A Comparative Analysis of Carbon Footprint in the Andalusian Autochthonous Dairy Goat Production Systems
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Farms Selection
2.2. Data Collection and Indicators Calculation
2.3. Carbon Footprint Calculation
2.4. Statistical Analysis
3. Results and Discussion
3.1. Relevance of the Standardization Equations Used to Calculate kg of FPCM
3.2. Diversity of Goat Production Systems and CF of a kg of Milk
3.3. Identification of Practices Which Contribute to the Environmental Sustainability of Dairy Goat Farming System Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 2. Available online: https://www.ipcc.ch/report/ar6/wg1/ (accessed on 3 July 2023).
- Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Stepping up Europe’s 2030 Climate Ambition. Investing in a Climate-Neutral Future for the Benefit of Our People. EU COM/2020/562 Final. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL (accessed on 3 July 2023).
- Feeding Ruminants Against Climate Change. Available online: https://www.lifemiclifeed.eu/ (accessed on 1 September 2023).
- Niloofar, P.; Francis, D.P.; Lazarova-Molnar, S.; Vulpe, A.; Vochin, M.C.; Suciu, G.; Balanescu, M.; Anestis, V.; Bartzanas, T. Data-driven decision support in livestock farming for improved animal health, welfare and greenhouse gas emissions: Overview and challenges. Comput. Electron. Agric. 2021, 190, 106406. [Google Scholar] [CrossRef]
- Key Facts and Findings. Available online: https://www.fao.org/news/story/en/item/197623/icode/ (accessed on 3 July 2023).
- Gutiérrez-Peña, R.; Mena, Y.; Batalla, I.; Mancilla-Leytón, J.M. Carbon footprint of dairy goat production systems: A comparison of three contrasting grazing levels in the Sierra de Grazalema Natural Park (Southern Spain). J. Environ. Manag. 2019, 232, 993–998. [Google Scholar] [CrossRef] [PubMed]
- Mancilla-Leytón, J.M.; Morales-Jerrett, E.; Delgado-Pertiñez, M.; Mena, Y. Fat-and protein-corrected milk formulation to be used in the life-cycle assessment of Mediterranean dairy goat systems. Livest. Sci. 2021, 253, 104697. [Google Scholar] [CrossRef]
- Muñoz Vallés, S.; Mancilla-Leytón, J.M.; Morales-Jerrett, E.; Mena, Y. Natural Carbon Sinks Linked to Pastoral Activity in S Spain: A Territorial Evaluation Methodology for Mediterranean Goat Grazing Systems. Sustainability 2021, 13, 6085. [Google Scholar] [CrossRef]
- Haines-Young, R.; Potschin, M. Ecosystem Ecology: A New Synthesis; Raffaelli, D.G., Frid, C.L.J., Eds.; Ecological Reviews; Cambridge University Press: Cambridge, UK, 2010; pp. 110–139. [Google Scholar]
- AR5. 2020. Available online: https://www.juntadeandalucia.es/medioambiente/portal/documents/20151/41019046/AnalisisEscenariosClimaAndalucia_0.pdf/355ff846-5a1a-8172-0789-7de5716646a0?t=1648035943771 (accessed on 20 July 2023).
- Opiyo, F.; Wasonga, O.; Nyangito, M.; Schilling, J.; Munang, R. Drought adaptation and coping strategies among the Turkana pastoralists of northern Kenya. Int. J. Disaster Risk Sci. 2015, 6, 295–309. [Google Scholar] [CrossRef]
- Romano, E.; De Palo, P.; Tidona, F.; Maggiolino, A.; Bragaglio, A. Dairy buffalo Life Cycle Assessment (LCA) affected by a management choice: The production of wheat crop. Sustainability 2021, 13, 11108. [Google Scholar] [CrossRef]
- Escribano, M.; Horrillo, A.; Mesías, F.J. Greenhouse gas emissions and carbon sequestration in organic dehesa livestock farms. Does technical-economic management matters? J. Clean. Prod. 2022, 372, 133779. [Google Scholar] [CrossRef]
- Pardo, G.; Casas, R.; del Prado, A.; Manzano, P. Carbon footprint of transhumant sheep farms: Accounting for natural baseline emissions in Mediterranean systems. Int. J. Life Cycle Assess. 2023, 1–16. [Google Scholar] [CrossRef]
- de Figueiredo, E.B.; Jayasundara, S.; de Oliveira Bordonal, R.; Berchielli, T.T.; Reis, R.A.; Wagner-Riddle, C.; La Scala, N., Jr. Greenhouse gas balance and carbon footprint of beef cattle in three contrasting pasture-management systems in Brazil. J. Clean. Prod. 2017, 142, 420–431. [Google Scholar] [CrossRef]
- FAOSTAT. 2022. Available online: https://www.fao.org/faostat/en/#home (accessed on 12 July 2023).
- Morales-Jerrett, E.; Mena, Y.; Camúñez-Ruiz, J.A.; Fernández, J.; Mancilla-Leytón, J.M. Characterization of dairy goat production systems using autochthonous breeds in Andalusia (Southern Spain): Classification and efficiency comparative analysis. Small Rumin. Res. 2022, 213, 106743. [Google Scholar] [CrossRef]
- Zucali, M.; Lovarelli, D.; Celozzi, S.; Bacenetti, J.; Sandrucci, A.; Bava, L. Management options to reduce the environmental impact of dairy goat milk production. Livest. Sci. 2020, 231, 103888. [Google Scholar] [CrossRef]
- Navarro Cerrillo, R.M.; Palacios Rodríguez, G.; Clavero Rumbao, I.; Lara, M.Á.; Bonet, F.J.; Mesas-Carrascosa, F.J. Modeling major rural land-use changes using the GIS-based cellular automata metronamica model: The case of Andalusia (Southern Spain). ISPRS Int. J. Geo-Inf. 2020, 9, 458. [Google Scholar] [CrossRef]
- López Ontiveros, A. Geografía de Andalucía. Rev. Estud. Reg. 2004, 70, 235–242. [Google Scholar]
- Bienvenido-Huertas, D.; Marín-García, D.; Carretero-Ayuso, M.J.; Rodríguez-Jiménez, C.E. Climate classification for new and restored buildings in Andalusia: Analysing the current regulation and a new approach based on k-means. J. Build. Eng. 2021, 43, 102829. [Google Scholar] [CrossRef]
- Mena, Y.; Morales-Jerrett, E.; Mancilla-Leytón, J.M.; Fernández, J.; González, O.; Lara, C.; López, M.D.; Rey, S.; López, F.; Díaz, C. Implementación de un sistema de asesoramiento para la gestión sostenible del caprino andaluz. Tierras Caprino 2020, 33, 24–29. [Google Scholar]
- IPCC Updates Methodology for Greenhouse Gas Inventories. Available online: https://www.ipcc.ch/2019/05/13/ipcc-2019-refinement/ (accessed on 24 June 2023).
- Food and Agriculture Organization of the United Nations (FAO). Greenhouse Gas Emissions and Fossil Energy Use from Small Ruminant Supply Chains: Guidelines for Assessment; Ledgard, S., Henry, B., Benoit, M., Devendra, C., Dollé, J., Gac, A., Mitloehner, F., Eds.; FAO: Rome, Italy, 2016; pp. 1–81. [Google Scholar]
- Robertson, K.; Symes, W.; Garnham, M. Carbon footprint of dairy goat milk production in New Zealand. J. Dairy Sci. 2015, 98, 4279–4293. [Google Scholar] [CrossRef] [PubMed]
- Clark, J.H. Nutrient Requirements of Dairy Cattle; National Academy Press: Washington, DC, USA, 2001. [Google Scholar]
- Pardo, G.; del Prado, A.; Fernández-Álvarez, J.; Yáñez-Ruiz, D.R.; Belanche, A. Influence of precision livestock farming on the environmental performance of intensive dairy goat farms. J. Clean. Prod. 2022, 351, 131518. [Google Scholar] [CrossRef]
- Pulina, G.; Macciotta, N.; Nudda, A. Milk composition and feeding in the Italian dairy sheep. Ital. J. Anim. Sci. 2005, 4, 5–14. [Google Scholar] [CrossRef]
- ARCA. Official Breeds Catalogue. Available online: https://servicio.mapa.gob.es/en/ganaderia/temas/zootecnia/razas-ganaderas/razas/catalogo-razas/ (accessed on 10 July 2023).
- Batalla, I.; Knudsen, M.T.; Mogensen, L.; del Hierro, Ó.; Pinto, M.; Hermansen, J.E. Carbon footprint of milk from sheep farming systems in Northern Spain including soil carbon sequestration in grasslands. J. Clean. Prod. 2015, 104, 121–129. [Google Scholar] [CrossRef]
- Eldesouky, A.; Mesias, F.J.; Elghannam, A.; Escribano, M. Can extensification compensate livestock greenhouse gas emissions? A study of the carbon footprint in Spanish agroforestry systems. J. Clean. Prod. 2018, 200, 28–38. [Google Scholar] [CrossRef]
- Escribano, M.; Elghannam, A.; Mesias, F.J. Dairy sheep farms in semi-arid rangelands: A carbon footprint dilemma between intensification and land-based grazing. Land Use Policy 2020, 95, 104600. [Google Scholar] [CrossRef]
- Ibidhi, R.; Calsamiglia, S. Carbon Footprint Assessment of Spanish Dairy Cattle Farms: Effectiveness of Dietary and Farm Management Practices as a Mitigation Strategy. Animals 2020, 10, 2083. [Google Scholar] [CrossRef] [PubMed]
- Loyarte-López, E.; Barral, M.; Morla, J.C. Methodology for carbon footprint calculation towards sustainable innovation in intangible assets. Sustainability 2020, 12, 1629. [Google Scholar] [CrossRef]
- Salvador, S.; Corazzin, M.; Romanzin, A.; Bovolenta, S. Greenhouse gas balance of mountain dairy farms as affected by grassland carbon sequestration. J. Environ. Manag. 2017, 196, 644–650. [Google Scholar] [CrossRef]
- Karwacka, M.; Ciurzyńska, A.; Lenart, A.; Janowicz, M. Sustainable development in the agri-food sector in terms of the carbon footprint: A Review. Sustainability 2020, 12, 6463. [Google Scholar] [CrossRef]
- FAO. Livestock Solutions for Climate Change. Available online: https://www.fao.org/documents/card/en/c/I8098EN (accessed on 20 July 2023).
- Ziadia, C.; Muñoz-Mejías, E.; González-Casquet, O.; Benítez-gonzález, P.; Torres-Martell, R.; Arrebola-Molina, F.A.; Molina-Alcalá, A. Mejora de la fertilidad de las cabras Payoyas: Análisis genético de la eficiencia reproductiva. Feagas 2021, 44, 102–105. [Google Scholar]
- Herrera, P.M. Livestock Farming and Climate Change: An In-Depth Approach; 2020 Fundación Entretanto and Plataforma por la Ganadería Extensiva y el Pastoralismo: Spain, Madrid, 2020. [Google Scholar]
- Guzmán, J.L.; Delgado-Pertíñez, M.; Beriáin, M.J.; Pino, R.; Zarazaga, L.Á.; Horcada, A. The use of concentrates rich in orange by-products in goat feed and its effects on physico-chemical, textural, fatty acids, volatile compounds and sensory characteristics of the meat of suckling kids. Animals 2020, 10, 766. [Google Scholar] [CrossRef]
- Harris, F. Management of manure in farming systems in semi-arid West Africa. Exp. Agric. 2002, 38, 131–148. [Google Scholar] [CrossRef]
- Fernández-Rodríguez, M.J.; Puntano, N.F.; Mancilla-Leytón, J.M.; Borja, R. Batch mesophilic anaerobic co-digestion of spent goat batch mesophilic anaerobic co-digestion of spent goat straw bedding and goat cheese whey: Comparison with the mono-digestion of the two sole substrates. J. Environ. Manag. 2021, 280, 111733. [Google Scholar] [CrossRef]
- Grimsby, L.K.; Gulbrandsen, L.; Eik, L.O.; Msalya, G.; Kifaro, G.C. The prospect of biogas among small-holder dairy goat farmers in the Uluguru Mountains, Tanzania. Afr. J. Food Agric. Nutr. Dev. 2016, 16, 10723–10737. [Google Scholar]
- Manzano, P.; White, S.R. Intensifying pastoralism may not reduce greenhouse gas emissions: Wildlife-dominated landscape scenarios as a baseline in life-cycle analysis. Clim. Res. 2019, 77, 91–97. [Google Scholar] [CrossRef]
- Moving beyond Carbon Tunnel Vision with a Sustainability Data Strategy. Available online: https://digitally.cognizant.com/moving-beyond-carbon-tunnel-vision-with-a-sustainability-data-strategy-codex7121 (accessed on 20 July 2023).
- List of Potential Agricultural Practices That Eco-Schemes Could Support. Available online: https://agriculture.ec.europa.eu/system/files/2021-01/factsheet-agri-practices-under-ecoscheme_en_0.pdf (accessed on 20 July 2023).
- D’Ottavio, P.; Francioni, M.; Trozzo, L.; Sedić, E.; Budimir, K.; Avanzolini, P.; Trombetta, M.F.; Porqueddu, C.; Santilocchi, R.; Toderi, M. Trends and approaches in the analysis of ecosystem services provided by grazing systems: A review. Grass Forage Sci. 2018, 73, 15–25. [Google Scholar] [CrossRef]
- Celaya, R.; Ferreira, L.M.M.; Lorenzo, J.M.; Echegaray, N.; Crecente, S.; Serrano, E.; Busqué, J. Livestock management for the delivery of ecosystem services in fire-prone shrublands of Atlantic Iberia. Sustainability 2022, 14, 2775. [Google Scholar] [CrossRef]
IS | ISC | GS | PS | F | p-Values | |
---|---|---|---|---|---|---|
Inputs | ||||||
Concentrate supply (kg goat−1 year−1) | 499 ± 26 a | 465 ± 19 a | 568 ± 9 a | 258 ± 20 b | 74.86 | 0.003 |
Fodder supply (kg goat−1 year−1) | 490 ± 32 a | 342 ± 88 ab | 191 ± 1 bc | 41 ± 25 c | 32.54 | 0.001 |
Fuel (L goat−1 year−1) | 6 ± 3 | 3 ± 1 | 6 ± 2 | 2 ± 1 | 0.61 | 0.617 |
Electricity (kwH goat−1 year−1) | 47 ± 12 | 27 ± 2 | 42 ± 13 | 13 ± 7 | 1.72 | 0.200 |
Mineral fertilizer (kg ha−1 year−1) | -- | 110 ± 56 | 56 ± 34 | 57 ± 35 | 0.54 | 0.663 |
Outputs | ||||||
Milk sold (kg goat −1 year−1) | 578 ± 21 a | 489 ± 37 a | 508 ± 37 a | 320 ± 23 b | 17.05 | 0.003 |
Meat sold (kg goat −1 year−1) | 6 ± 1 | 4 ± 3 | 5 ± 1 | 6 ± 1 | 0.50 | 0.686 |
IS | ISC | GS | PS | F | p-Values | |
---|---|---|---|---|---|---|
Total Emission | ||||||
Equation (1) | 1.42 ± 0.05 | 1.43 ± 0.14 | 1.58 ± 0.25 | 1.61 ± 0.27 | 1.19 | 0.34 |
Equation (2) | 1.04 ± 0.03 | 1.04 ±0.11 | 1.15 ± 0.18 | 1.17 ± 0.20 | 1.24 | 0.33 |
Equation (3) | 1.20 ± 0.04 | 1.21 ± 0.12 | 1.33 ± 0.08 | 1.36 ± 0.17 | 1.38 | 0.37 |
Carbon Sequestration | ||||||
Equation (1) | -- | 0.09 ± 0.06 c | 0.27 ± 0.09 b | 0.66 ± 0.14 a | 7.38 | 0.01 |
Equation (2) | -- | 0.07 ± 0.04 c | 0.20 ± 0.07 b | 0.48 ± 0.10 a | 7.39 | 0.01 |
Equation (3) | -- | 0.08 ± 0.05 c | 0.23 ± 0.08 b | 0.58 ± 0.12 a | 7.42 | 0.01 |
Carbon footprint (emission-sequestration) | ||||||
Equation (1) | 1.42 ± 0.05 | 1.34 ± 0.09 | 1.31 ± 0.23 | 0.95 ± 0.22 | 3.02 | 0.58 |
Equation (2) | 1.04 ± 0.03 | 0.97 ±0.07 | 0.95 ± 0.17 | 0.69 ± 0.16 | 2.95 | 0.63 |
Equation (3) | 1.20 ± 0.04 | 1.13 ± 0.10 | 1.08 ± 0.17 | 0.78 ± 0.18 | 3.01 | 0.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mancilla-Leytón, J.M.; Morales-Jerrett, E.; Muñoz-Vallés, S.; Mena, Y. A Comparative Analysis of Carbon Footprint in the Andalusian Autochthonous Dairy Goat Production Systems. Animals 2023, 13, 2864. https://doi.org/10.3390/ani13182864
Mancilla-Leytón JM, Morales-Jerrett E, Muñoz-Vallés S, Mena Y. A Comparative Analysis of Carbon Footprint in the Andalusian Autochthonous Dairy Goat Production Systems. Animals. 2023; 13(18):2864. https://doi.org/10.3390/ani13182864
Chicago/Turabian StyleMancilla-Leytón, Juan Manuel, Eduardo Morales-Jerrett, Sara Muñoz-Vallés, and Yolanda Mena. 2023. "A Comparative Analysis of Carbon Footprint in the Andalusian Autochthonous Dairy Goat Production Systems" Animals 13, no. 18: 2864. https://doi.org/10.3390/ani13182864
APA StyleMancilla-Leytón, J. M., Morales-Jerrett, E., Muñoz-Vallés, S., & Mena, Y. (2023). A Comparative Analysis of Carbon Footprint in the Andalusian Autochthonous Dairy Goat Production Systems. Animals, 13(18), 2864. https://doi.org/10.3390/ani13182864