | p = 0.002 | p = 0.03 | p = 0.05 | p = 0.15 | p = 0.06 | ||
T°medial | G1 (n = 10) | 33.49 ± 1.79 a,3 | 27.09 ± 3.84 b,1 | 28.82 ± 2.63 b1 | 27.19 ± 2.04 b,1 | 26.21 ± 1.48 b,1 | p = 0.001 |
G2 (n = 10) | 26.75 ± 2.78 a,1 | 27.88 ± 2.29 a,1 | 25.80 ± 2.81 a,1 | 25.11 ± 2.02 a,1 | 24.56 ± 2.15 a,1 | p = 0.98 | |
G3 (n = 10) | 30.48 ± 2.07 b,2 | 30.65 ± 1.36 b,1 | 27.03 ± 1.37 a,1 | 26.83 ± 1.28 a,1 | ND | p = 0.002 | |
G4 (n = 10) | 30.65 ± 2.07 b,2 | 29.54 ± 1.89 b,1 | 25.70 ± 0.51 a,1 | 25.92 ± 1.10 a,1 | 26.06 ± 0.82 a,1 | p = 0.02 | |
G5 (n = 10) | 28.77 ± 0.91 a,2 | 28.18 ± 1.75 a,1 | 28.95 ± 3.15 a,1 | 28.18 ± 2.56 a,1 | 27.59 ± 2.30 a,1 | p = 0.78 | |
G6 (n = 10) | 29.24 ± 1.95 a,2 | 28.37 ± 2.38 a,1 | 28.54 ± 2.47 a,1 | 27.64 ± 1.48 a,1 | 25.20 ± 2.05 a,1 | p = 0.09 | |
p-value | p = 0.001 | p = 0.23 | p = 0.37 | p = 0.34 | p = 0.41 | ||
T°distal | G1 (n = 10) | 33.34 ± 2.08 c,1 | 26.50 ± 3.77 b,1 | 28.13 ± 2.68 b,1 | 26.54 ± 2.10 b,1 | 25.83 ± 1.61 b,1 | p = 0.003 |
G2 (n = 10) | 26.29 ± 2.55 a,b,3 | 27.08 ± 2.77 a,1 | 24.41 ± 2.34 a,1 | 24.30 ± 2.23 a,1 | 23.67 ± 1.90 a,1 | p = 0.20 | |
G3 (n = 10) | 29.23 ± 2.63 b,1,2 | 29.32 ± 1.73 b,1 | 25.28 ± 1.56 a,1 | 25.14 ± 1.48 a,1 | ND | p = 0.002 | |
G4 (n = 10) | 30.23 ± 2.14 c,1,2 | 28.65 ± 1.90 b,1 | 25.27 ± 0.50 a,1 | 25.67 ± 1.26 a,1 | 25.77 ± 0.78 a,1 | p = 0.02 | |
G5 (n = 10) | 28.26 ± 1.13 a,b,2 | 27.35 ± 1.79 a,1 | 28.04 ± 3.08 a,1 | 27.22 ± 2.62 a,1 | 26.86 ± 2.43 a,1 | p = 0.47 | |
G6 (n = 10) | 28.32 ± 2.32 a,b,2 | 27.48 ± 2.28 a,1 | 27.61 ± 2.60 a,1 | 26.37 ± 1.84 a,1 | 23.89 ± 1.80 a,1 | p = 0.10 | |
p-value | p = 0.005 | p = 0.74 | p = 0.33 | p = 0.65 | p = 0.19 |
Group | Time of Death (s) | Time of LORR (s) | Time of RR Cessation (s) | Time of HR Cessation (s) |
---|---|---|---|---|
G1 | 230.1 ± 42.4 | 94.2 ± 19.8 | 193.8 ± 28.8 | 230.1 ± 42.2 |
G2 | 294.2 ± 74.3 | 78 ± 29.0 | 211.8 ± 64.1 | 305.5 ± 76.3 |
G3 | 6.2 ± 4.0 | ND | ND | ND |
G4 | 390.2 ± 171.4 | 97.8 ± 49.5 | 288 ± 15.7 | 390.2 ± 17.1 |
G5 | 257.9 ± 30.1 | 67 ± 10.3 | 172.3 ± 25.6 | 257.9 ± 30.1 |
G6 | 420.3 ± 47.3 | 122.7 ± 21.8 | 291.8 ± 31.7 | 420.3 ± 47.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domínguez-Oliva, A.; Hernández-Ávalos, I.; Olmos-Hernández, A.; Villegas-Juache, J.; Verduzco-Mendoza, A.; Mota-Rojas, D. Thermal Response of Laboratory Rats (Rattus norvegicus) during the Application of Six Methods of Euthanasia Assessed by Infrared Thermography. Animals 2023, 13, 2820. https://doi.org/10.3390/ani13182820
Domínguez-Oliva A, Hernández-Ávalos I, Olmos-Hernández A, Villegas-Juache J, Verduzco-Mendoza A, Mota-Rojas D. Thermal Response of Laboratory Rats (Rattus norvegicus) during the Application of Six Methods of Euthanasia Assessed by Infrared Thermography. Animals. 2023; 13(18):2820. https://doi.org/10.3390/ani13182820
Chicago/Turabian StyleDomínguez-Oliva, Adriana, Ismael Hernández-Ávalos, Adriana Olmos-Hernández, Juan Villegas-Juache, Antonio Verduzco-Mendoza, and Daniel Mota-Rojas. 2023. "Thermal Response of Laboratory Rats (Rattus norvegicus) during the Application of Six Methods of Euthanasia Assessed by Infrared Thermography" Animals 13, no. 18: 2820. https://doi.org/10.3390/ani13182820
APA StyleDomínguez-Oliva, A., Hernández-Ávalos, I., Olmos-Hernández, A., Villegas-Juache, J., Verduzco-Mendoza, A., & Mota-Rojas, D. (2023). Thermal Response of Laboratory Rats (Rattus norvegicus) during the Application of Six Methods of Euthanasia Assessed by Infrared Thermography. Animals, 13(18), 2820. https://doi.org/10.3390/ani13182820