The Energy Contents of Broken Rice for Lactating Dairy Cows
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cows, Experimental Design and Diets
2.2. Feed Intake and Digestibility
2.3. Animal Calorimetry
2.4. Sampling and Chemical Analysis
2.5. Calculation
2.6. Statistical Analysis
3. Results
3.1. Diet Composition
3.2. Feed Intake and Digestibility
3.3. Milk Production
3.4. Respiratory Gas Exchange and Energy Partitioning
3.5. Maintenance Energy Requirement and Efficiency of ME Utilization for Lactation
3.6. Energy Content for Lactation of Broken Rice
4. Discussion
4.1. Nutrient Intake and Milk Production
4.2. Energy Partition, Efficiency of Metabolizable Energy Utilization
4.3. Net Energy for Lactation Estimation Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moe, P.W.; Tyell, H.F.; Hooven, N.W. Physical form and energy value of corn grain. J. Dairy Sci. 1973, 56, 1298–1304. [Google Scholar] [CrossRef]
- Foth, A.J.; Brown-Brandl, T.; Hanford, K.J.; Miller, P.S.; Garcia Gomez, G.; Kononoff, P.J. Energy content of reduced-fat dried distillers grains with solubles for lactating dairy cows. J. Dairy Sci. 2015, 98, 7142–7152. [Google Scholar] [CrossRef] [PubMed]
- Gunha, T.; Kongphitee, K.; Binsulong, B.; Sommart, K. Net energy value of a cassava chip ration for lactation in Holstein–Friesian crossbred dairy cattle estimated by indirect calorimetry. Animals 2023, 13, 2296. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.; Cui, Z.H.; Li, J.W.; Yan, P.S. Estimation of metabolisable energy and net energy of rice straw and wheat straw for beef cattle by indirect calorimetry. Arch. Anim. Nutr. 2018, 72, 275–289. [Google Scholar] [CrossRef] [PubMed]
- United States Department of Agriculture (USDA). Rice Outlook. Available online: https://downloads.usda.library.cornell.edu/usdaesmis/files/dn39x152w/6q183m76f/x059d9866/rcs-21k.pdf (accessed on 21 December 2021).
- Esa, N.M.; Tan, B.L.; Loh, S.P. By-products of rice processing: An overview of health benefits and applications. J. Rice. Res. 2013, 1, 2. [Google Scholar] [CrossRef]
- Kotupan, K.; Sommart, K. Broken rice in a fermented total mixed ration improves carcass and marbling quality in fattened beef cattle. Anim Biosci. 2021, 34, 1331–1341. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Yang, H.; Xu, L.; Wan, X.; Wang, Z. Effect of replacing dietary corn with broken rice on goose growth performance, body size and bare skin color. Animals 2020, 10, 1330. [Google Scholar] [CrossRef]
- Chumpawadee, S.; Sommart, K.; Vongpralub, T.; Pattarajinda, V. Nutritional evaluation of energy feed sources for ruminant using in vitro gas production technique. Kasetsart J.-Nat. Sci. 2006, 40, 430–435. [Google Scholar]
- Nitipot, P.; Sommart, K. Nutritive value evaluation of roughages and non-forage fiber sources using in vitro gas production technique. Khon Kaen Agric. J. 2007, 35, 397–409. [Google Scholar]
- Zhang, Y.C.; Luo, M.; Fang, X.Y.; Zhang, F.Q.; Cao, M.H. Energy value of rice, broken rice, and rice bran for broiler chickens by the regression method. Poult. Sci. 2021, 100, 100972. [Google Scholar] [CrossRef]
- Working Committee of Thai Feeding Standard for Ruminant (WTSR). Nutrient Requirements of Dairy Cattle in Thailand, 1st ed.; Khon Kaen University Press: Khon Kaen, Thailand, 2021. [Google Scholar]
- Cruz, C.R.D.; Kamarudin, M.S.; Saad, C.R.; Ramezani-fard, E. Effects of extruder die temperature on the physical properties of extruded fish pellets containing taro and broken rice starch. Anim. Feed Sci. Technol. 2015, 199, 137–145. [Google Scholar] [CrossRef]
- Yang, S.; Kim, B.; Kim, H.; Moon, J.; Yoo, D.; Baek, Y.C.; Lee, S.; Seo, J. Replacement of corn with rice grains did not alter growth performance and rumen fermentation in growing Hanwoo steers. Asian-Australas. J. Anim. Sci. 2020, 33, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Miyaji, M.; Matsuyama, H.; Hosoda, K.; Nonaka, K. Effect of replacing corn with brown rice grain in a total mixed ration silage on milk production, ruminal fermentation and nitrogen balance in lactating dairy cows. Anim. Sci. J. 2012, 83, 585–593. [Google Scholar] [CrossRef] [PubMed]
- Miyaji, M.; Matsuyama, H.; Hosoda, K.; Nonaka, K. Milk production, nutrient digestibility and nitrogen balance in lactating cows fed total mixed ration silages containing steam-flaked brown rice as substitute for steam-flaked corn, and wet food by-products. Anim. Sci. J. 2013, 84, 483–488. [Google Scholar] [CrossRef]
- Miyaji, M.; Haga, S.; Matsuyama, H.; Hosoda, K. Effect of feeding brown rice instead of corn on lactation performance and blood metabolites in periparturient dairy cows. Anim. Feed Sci. Technol. 2016, 219, 234–240. [Google Scholar] [CrossRef]
- Scheibler, R.B.; Schafhäuser, J.; Rizzo, F.A.; Nörnberg, J.L.; Vargas, D.P.; Silva, J.L.S.; Fluck, A.C.; Fioreze, V.I. Replacement of corn grain by brown rice grain in dairy cow rations: Nutritional and productive effects. Anim. Feed Sci. Technol. 2015, 208, 214–219. [Google Scholar] [CrossRef]
- Suzuki, T.; Phaowphaisal, I.; Pholsen, P.; Narmsilee, R.; Indramanee, S.; Nitipot, P.; Chaokaur, A.; Sommart, K.; Khotprom, N.; Panichpol, V.; et al. In vivo nutritive value of Pangola grass (Digitaria eriantha) hay by a novel indirect calorimeter with a ventilated hood in Thailand. Jpn. Agric. Res. Q. 2008, 42, 123–129. [Google Scholar] [CrossRef]
- Brouwer, E. Report of subcommittee on constants and factors. In Energy Metabolism of Farm Animals, 3rd.; Blaxter, K.L., Ed.; EAAP Academic Press: London, UK, 1965; pp. 441–443. [Google Scholar]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 16th ed.; Association of Official Analysis Chemists: Washington, DC, USA, 1995. [Google Scholar]
- Mertens, D.R. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: Collaborative study. J. AOAC Int. 2002, 85, 1217–1240. [Google Scholar] [PubMed]
- Porter, M.G.; Murray, R.S. The volatility of components of grass silage on oven drying and the inter-relationship between dry-matter content estimated by different analytical methods. Grass Forage Sci. 2001, 56, 405–411. [Google Scholar] [CrossRef]
- Gerber, P.; Vellinga, T.; Opio, C.; Steinfeld, H. Productivity gains and greenhouse gas emissions intensity in dairy systems. Livest. Sci. 2011, 139, 100–108. [Google Scholar] [CrossRef]
- Cabezas-Garcia, E.H.; Gordon, A.W.; Mulligan, F.J.; Ferris, C.P. Revisiting the relationships between fat-to-protein ratio in milk and energy balance in dairy cows of different parities, and at different stages of lactation. Animals 2021, 11, 3256. [Google Scholar] [CrossRef] [PubMed]
- Blaxter, K.L.; Clapperton, J.L. Prediction of the amount of methane produced by ruminants. Br. J. Nutr. 1965, 19, 511–522. [Google Scholar] [CrossRef] [PubMed]
- Moe, P.W.; Flatt, W.P.; Tyrell, H.F. Net energy value of feeds for lactation. J. Dairy Sci. 1972, 55, 945–958. [Google Scholar] [CrossRef]
- Agricultural and Food Research Council (AFRC). Energy and Protein Requirements of Ruminants; CAB International: Wallingford, UK, 1993. [Google Scholar]
- SAS. SAS/STAT User’s Guide, Version 9.0; SAS Inst. Inc.: Cary, NC, USA, 2002. [Google Scholar]
- Wang, C.; Nishino, N. Effects of storage temperature and ensiling period on fermentation products, aerobic stability and microbial communities of total mixed ration silage. J. Appl. Microbiol. 2013, 114, 1687–1695. [Google Scholar] [CrossRef]
- Kongphitee, K.; Sommart, K.; Phonbumrung, T.; Gunha, T.; Suzuki, T. Feed intake, digestibility and energy partitioning in beef cattle fed diets with cassava pulp instead of rice straw. Asian-Australas. J. Anim. Sci. 2018, 31, 1431–1441. [Google Scholar] [CrossRef]
- National Research Council (NRC). Nutrient Requirement of Dairy Cattle, 7th ed.; National Academic Press: Washington, DC, USA, 2001. [Google Scholar]
- Binsulong, B.; Gunha, T.; Kongphitee, K.; Maeda, K.; Sommart, K. Enteric methane emissions, rumen fermentation characteristics, and energetic efficiency of Holstein crossbred bulls fed total mixed ration silage with cassava instead of rice straw. Fermentation 2023, 9, 850. [Google Scholar] [CrossRef]
- Tharangani, H.; Lu, C.; Zhao, L.; Ma, L.; Guo, X.; Weiss, W.P.; Bu, D. Estimation of between-cow variability in nutrient digestion of lactating dairy cows fed corn-based diets. Animals 2020, 10, 1363. [Google Scholar] [CrossRef]
- Miyaji, M.; Matsuyama, H.; Hosoda, K. Effect of substituting brown rice for corn on lactation and digestion in dairy cows fed diets with a high proportion of grain. J. Dairy Sci. 2014, 97, 952–960. [Google Scholar] [CrossRef]
- Oliveira, A.S. Meta-analysis of feeding trials to estimate energy requirements of dairy cows under tropical condition. Anim. Feed Sci. Technol. 2015, 210, 94–103. [Google Scholar] [CrossRef]
- Xue, B.; Yan, T.; Ferris, C.F.; Mayne, C.S. Milk production and energy efficiency of Holstein and Jersey-Holstein crossbred dairy cows offered diets containing grass silage. J. Dairy Sci. 2011, 94, 1455–1464. [Google Scholar] [CrossRef]
- Dong, L.F.; Ferris, C.P.; McDowell, D.A.; Yan, T. Effects of diet forage proportion on maintenance energy requirement and the efficiency of metabolizable energy use for lactation by lactating dairy cows. J. Dairy Sci. 2015, 98, 8846–8855. [Google Scholar] [CrossRef] [PubMed]
- Judy, J.V.; Bachman, G.C.; Brown-Brandl, T.M.; Fernando, S.C.; Hales, K.E.; Miller, P.S.; Stowell, R.R.; Kononoff, P.J. Energy balance and diurnal variation in methane production as affected by feeding frequency in Jersey cows in late lactation. J. Dairy Sci. 2018, 101, 10899–10910. [Google Scholar] [CrossRef] [PubMed]
Broken Rice Substitution Ratio (%) | ||||
---|---|---|---|---|
Items 1 | Basal Diet (0) | 12 | 24 | 36 |
Ingredients, % | ||||
Rice straw | 15.0 | 13.2 | 11.4 | 9.6 |
Broken rice * | 0.0 | 11.8 | 23.5 | 35.3 |
Cassava pulp | 30.0 | 26.4 | 22.8 | 19.2 |
Wet brewery waste | 15.0 | 13.2 | 11.4 | 9.6 |
Rice bran | 11.0 | 9.7 | 8.4 | 7.0 |
Palm kernel cake | 12.0 | 10.5 | 9.1 | 7.7 |
Soybean meal | 15.0 | 13.2 | 11.4 | 9.6 |
Urea | 0.5 | 0.5 | 0.5 | 0.5 |
Mineral 1 | 1.0 | 1.0 | 1.0 | 1.0 |
Premix 2 | 0.5 | 0.5 | 0.5 | 0.5 |
Total | 100.0 | 100.0 | 100.0 | 100.0 |
Cost (Thai Bath/kg FM) | 3.64 | 4.43 | 4.79 | 5.47 |
Broken Rice Substitution (%) | |||||
---|---|---|---|---|---|
Items 1 | Broken Rice | 0 | 12 | 24 | 36 |
Chemical composition | |||||
Dry matter, % | 88.9 | 32.7 | 34.0 | 36.1 | 40.8 |
Organic matter, %DM | 99.2 | 93.6 | 94.5 | 95.1 | 95.4 |
Crude protein, %DM | 7.4 | 18.5 | 16.7 | 15.5 | 14.5 |
Neutral detergent fiber, %DM | 6.4 | 45.8 | 42.2 | 41.3 | 33.7 |
Acid detergent fiber, %DM | 1.2 | 23.5 | 23.2 | 20.5 | 17.1 |
Ether extract, %DM | 1.3 | 5.9 | 5.3 | 5.1 | 4.5 |
Non-fiber carbohydrate, %DM | 84.9 | 23.5 | 30.3 | 33.1 | 42.7 |
Fermentation profile | |||||
pH | 3.9 | 3.8 | 3.8 | 3.8 | |
Lactic acid, g/kg of DM | 27.4 | 65.5 | 66.4 | 64.0 | |
Acetic acid, g/kg of DM | 22.9 | 12.9 | 9.7 | 10.2 | |
Propionic acid, g/kg of DM | 1.9 | 0.8 | 0.7 | 0.8 | |
Butyric acid, g/kg of DM | 0.3 | 0.4 | 0.3 | 0.3 | |
Valeric acid, g/kg of DM | 0.2 | 0.1 | 0.3 | 0.1 | |
Ammonia nitrogen, g/kg of N | 18.2 | 18.6 | 18.5 | 22.1 |
Broken Rice Substitution (%) | p-Value 3 | |||||||
---|---|---|---|---|---|---|---|---|
Items 1 | 0 | 12 | 24 | 36 | SEM 2 | L | Q | C |
Body weight, kg | 523.9 | 479.1 | 512.8 | 487.0 | ||||
Feed intake | ||||||||
kg/day | 13.6 | 13.4 | 12.7 | 12.6 | 1.29 | 0.51 | 0.96 | 0.83 |
% of BW | 2.6 | 2.8 | 2.5 | 2.6 | 0.25 | 0.77 | 0.90 | 0.44 |
g/kg BW0.75 | 125.3 | 130.9 | 118.7 | 122.4 | 11.46 | 0.69 | 0.93 | 0.52 |
Nutrient intake (kg/day) | ||||||||
Organic matter | 12.8 | 12.7 | 12.0 | 12.0 | 1.23 | 0.61 | 0.99 | 0.83 |
Crude protein | 2.5 | 2.2 | 2.0 | 1.8 | 0.19 | 0.02 | 0.71 | 0.87 |
Ether extract | 0.8 | 0.7 | 0.6 | 0.6 | 0.06 | 0.01 | 0.93 | 0.88 |
Neutral detergent fiber | 6.2 | 5.7 | 5.2 | 4.2 | 0.45 | <0.01 | 0.65 | 0.74 |
Acid detergent fiber | 3.2 | 3.1 | 2.6 | 2.2 | 0.23 | 0.04 | 0.47 | 0.63 |
Non-fiber carbohydrate | 3.2 | 4.1 | 4.2 | 5.4 | 0.53 | 0.02 | 0.77 | 0.16 |
Broken Rice Substitution (%) | p-Value 2 | |||||||
---|---|---|---|---|---|---|---|---|
Digestibility, g/kg | 0 | 12 | 24 | 36 | SEM 1 | L | Q | C |
Dry matter | 595 | 648 | 670 | 663 | 18.12 | 0.02 | 0.14 | 0.96 |
Organic matter | 628 | 678 | 696 | 690 | 17.24 | 0.03 | 0.15 | 0.88 |
Crude protein | 670 | 683 | 646 | 599 | 27.45 | 0.08 | 0.31 | 0.76 |
Ether extract | 836 | 815 | 833 | 750 | 25.07 | 0.07 | 0.26 | 0.24 |
Neutral detergent fiber | 467 | 579 | 596 | 606 | 38.93 | 0.04 | 0.24 | 0.62 |
Acid detergent fiber | 354 | 403 | 383 | 293 | 39.58 | 0.31 | 0.12 | 1.00 |
Non-fiber carbohydrate | 730 | 744 | 769 | 783 | 26.00 | 0.17 | 0.99 | 0.84 |
Broken Rice Substitution (%) | p-Value 3 | |||||||
---|---|---|---|---|---|---|---|---|
Items 1 | 0 | 12 | 24 | 36 | SEM 2 | L | Q | C |
Milk production | ||||||||
Milk yield, kg/day | 16.1 | 16.1 | 14.7 | 14.8 | 2.27 | 0.62 | 0.98 | 0.78 |
FPCM, kg/day | 14.2 | 13.7 | 13.5 | 12.8 | 1.82 | 0.60 | 0.97 | 0.93 |
ECM, kg/day | 14.1 | 13.6 | 13.6 | 12.7 | 1.91 | 0.65 | 0.92 | 0.90 |
Protein, g/day | 535.6 | 545.8 | 499.1 | 513.4 | 87.55 | 0.78 | 0.98 | 0.77 |
Fat, g/day | 478.5 | 428.5 | 406.1 | 362.6 | 56.15 | 0.28 | 0.42 | 0.63 |
Lactose, g/day | 753.8 | 768.8 | 713.0 | 703.5 | 125.47 | 0.72 | 0.92 | 0.84 |
Solid not fat, kg/day | 1.4 | 1.4 | 1.3 | 1.3 | 0.23 | 0.76 | 0.98 | 0.88 |
Milk composition | ||||||||
Milk protein, g/kg | 33.4 | 33.6 | 33.9 | 33.8 | 1.90 | 0.87 | 0.92 | 0.97 |
Milk fat, g/kg | 29.7 | 28.8 | 25.9 | 27.8 | 2.44 | 0.50 | 0.61 | 0.63 |
Milk lactose, g/kg | 46.4 | 47.1 | 47.7 | 47.3 | 1.97 | 0.72 | 0.79 | 0.92 |
Solid not fat, g/kg | 87.8 | 87.3 | 89.8 | 89.3 | 3.45 | 0.67 | 1.00 | 0.70 |
Milk energy, MJ/kg | 2.3 | 2.3 | 2.3 | 2.4 | 0.10 | 0.66 | 0.40 | 0.68 |
SCC, ×103 cell/mL | 92.3 | 330.7 | 252.5 | 119.5 | 78.76 | 0.99 | 0.10 | 0.54 |
Broken Rice Substitution (%) | p-Value 3 | |||||||
---|---|---|---|---|---|---|---|---|
Items 1 | 0 | 12 | 24 | 36 | SEM 2 | L | Q | C |
Respiratory gas | ||||||||
O2 consumption | 3566 | 3787 | 4048 | 3849 | 471.71 | 0.63 | 0.68 | 0.82 |
CO2 production | 4033 | 4360 | 4651 | 4491 | 538.40 | 0.53 | 0.67 | 0.87 |
CH4 emission | 258.7 | 298.0 | 275.4 | 303.6 | 39.54 | 0.57 | 0.89 | 0.54 |
RQ | 1.1 | 1.2 | 1.2 | 1.2 | 0.03 | 0.69 | 0.93 | 0.91 |
Energy partition | ||||||||
Gross energy intake | 2190 | 2368 | 2066 | 2411 | 149.80 | 0.63 | 0.60 | 0.12 |
Fecal excretion | 597.0 | 627.7 | 561.4 | 620.6 | 59.51 | 0.99 | 0.82 | 0.42 |
Urine excretion | 55.3 | 60.1 | 56.5 | 44.7 | 4.50 | 0.09 | 0.08 | 0.94 |
Methane emission | 92.2 | 116.0 | 100.2 | 115.7 | 13.10 | 0.40 | 0.77 | 0.26 |
Heat production | 692.1 | 799.5 | 811.4 | 796.0 | 90.10 | 0.43 | 0.56 | 0.85 |
Milk energy | 287.4 | 352.3 | 319.5 | 323.0 | 51.44 | 0.61 | 0.69 | 0.53 |
Energy balance | 466.4 | 411.9 | 416.9 | 472.0 | 149.07 | 0.87 | 0.38 | 0.45 |
El(0) | 638.1 | 652.1 | 519.9 | 670.0 | 123.13 | 0.95 | 0.55 | 0.43 |
Energy intake | ||||||||
DE | 1593 | 1739 | 1505 | 1753 | 125.39 | 0.57 | 0.60 | 0.14 |
ME | 1446 | 1564 | 1348 | 1591 | 133.79 | 0.61 | 0.56 | 0.19 |
NEL | 1151 | 1178 | 1023 | 1185 | 167.21 | 0.98 | 0.66 | 0.52 |
Energy content | ||||||||
DE | 13.1 | 13.4 | 13.2 | 13.3 | 0.48 | 0.84 | 0.91 | 0.78 |
ME | 11.9 | 12.0 | 11.8 | 12.1 | 0.57 | 0.84 | 0.86 | 0.74 |
NEL | 9.4 | 9.0 | 9.0 | 9.1 | 1.14 | 0.88 | 0.86 | 0.99 |
Energy utilization | ||||||||
DE/GE | 0.72 | 0.74 | 0.73 | 0.74 | 0.02 | 0.60 | 0.95 | 0.69 |
ME/GE | 0.65 | 0.66 | 0.65 | 0.68 | 0.03 | 0.65 | 0.74 | 0.68 |
ME/DE | 0.90 | 0.90 | 0.89 | 0.91 | 0.02 | 0.83 | 0.48 | 0.67 |
Item 1 | Regression Equations 2 | RMSE 3 | R2 | p-Value | Slope | Intercept | ||
---|---|---|---|---|---|---|---|---|
SEM 4 | p-Value | SEM | p-Value | |||||
DE, MJ/kg DM | Y = 13.13X + 0.02 | 0.25 | 0.98 | <0.0001 | 0.49 | <0.0001 | 0.10 | 0.85 |
ME, MJ/kg DM | Y = 11.87X + 1.91 | 0.31 | 0.96 | <0.0001 | 0.62 | <0.0001 | 0.13 | 0.89 |
NEL, MJ/kg DM | Y = 8.68X + 1.18 | 0.50 | 0.85 | <0.0001 | 0.99 | <0.0001 | 0.21 | 0.95 |
Item 1 | Comparative Method | SEM 2 | p-Value | |||
---|---|---|---|---|---|---|
Substitution | Substitution | Substitution | Regression | |||
12% | 24% | 36% | ||||
DE, MJ/kg DM | 13.15 | 13.13 | 12.82 | 13.13 | 0.63 | 0.98 |
ME, MJ/kg DM | 11.88 | 11.87 | 11.60 | 11.87 | 0.77 | 0.99 |
NEL, MJ/kg DM | 8.61 | 8.72 | 8.45 | 8.68 | 1.20 | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gunha, T.; Kongphitee, K.; Binsulong, B.; Sommart, K. The Energy Contents of Broken Rice for Lactating Dairy Cows. Animals 2023, 13, 3042. https://doi.org/10.3390/ani13193042
Gunha T, Kongphitee K, Binsulong B, Sommart K. The Energy Contents of Broken Rice for Lactating Dairy Cows. Animals. 2023; 13(19):3042. https://doi.org/10.3390/ani13193042
Chicago/Turabian StyleGunha, Thidarat, Kanokwan Kongphitee, Bhoowadol Binsulong, and Kritapon Sommart. 2023. "The Energy Contents of Broken Rice for Lactating Dairy Cows" Animals 13, no. 19: 3042. https://doi.org/10.3390/ani13193042
APA StyleGunha, T., Kongphitee, K., Binsulong, B., & Sommart, K. (2023). The Energy Contents of Broken Rice for Lactating Dairy Cows. Animals, 13(19), 3042. https://doi.org/10.3390/ani13193042