Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (84)

Search Parameters:
Keywords = pentobarbital

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 5136 KB  
Article
Extraction Methods and Sedative–Hypnotic Effects of Total Flavonoids from Ziziphus jujuba Mesocarp
by Jie Li, Baojian Li, Xinbo Shi, Yuangui Yang and Zhongxing Song
Pharmaceuticals 2025, 18(9), 1272; https://doi.org/10.3390/ph18091272 - 26 Aug 2025
Viewed by 335
Abstract
Background/Objectives: As a non-medicinal part resource of Ziziphus jujuba, this study focuses on the total flavonoids from Ziziphus jujuba mesocarp (TFZJM), aiming to optimize the extraction process and explore its sedative and hypnotic effects. Methods: The extraction process of TFZJM [...] Read more.
Background/Objectives: As a non-medicinal part resource of Ziziphus jujuba, this study focuses on the total flavonoids from Ziziphus jujuba mesocarp (TFZJM), aiming to optimize the extraction process and explore its sedative and hypnotic effects. Methods: The extraction process of TFZJM was optimized by using single-factor experiments and the Box-Behnken response surface design method. The material basis of TFZJM was analyzed using Ultra-Performance Liquid Chromatography-Quadrupole-Time of Flight-Mass Spectrometry (UPLC-Q-TOF-MS). The mouse insomnia model was induced by intraperitoneal injection of PCPA, and the effects of TFZJM on this model and its potential mechanism were evaluated using multiple methods, such as sleep enhancement induced by pentobarbital sodium, HE staining of tissue sections, ELISA, RT-PCR, WB, and serum metabolomics. Results: The results showed that by optimizing the extraction conditions, a solid-liquid ratio (SLR) of 1:25 g·mL−1, ethanol concentration of 60%, extraction time of 60 min, and extraction rate of 1.98% were achieved. The common chemical basis of the 10 flavonoid components was identified using UPLC-Q-TOF-MS analysis. Compared with the model group, the high-dose TFZJM (TFZJM-H) group had the most significant effect, followed by the medium-dose (TFZJM-M) and low-dose (TFZJM-L) groups. Conclusions: Metabolomic analysis revealed that TFZJM regulates pathways related to the metabolism of phenylalanine, tyrosine, cytochrome P450, and alanine. This lays the foundation for further exploration of the active substances and mechanisms of action of TFZJM in sedation and hypnosis. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

19 pages, 7365 KB  
Article
Lemon Verbena Extract Enhances Sleep Quality and Duration via Modulation of Adenosine A1 and GABAA Receptors in Pentobarbital-Induced and Polysomnography-Based Sleep Models
by Mijoo Choi, Yean Kyoung Koo, Nayoung Kim, Yunjung Lee, Dong Joon Yim, SukJin Kim, Eunju Park and Soo-Jeung Park
Int. J. Mol. Sci. 2025, 26(12), 5723; https://doi.org/10.3390/ijms26125723 - 14 Jun 2025
Viewed by 1002
Abstract
This study investigated the effects of lemon verbena extract (LVE) on sleep regulation using both a pentobarbital-induced sleep model and an EEG-based sleep assessment model in mice. To elucidate its potential mechanisms, mice were randomly assigned to five groups: control, positive control (diazepam, [...] Read more.
This study investigated the effects of lemon verbena extract (LVE) on sleep regulation using both a pentobarbital-induced sleep model and an EEG-based sleep assessment model in mice. To elucidate its potential mechanisms, mice were randomly assigned to five groups: control, positive control (diazepam, 2 mg/kg b.w.), and three LVE-treated groups receiving 40, 80, or 160 mg/kg b.w. via oral administration. In the pentobarbital-induced sleep model, mice underwent a two-week oral administration of LVE, followed by intraperitoneal pentobarbital injections. The results demonstrated that LVE significantly shortened sleep latency and prolonged sleep duration compared to the control group. Notably, adenosine A1 receptor expression, both at the mRNA and protein levels, was markedly upregulated in the brains of LVE-treated mice. Furthermore, LVE’s administration led to a significant increase in the mRNA expression of gamma-aminobutyric acid type A (GABAA) receptor subunits (α2 and β2) in brain tissue. In the electroencephalography (EEG)/electromyogram (EMG)-based sleep model, mice underwent surgical implantation of EEG and EMG electrodes, followed by one week of LVE administration. Quantitative EEG analysis revealed that LVE treatment reduced wakefulness while significantly enhancing REM and NREM sleep’s duration, indicating its potential sleep-promoting effects. These findings suggest that LVE may serve as a promising natural sleep aid, improving both the quality and duration of sleep through the modulation of adenosine and GABAergic signaling pathways. Full article
(This article belongs to the Special Issue Natural Medicines and Functional Foods for Human Health)
Show Figures

Figure 1

19 pages, 3886 KB  
Article
Hippocampal Transcriptome Analysis in a Mouse Model of Chronic Unpredictable Stress Insomnia
by Shuo Zhang, Changqing Tong, Na Cao, Dong Tian, Linshan Du, Ya Xu, Weiguang Wang, Zijie Chen and Shuangqing Zhai
Biomedicines 2025, 13(5), 1205; https://doi.org/10.3390/biomedicines13051205 - 15 May 2025
Viewed by 895
Abstract
Background: This study aimed to develop a model for understanding stress-induced sleep disturbances and to explore the potential interactions between sleep disturbances and mood disturbances. Methods: The chronic unpredictable mild stress (CUMS) group was established using the CUMS method, while the [...] Read more.
Background: This study aimed to develop a model for understanding stress-induced sleep disturbances and to explore the potential interactions between sleep disturbances and mood disturbances. Methods: The chronic unpredictable mild stress (CUMS) group was established using the CUMS method, while the CUMS+Noise group was subjected to an additional 8-h exposure to noise in conjunction with the CUMS protocol. Each group was tested for anxiety and depressive-like behavior using the open-field, elevated plus maze, tail suspension, and forced swimming tests in male C57BL/6J mice. Subsequently, we assessed sleep status using sleep recordings and a standardized scoring system alongside the pentobarbital sodium-induced sleep test. Results: The mice in both model groups exhibited anxiety-like behavior. Sleep disturbances observed in the CUMS+Noise group were characterized by disruptions in sleep duration and circadian rhythm. This observation was supported by a marked reduction in multiple sleep time intervals and single sleep duration, as well as a significant increase in sleep duration at the final time interval of ZT23-24. To further investigate the potential mechanisms of interaction, we conducted an analysis of hub genes present in the hippocampal sequencing data utilizing weighted gene co-expression network analysis (WGCNA). Pearson correlation analysis revealed a significant association between the hub genes Alb, P2rx1, and Npsr1 and key phenotypic traits. However, PCR experiments indicated that only Alb showed a significant difference, which aligns with the sequencing results. Conclusions: Albumin is a crucial transporter protein for thyroid hormones and plays a vital role in their metabolism. The interaction between sleep disorders and anxiety-like behavior may be closely linked to the dysfunctional transportation of thyroid hormones by albumin. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Figure 1

22 pages, 12924 KB  
Article
In Vitro Biotransformation of Ziziphi Spinosae Semen Saponins by Gut Microbiota from Healthy and Insomniac Groups
by Xiaofang Cui, Shengmei Zhang, Ling He, Huizhu Duan, Yujun Xie, Xiangping Pei, Yan Yan and Chenhui Du
Int. J. Mol. Sci. 2025, 26(9), 4011; https://doi.org/10.3390/ijms26094011 - 24 Apr 2025
Viewed by 689
Abstract
Ziziphi Spinosae Semen saponins (ZSSS) show sedative–hypnotic activity but have very low bioavailability, potentially due to their conversion into bioactive metabolites by gut microbiota. In this study, the biotransformation of ZSSS by gut microbiota from healthy humans and patients with insomnia in vitro [...] Read more.
Ziziphi Spinosae Semen saponins (ZSSS) show sedative–hypnotic activity but have very low bioavailability, potentially due to their conversion into bioactive metabolites by gut microbiota. In this study, the biotransformation of ZSSS by gut microbiota from healthy humans and patients with insomnia in vitro was analyzed. A total of 21 prototype compounds and 49 metabolites were identified using UHPLC-Q-Orbitrap-MS. Deglycosylation, deoxygenation, dehydration, and deacylation were detected in both healthy individuals and insomniacs. However, oxidation and hydrogenation were uniquely observed in insomniacs. ZSSS can enhance beneficial bacteria, such as Veillonella, Dialister, and Bacteroides. ZSSS can promote the synthesis of short-chain fatty acids (SCFAs), especially acetic acid, propionic acid, and butyric acid. Furthermore, it was found that the sedative–hypnotic activity of ZSSS was enhanced after biotransformation, as determined by a sodium pentobarbital-induced sleeping test (SPST), open-field behavior test (OFBT), and molecular docking experiment (MDE). These results collectively offer valuable insight into the mechanism of action of ZSSS. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Graphical abstract

23 pages, 44785 KB  
Article
Total Alkaloid Extract of Nelumbinis Plumula Promoted Sleep in PCPA-Induced Insomnia Rats by Affecting Neurotransmitters and Their Receptor Activities
by Wenjun Wei, Dongge Wang, Hangying Li, Hongyu Tian, Zhilei Wang and Suxiang Feng
Int. J. Mol. Sci. 2025, 26(8), 3684; https://doi.org/10.3390/ijms26083684 - 13 Apr 2025
Viewed by 799
Abstract
Insomnia seriously affects people’s health and daily life. There is a growing interest in sleep-promoting agents from natural sources. Nelumbinis Plumula (NP), a traditional Chinese medicine with dual food-medicine homology, has the effects of clearing the heart and calming the mind, showing promising [...] Read more.
Insomnia seriously affects people’s health and daily life. There is a growing interest in sleep-promoting agents from natural sources. Nelumbinis Plumula (NP), a traditional Chinese medicine with dual food-medicine homology, has the effects of clearing the heart and calming the mind, showing promising efficacy in treating insomnia. In this study, the effects of NP extract, total alkaloid extract of NP, and crude polysaccharide of NP were measured in para-chlorophenylalanine-induced insomnia rats combined with the pentobarbital sodium experiment. The results indicated both total alkaloid extract and NP total extract could improve insomnia in rats, with the total alkaloid extract demonstrating a stronger effect than NP total extract. Total alkaloid extract significantly prolonged sleep duration and shortened sleep latency. Therefore, total alkaloids in NP appeared to be the main pharmacological substances that exerted sedative effect. Simultaneously, total alkaloid extract could increase the GABA level and reduce the DA level as well as affect the activities of GABRA1, DRD2, 5-HT1A, and AChE proteins. This study can lay an experimental foundation for the further development and application of NP as a remedy for treating insomnia. Full article
(This article belongs to the Special Issue Molecular Research and Potential Effects of Medicinal Plants)
Show Figures

Figure 1

10 pages, 1946 KB  
Article
Effect of Vitamin E on Diabetic Nephropathy in Streptozotocin-Induced Diabetic Rats
by David Segura Cobos, Esperanza Enedina Díaz Salgado, Dante Amato, Sinaí Ernesto Cardoso García, Tomás Ernesto Villamar Duque, Anayantzin Paulina Heredia Antúnez, Leonardo del Valle Mondragón, Gil Alfonso Magos Guerrero and Elizabeth Alejandrina Guzmán Hernández
Int. J. Mol. Sci. 2025, 26(4), 1597; https://doi.org/10.3390/ijms26041597 - 13 Feb 2025
Viewed by 1168
Abstract
Diabetic nephropathy (DN) is a serious complication of diabetes mellitus; oxidative stress plays a key role in the pathogenesis of DN. The objective of this study was to evaluate the antioxidant effect of vitamin E on diabetic nephropathy. A control group and three [...] Read more.
Diabetic nephropathy (DN) is a serious complication of diabetes mellitus; oxidative stress plays a key role in the pathogenesis of DN. The objective of this study was to evaluate the antioxidant effect of vitamin E on diabetic nephropathy. A control group and three groups of rats with streptozotocin-induced diabetes mellitus (untreated diabetic rats and diabetic rats treated with vitamin E 250 and 500 mg/kg) were studied. After 4 weeks of treatment, the kidneys were removed under anesthesia with sodium pentobarbital. The kidneys were weighed, the AT1 and AT2 receptor expression was measured by Western blot, and the activities of glutathione peroxidase, catalase, and superoxide dismutase were determined in the renal cortex. Rats with diabetes mellitus had hyperglycemia, increased food and water consumption, and higher urinary volume than control rats. In diabetic rats (DM), kidney hypertrophy was observed and measured by kidney weight, protein/DNA ratio in the renal cortex, and proximal tubular cell area; proteinuria and reduced creatinine clearance were observed. AT1 and AT2 receptor expression in the kidney cortex of DM rats increased significantly compared to normoglycemic rats; antioxidant enzyme activities were decreased; treatment with vitamin E reversed kidney hypertrophy and reduced proteinuria; reduction in expression of AT1 and AT2 receptors was associated with increased antioxidant activity. Thus, treatment with vitamin E slows the progress of DN. Full article
(This article belongs to the Special Issue Association Between Oxidative Stress and Metabolic Diseases)
Show Figures

Figure 1

30 pages, 775 KB  
Article
From Veterinary Medicine to Illicit Drug Supply: Utilising Social Media to Explore the Rising Emergence of Veterinary Medicines in Human Health
by Josie Dunn, Fabrizio Schifano, Ed Dudley, Davide Arillotta and Amira Guirguis
Brain Sci. 2025, 15(2), 172; https://doi.org/10.3390/brainsci15020172 - 10 Feb 2025
Cited by 2 | Viewed by 1876
Abstract
Background/Objectives: The misuse of veterinary drugs is a growing concern, with increasing evidence of their presence in illicit drug markets and their use as alternatives to traditional substances. Methods: This study explores Reddit discussions on the misuse of veterinary drugs on Reddit, focusing [...] Read more.
Background/Objectives: The misuse of veterinary drugs is a growing concern, with increasing evidence of their presence in illicit drug markets and their use as alternatives to traditional substances. Methods: This study explores Reddit discussions on the misuse of veterinary drugs on Reddit, focusing on xylazine, carfentanil, medetomidine, pentobarbital, phenylbutazone, and acepromazine. Reddit was utilised for its abundant real-time data on users’ thoughts and experiences with substance misuse. Through a combination of manual and Artificial Intelligence (AI)-driven thematic analysis, we examined posts and comments to explore patterns of misuse. Results: The themes analysed included adverse effects, polysubstance misuse, routes of administration, motivations for misuse, and methods of obtaining these drugs. Our findings revealed that xylazine, medetomidine, carfentanil, and pentobarbital exhibit significant potential for misuse, while phenylbutazone and acepromazine are not widely misused. Despite this, phenylbutazone and acepromazine have been identified as adulterants in the illicit drug supply in the United States. The most discussed themes included motivations for misuse, followed by public experiences and perceptions, as well as adverse effects. Conclusions: The dual-method approach of combining manual interpretation with AI analysis allowed for a comprehensive understanding of social media discussions. This research highlights the importance of monitoring online platforms for early indicators of emerging drug trends, offering valuable insights to inform public health policies and intervention strategies. Impact Statement: This research highlights the growing public health risk posed by veterinary drug misuse, underscoring the need for enhanced monitoring, regulatory frameworks, and education to address their diversion into illicit markets. By leveraging social media as an early detection tool for emerging drug trends, our findings can inform targeted interventions. Full article
(This article belongs to the Section Neuropharmacology and Neuropathology)
Show Figures

Figure 1

13 pages, 3147 KB  
Article
The Improvement in Sleep Quality by Zizyphi Semen in Rodent Models Through GABAergic Transmission Regulation
by Mijin Kim, YuJaung Kim, Hyang Woon Lee, Kyung-Mi Kim, Singeun Kim and Seikwan Oh
Nutrients 2024, 16(24), 4266; https://doi.org/10.3390/nu16244266 - 11 Dec 2024
Cited by 1 | Viewed by 1758
Abstract
Background: Sleep, a process physiologically vital for mental health, faces disruptions in various sleep disorders linked to metabolic and neurodegenerative risks. Zizyphus seed (Zizy) has long been recognized for its diverse pharmacological attributes, including analgesic, sedative, insomnia, and anxiety alleviation. Objectives: [...] Read more.
Background: Sleep, a process physiologically vital for mental health, faces disruptions in various sleep disorders linked to metabolic and neurodegenerative risks. Zizyphus seed (Zizy) has long been recognized for its diverse pharmacological attributes, including analgesic, sedative, insomnia, and anxiety alleviation. Objectives: In this study, the sleep-prolonging effects of Zizy extract (100, 200 mg/kg), along with their characterizing compounds jujuboside A (JuA) (5, 10 mg/kg), were evaluated in a mouse model under a pentobarbital-induced sleep. Additionally, the efficacy of Zizy extract was examined on caffeine-induced insomnia in mice. Methods: To confirm the efficacy of Zizy extract on the structure and quality of sleep, an electroencephalogram (EEG) analysis of rats was performed using the MATLAB algorithm. Additionally, Western blot analysis and measurement of intracellular chloride influx were performed to confirm whether these effects acted through the gamma-aminobutyric acid (GABA)ergic system. Administration of Zizy extract showed no effect on the locomotor performance of mice, but the extract and their characteristic compounds significantly prolonged sleep duration in comparison to the pentobarbital alone group in the pentobarbital-induced sleep mouse model. Furthermore, this extract alleviated caffeine-induced insomnia in mice. Results: The administration of Zizy extract extended non-rapid eye movement sleep (NREMS) duration without inducing significant changes in the brain wave frequency. Zizy extract regulated the expression of GABAA receptor subunits and GAD65/67 in specific brain regions (frontal cortex, hippocampus, and hypothalamus). JuA increased intracellular chloride influx in human SH-SY5Y cells, and it was reduced by GABAA receptor antagonists. These results suggest that the sleep-maintaining effects of Zizy extract may entail GABAergic regulation. In summary, Zizy extract demonstrated sleep-prolonging properties, improved insomnia, and regulated sleep architecture through GABAergic system modulation. Conclusions: These findings suggest that Zizy extract has potential as a therapeutic agent for stress-related neuropsychiatric conditions such as insomnia. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

13 pages, 1758 KB  
Article
The Effect of Water-Soluble Alpinia Galanga Extract on Sleep and the Activation of the GABAAergic/Serotonergic Pathway in Mice
by Kazim Sahin, Ahmet Kayhan Korkusuz, Emre Sahin, Cemal Orhan, Besir Er, Abhijeet Morde, Muralidhara Padigaru and Ertugrul Kilic
Pharmaceuticals 2024, 17(12), 1649; https://doi.org/10.3390/ph17121649 - 8 Dec 2024
Cited by 1 | Viewed by 2973
Abstract
Background/Objectives: With increasing interest in plant-based compounds that can enhance sleep quality without the side effects of caffeine, Alpinia galanga (AG) has emerged as a promising herbal supplement for improving mental alertness. This study assessed the impact of water-soluble AG extract on sleep [...] Read more.
Background/Objectives: With increasing interest in plant-based compounds that can enhance sleep quality without the side effects of caffeine, Alpinia galanga (AG) has emerged as a promising herbal supplement for improving mental alertness. This study assessed the impact of water-soluble AG extract on sleep quality; the activity of GABAergic, glutamatergic, and serotonergic receptors; and concentrations of dopamine and serotonin in the brains of mice. Methods: The study employed two experimental models using BALB/c mice to examine the impact of pentobarbital-induced sleep and caffeine-induced insomnia. In the first model, a set of 20 mice was assigned to four groups to assess the effects of pentobarbital (42 mg/kg) or pentobarbital with AG extract on sleep induction, with observations made 45 min post-administration. In the second model, 20 mice were divided into four groups to evaluate the impact of caffeine (25 mg/kg) alone or caffeine with varying doses of AG extract (61.25 or 205.50 mg/kg administered orally) on brain activity along with additional analyses on receptor proteins and neurotransmitters. Results: A higher dose of AG extract (205.50 mg/kg) significantly increased total deep sleep duration compared to the caffeine group (p < 0.0001). Furthermore, this dose extended sleep latency and suppressed GABAergic and glutamatergic receptor activity compared to the lower AG dose (p < 0.05). Additionally, the 205.50 mg/kg dose elevated serotonin and dopamine levels compared to caffeine (p < 0.0001), suggesting improved sleep quality alongside enhanced wakefulness. Conclusions: Our data indicate that a higher dose of AG extract improved sleep latency and duration by regulating GABAergic and glutamatergic receptors through the GABAergic/serotonergic pathway in mice. Full article
(This article belongs to the Special Issue Pharmacotherapy of Neurodegeneration Disorders)
Show Figures

Figure 1

17 pages, 814 KB  
Article
Exploring Human Misuse and Abuse of Veterinary Drugs: A Descriptive Pharmacovigilance Analysis Utilising the Food and Drug Administration’s Adverse Events Reporting System (FAERS)
by Josie Dunn, Fabrizio Schifano, Ed Dudley and Amira Guirguis
Toxics 2024, 12(11), 777; https://doi.org/10.3390/toxics12110777 - 25 Oct 2024
Cited by 4 | Viewed by 2668
Abstract
Introduction: Evidence suggests an increasing misuse of veterinary medicines by humans. This study aims to analyse Adverse Events (AEs) associated with selected veterinary products using the Food and Drug Administration Adverse Events Reporting System (FAERS). Methods: A descriptive pharmacovigilance analysis was conducted on [...] Read more.
Introduction: Evidence suggests an increasing misuse of veterinary medicines by humans. This study aims to analyse Adverse Events (AEs) associated with selected veterinary products using the Food and Drug Administration Adverse Events Reporting System (FAERS). Methods: A descriptive pharmacovigilance analysis was conducted on AEs related to 21 drugs approved for human and/or animal use. Results: A total of 38,756 AEs, including 9566 fatalities, were identified. The United States reported the highest number of cases (13,532), followed by Canada (2869) and the United Kingdom (1400). Among the eight drugs licenced exclusively for animals, levamisole, pentobarbital, and xylazine were most frequently reported. Reports predominantly involved males (57%) from the 18–64 age group, with incidents related mainly to overdose, dependence, and multi-agent toxicities. Unmasking techniques revealed ‘intentional overdose’ as the primary reaction. Polysubstance use was evident in 90% of the drugs, with benzodiazepines/Z-drugs and opioids as common co-used classes. Conclusions: Veterinary medications are increasingly infiltrating the illicit drug market due to their pharmacological properties. This trend highlights the need for heightened vigilance and awareness to prevent further public health risks associated with the adulteration of illicit substances with veterinary products like xylazine and pentobarbital. Full article
(This article belongs to the Special Issue The Identification of Narcotic and Psychotropic Drugs)
Show Figures

Figure 1

16 pages, 4545 KB  
Article
Optimization of Desalting Conditions for the Green Seaweed Codium fragile for Use as a Functional Food with Hypnotic Effects
by Sohong Park, Duhyeon Kim, Seonghui Kim, Gibeom Choi, Hodeung Yoo, Serim Park and Suengmok Cho
Foods 2024, 13(20), 3287; https://doi.org/10.3390/foods13203287 - 16 Oct 2024
Viewed by 1185
Abstract
Codium fragile (CF) contains various bioactive compounds, but its high salt content (39.8%) makes its use as a functional food challenging. Here, we aimed to optimize the desalination process and verify changes in functionality based on variations in salt and total phenolic contents. [...] Read more.
Codium fragile (CF) contains various bioactive compounds, but its high salt content (39.8%) makes its use as a functional food challenging. Here, we aimed to optimize the desalination process and verify changes in functionality based on variations in salt and total phenolic contents. To optimize the CF immersion conditions for the lowest salt content and monitor the total phenolic content, a response surface methodology was used. The optimal immersion conditions were as follows: X1 (immersion temperature) = 42.8 °C; X2 (immersion time) = 1.0 h. An inverse correlation was noted between salt content and total phenolic content. Among the post-desalination processes, desalination with centrifugal dehydration (CD) significantly reduced salt content. CD ethanol extract (CD-E) induced the longest sleep duration in the pentobarbital-induced sleep test in ethanol extracts. Moreover, 1000 mg/kg CD-E had a significant effect on non-rapid eye movement sleep but did not affect delta activity. These findings highlight the potential of industrializing CF as a functional food through desalination and its promise as a natural aid for sleep promotion. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Graphical abstract

17 pages, 5579 KB  
Article
Effects of Anesthesia with Pentobarbital/Ketamine on Mitochondrial Permeability Transition Pore Opening and Ischemic Brain Damage
by Evelina Rekuviene, Laima Ivanoviene, Vilmante Borutaite and Ramune Morkuniene
Biomedicines 2024, 12(10), 2342; https://doi.org/10.3390/biomedicines12102342 - 15 Oct 2024
Viewed by 1632
Abstract
Background and Objective: The alteration of mitochondrial functions, especially the opening of the mitochondrial permeability transition pore (mPTP), has been proposed as a key mechanism in the development of lesions in cerebral ischemia, wherefore it is considered as an important target for drugs [...] Read more.
Background and Objective: The alteration of mitochondrial functions, especially the opening of the mitochondrial permeability transition pore (mPTP), has been proposed as a key mechanism in the development of lesions in cerebral ischemia, wherefore it is considered as an important target for drugs against ischemic injury. In this study, we aimed to investigate the effects of mitochondrial complex I inhibitors as possible regulators of mPTP using an in vitro brain ischemia model of the pentobarbital/ketamine (PBK)-anesthetized rats. Results: We found that PBK anesthesia itself delayed Ca2+-induced mPTP opening and partially recovered the respiratory functions of mitochondria, isolated from rat brain cortex and cerebellum. In addition, PBK reduced cell death in rat brain slices of cerebral cortex and cerebellum. PBK inhibited the adenosine diphosphate (ADP)-stimulated respiration of isolated cortical and cerebellar mitochondria respiring with complex I-dependent substrates pyruvate and malate. Moreover, pentobarbital alone directly increased the resistance of isolated cortex mitochondria to Ca2+-induced activation of mPTP and inhibited complex I-dependent respiration and mitochondrial complex I activity. In contrast, ketamine had no direct effect on functions of isolated normal cortex and cerebellum mitochondria. Conclusions: Altogether, this suggests that modulation of mitochondrial complex I activity by pentobarbital during PBK anesthesia may increase the resistance of mitochondria to mPTP opening, which is considered the key event in brain cell necrosis during ischemia. Full article
(This article belongs to the Special Issue Mitochondria in Human Health and Diseases)
Show Figures

Figure 1

14 pages, 2309 KB  
Article
GABALAGEN Facilitates Pentobarbital-Induced Sleep by Modulating the Serotonergic System in Rats
by Minsook Ye, Kyoung-min Rheu, Bae-jin Lee and Insop Shim
Curr. Issues Mol. Biol. 2024, 46(10), 11176-11189; https://doi.org/10.3390/cimb46100663 - 4 Oct 2024
Cited by 3 | Viewed by 2136
Abstract
Gamma-aminobutyric acid (GABA) is one of the inhibitory neurotransmitters with beneficial effects including sedative properties. However, despite various clinical trials, scientific evidence regarding the impact on sleep of orally ingested GABA, whether natural or synthesized through biological pathways, is not clear. GABALAGEN (GBL) [...] Read more.
Gamma-aminobutyric acid (GABA) is one of the inhibitory neurotransmitters with beneficial effects including sedative properties. However, despite various clinical trials, scientific evidence regarding the impact on sleep of orally ingested GABA, whether natural or synthesized through biological pathways, is not clear. GABALAGEN (GBL) is the product of fermented collagen by Lactobacillus brevis BJ20 (L. brevis BJ20) and Lactobacillus plantarum BJ21 (L. plantarum BJ21), enriched with GABA and characterized by low molecular weight. The aim of this study was to investigate the effect of GBL on sleep improvement via a receptor binding assay in a pentobarbital-induced sleep-related rat model. We utilized a pentobarbital-induced sleep-related rat model to conduct this research. The present study investigated the sedative effects of GBL through electroencephalography (EEG) analysis in the pentobarbital-induced sleep animal model. Exploration of the neural basis of these positive effects involved evaluating orexin in the brain via immunohistochemical methods and 5-HT in the serum using an enzyme-linked immunosorbent assay (ELISA). Furthermore, we conducted a binding assay for 5-HT2C receptors, as these are considered pivotal targets in the mechanism of action for sleep aids. Diazepam (DZP) was used as a positive control to compare the efficacy of GBL. Results: In the binding assay, GBL displayed binding affinity to the 5-HT2C receptor (IC50 value, 5.911 µg/mL). Administration of a low dose of GBL (GBL_L; 100 mg/kg) increased non-rapid eye movement sleep time and decreased wake time based on EEG data in pentobarbital-induced rats. Administration of a high dose of GBL (GBL_H; 250 mg/kg) increased non-rapid eye movement sleep time. Additionally, GBL groups significantly increased concentration of the 5-HT level in the serum. GBL_H decreased orexin expression in the lateral hypothalamus. Conclusion: Overall, the sedative effect of GBL may be linked to the activation of serotonergic systems, as indicated by the heightened affinity of the 5-HT2C receptor binding and elevated levels of 5-HT observed in the serum. This suggests that GBL holds promise as a novel compound for inducing sleep in natural products. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

22 pages, 5270 KB  
Article
Daytime Dysfunction: Symptoms Associated with Nervous System Disorders Mediated by SIRT1
by Tianke Huang, Xianxie Zhang, Ling Qi, Fang Li, Zuoxu Liu, Zhixing Wang, Yi Ru, Maoxing Li, Chengrong Xiao, Yuguang Wang, Zengchun Ma and Yue Gao
Biomedicines 2024, 12(9), 2070; https://doi.org/10.3390/biomedicines12092070 - 11 Sep 2024
Cited by 4 | Viewed by 2719
Abstract
Daytime dysfunction, including symptoms like sleepiness, poor memory, and reduced responsiveness, is not well researched. It is crucial to develop animal models and study the biological mechanisms involved. We simulated sleep disorders through sleep deprivation, and stressful stimuli were used to establish daytime [...] Read more.
Daytime dysfunction, including symptoms like sleepiness, poor memory, and reduced responsiveness, is not well researched. It is crucial to develop animal models and study the biological mechanisms involved. We simulated sleep disorders through sleep deprivation, and stressful stimuli were used to establish daytime functional animal models. We used tests like the sodium pentobarbital sleep synergy test and the DSI telemetry system to measure sleep duration and structure. We also used tests like the Morris water maze, open field test, grip test, and baton twirling test to assess mental and physical fatigue. To assess the intrinsic biological mechanisms, we measured sleep–wake-related neurotransmitters and related receptor proteins, circadian rhythm-related proteins and cognition-related proteins in hypothalamus tissue, and oxidative stress, inflammatory factors, S100β, and HPA axis-related indexes in serum. Multi-factor sleep deprivation resulted in the disruption of sleep–wakefulness structure, memory–cognitive function degradation, decreased grip coordination, and other manifestations of decreased energetic and physical strength. The intrinsic biological mechanisms were related to the disturbed expression of sleep–wake, circadian rhythm, memory–cognition-related proteins, as well as the significant elevation of inflammatory factors, oxidative stress, the HPA axis, and other related indicators. Intrinsically related biological mechanisms and reduced sirt1 expression can lead to disruption of circadian rhythms; resulting in disruption of their sleep–wake-related neurotransmitter content and receptor expression. Meanwhile, the reduced expression of sirt1 also resulted in reduced expression of synapse-associated proteins. This study prepared an animal model of daytime dysfunction by means of multi-factor sleep deprivation. With sirt1 as a core target, the relevant biological mechanisms of neurological disorders were modulated. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Novel Therapies for Brain Injury)
Show Figures

Figure 1

12 pages, 4679 KB  
Article
Sedum kamtschaticum Exerts Hypnotic Effects via the Adenosine A2A Receptor in Mice
by Yeon-Soo Kim, Bo Kyung Lee, Cha Soon Kim, Young-Seob Lee, Yoon Ji Lee, Kwan-Woo Kim, Dae Young Lee and Yi-Sook Jung
Nutrients 2024, 16(16), 2611; https://doi.org/10.3390/nu16162611 - 8 Aug 2024
Viewed by 1852
Abstract
Insomnia is a common sleep disorder with significant societal and economic impacts. Current pharmacotherapies for insomnia are often accompanied by side effects, necessitating the development of new therapeutic drugs. In this study, the hypnotic effects and mechanisms of Sedum kamtschaticum 30% ethanol extract [...] Read more.
Insomnia is a common sleep disorder with significant societal and economic impacts. Current pharmacotherapies for insomnia are often accompanied by side effects, necessitating the development of new therapeutic drugs. In this study, the hypnotic effects and mechanisms of Sedum kamtschaticum 30% ethanol extract (ESK) and one of its active compounds, myricitrin, were investigated using pentobarbital-induced sleep experiments, immunohistochemistry (IHC), receptor binding assays, and enzyme-linked immunosorbent assay (ELISA). The pentobarbital-induced sleep experiments revealed that ESK and myricitrin reduced sleep latency and prolonged total sleep time in a dose-dependent manner. Based on c-Fos immunostaining, ESK, and myricitrin enhanced the GABAergic neural activity in sleep-promoting ventrolateral preoptic nucleus (VLPO) GABAergic. By measuring the level of GABA released from VLPO GABAergic neurons, ESK and myricitrin were found to increase GABA release in the hypothalamus. These effects were significantly inhibited by SCH. Moreover, ESK exhibited a concentration-dependent binding affinity for the adenosine A2A receptors (A2AR). In conclusion, ESK and myricitrin have hypnotic effects, and their underlying mechanisms may be related to the activation of A2AR. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Figure 1

Back to TopTop