Effects of Silage Type and Feeding Intensity on Carcass Traits and Meat Quality of Finishing Holstein–Friesian Bulls
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Feeding
2.2. Carcass Quality
2.3. Meat Sampling
2.4. Chemical Composition
2.5. pH Value
2.6. Free Water
2.7. Meat Colour
2.8. Cooking Loss and Warner–Bratzler Shear Force Values
2.9. Sensory Assessment
2.10. Statistical Analysis
3. Results
3.1. Feeding Results
3.2. Carcass Quality
3.3. Chemical Composition and Physicochemical Properties
3.4. Sensory Quality
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nogalski, Z.; Pogorzelska-Przybyłek, P.; Sobczuk-Szul, M.; Modzelewska-Kapituła, M. Effects of rearing system and fattening intensity on the chemical composition, physicochemical properties and sensory attributes of meat from young crossbred (Holstein-Friesian × Hereford) Bulls. Animals 2022, 12, 933. [Google Scholar] [CrossRef] [PubMed]
- Mezgebo, G.B.; Monahan, F.J.; McGee, M.; O’Riordan, E.G.; Richardson, I.R.; Brunton, N.P.; Moloney, A.P. Fatty acid, volatile and sensory characteristics of beef as affected by grass silage or pasture in the bovine diet. Food Chem. 2017, 235, 86–97. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Beak, S.H.; Jung, D.J.S.; Kim, S.Y.; Jeong, I.H.; Piao, M.Y.; Kang, H.J.; Fassah, D.M.; Na, S.W.; Yoo, S.P.; et al. Genetic, management, and nutritional factors affecting intramuscular fat deposition in beef cattle—A review. Asian-Australas. J. Anim. Sci. 2018, 31, 1043–1061. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.V.; Nguyen, O.C.; Malau-Aduli, A.E.O. Main regulatory factors of marbling level in beef cattle. Vet. Anim. Sci. 2021, 14, 100219. [Google Scholar] [CrossRef] [PubMed]
- Integrated Agricultural Market Information System. MRiRW. 2023. Available online: http://www.minrol.gov.pl/Rynki-rolne/Zintegrowany-System-Rolniczej-Informacji-Rynkowej/Biuletyny-Informacyjne/Rynek-wolowiny-i-cieleciny (accessed on 2 July 2023).
- Oprządek, J.; Dymnicki, E.; Reklewski, Z. Growth rates and carcass composition of young cattle of different breeds. Rocz. Nauk. PTZ 2007, 3, 25–31. [Google Scholar]
- Nogalski, Z.; Wielgosz-Groth, Z.; Purwin, C.; Nogalska, A.; Sobczuk-Szul, M.; Winarski, R.; Pogorzelska, P. The effect of slaughter weight and fattening intensity on changes in carcass fatness in young Holstein-Fresian bulls. Ital. J. Anim. Sci. 2014, 13, 66–72. [Google Scholar] [CrossRef]
- Nogalski, Z.; Wroński, M.; Wielgosz-Groth, Z.; Purwin, C.; Sobczuk-Szul, M.; Mochol, M.; Pogorzelska, P. The effect of carcass conformation class (EUROP system) on the slaughter quality of young crossbred beef bulls and Holstein-Friesians. Ann. Anim. Sci. 2013, 13, 121–131. [Google Scholar] [CrossRef]
- Bures, D.; Barton, L. Growth performance, carcass traits and meat quality of bulls and heifers slaughtered at different ages. Czech J. Anim. Sci. 2012, 57, 34–43. [Google Scholar] [CrossRef]
- Silva, L.H.; Paulino, P.V.; Assis, G.J.; Assis, D.E.; Estrada, M.M.; Silva, M.C.; Silva, J.C.; Martins, T.S.; Valadares Filho, S.C.; Paulino, M.F. Effect of post-weaning growth rate on carcass traits and meat quality of Nellore cattle. Meat Sci. 2017, 123, 192–197. [Google Scholar] [CrossRef]
- Patino, H.; Medeiros, F.; Pereira, C.; Swanson, K.; McManus, C. Productive performance, meat quality and fatty acid profile of steers finished in confinement or supplemented at pasture. Animal 2015, 9, 966–972. [Google Scholar] [CrossRef]
- Juniper, D.T.; Browne, E.M.; Fisher, A.V.; Bryant, M.J.; Nute, G.R.; Beever, D.E. Intake, growth and meat quality of steers given diets based on varying proportions of maize silage and grass silage. Anim. Sci. 2005, 81, 159–170. [Google Scholar] [CrossRef]
- Keady, T.W.J.; Lively, F.O.; Kilpatrick, D.J.; Moss, B.W. Effects of replacing grass silage with either maize or whole-crop wheat silages on the performance and meat quality of beef cattle offered two levels of concentrates. Animal 2007, 1, 613–623. [Google Scholar] [CrossRef] [PubMed]
- Huuskonen, A.; Huhtanen, P.; Joki-Tokola, E. Evaluation of protein supplementation for growing cattle fed grass silage-based diets: A meta-analysis. Animal 2014, 8, 1653–1662. [Google Scholar] [CrossRef] [PubMed]
- Staerfl, S.M.; Soliva, C.R.; Leiber, F.; Kreuzer, M. Fatty acid profile and oxidative stability of the perirenal fat of bulls fattened on grass silage and maize silage supplemented with tannins, garlic, maca and lupines. Meat Sci. 2011, 89, 98–104. [Google Scholar] [CrossRef]
- Simopoulus, A.P. Omega-3 fatty acids in inflammation and autoimmune diseases. J. Am. Coll. Nutr. 2002, 21, 495–505. [Google Scholar] [CrossRef]
- Scollan, N.; Hocquette, J.F.; Nuernberg, K.; Dannenberger, D.; Richardson, I.; Moloney, A. Innovations in beef production systems that enhance the nutritional and health value of beef lipids and their relationship with meat quality. Meat Sci. 2006, 74, 17–33. [Google Scholar] [CrossRef]
- Wang, H.; Li, H.; Wu, F.; Qiu, X.; Yu, Z.; Niu, W.; He, Y.; Su, H.; Cao, B. Effects of dietary energy on growth performance, rumen fermentation and bacterial community, and meat quality of Holstein-Friesians bulls slaughtered at different ages. Animals 2019, 9, 1123. [Google Scholar] [CrossRef]
- Nogalski, Z.; Pogorzelska-Przybyłek, P.; Sobczuk-Szul, M.; Purwin, C.; Modzelewska-Kapituła, M. Effects of rearing system and feeding intensity on the fattening performance and slaughter value of young crossbred bulls. Ann. Anim. Sci. 2018, 18, 835–847. [Google Scholar] [CrossRef]
- AOAC (Association of Official Analytical Chemists). Official Methods of Analysis, 18th ed.; AOAC: Arlington, WA, USA, 2005. [Google Scholar]
- VanSoest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Thomas, A.T. An automated procedure for the determination of soluble carbohydrates in herbage. J. Sci. Food Agric. 1977, 28, 639–642. [Google Scholar] [CrossRef]
- Licitra, G.; Hernandez, T.M.; Van Soest, P.J. Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Technol. 1996, 57, 347–358. [Google Scholar] [CrossRef]
- Regulation (EC) No. 1099/2009 of 24 (September 2009). On the protection of animals at the time of killing. Off. J. Eur. Union L 2009, 303, 1–30.
- Kien, S. The Classification of Carcases of Adult Bovine Animals in the EUROP; Meat and Fat Research Institute: Warsaw, Poland, 2004. [Google Scholar]
- American Meat Science Association. Research Guidelines for Cookery, Sensory Evaluation, and Instrumental Tenderness Measurements of Meat, 2nd ed.; version 1.0; American Meat Science Association: Champaign, IL, USA, 2015. [Google Scholar]
- Anderson, S. Determination of fat, moisture, and protein in meat and meat products by using the FOSS FoodScan near-infrared spectrophotometer with FOSS artificial neural network calibration model and associated database: Collaborative study. J. AOAC Int. 2007, 90, 1073–1083. [Google Scholar] [CrossRef] [PubMed]
- PN-A-82109:2010; Meat and Meat Products. Determination of Fat, Protein and Water Content—Near Infrared Transmission Spectrometry (NIT) Method Using Artificial Neural Network (ANN) Calibration. Polish Committee for Standardization: Warsaw, Poland, 2010.
- Hamm, R. Functional properties of the myofibrilar system and their measurement. In Muscle as Food; Bechtel, P.J., Ed.; Academic Press Inc.: London, UK, 1986; pp. 143–147. [Google Scholar]
- Modzelewska-Kapituła, M.; Kwiatkowska, A.; Jankowska, B.; Dąbrowska, E. Water holding capacity and collagen profile of bovine m. infraspinatus during postmortem ageing. Meat Sci. 2015, 100, 209–216. [Google Scholar] [CrossRef] [PubMed]
- CIE. Recommendations on Uniform Color Spaces, Color-Difference Equations, Psychometric Color Terms; Commission Internationale de l’Eclairage: Paris, France, 1978. [Google Scholar]
- Tkacz, K.; Modzelewska-Kapituła, M.; Więk, A.; Nogalski, Z. The applicability of total color difference ΔE for determining the blooming time in longissimus lumborum and semimembranosus muscles from Holstein-Friesian bulls at different ageing times. App. Sci. 2020, 10, 8215. [Google Scholar] [CrossRef]
- Honikel, K.O. Reference methods for the assessment of physical characteristics of meat. Meat Sci. 1998, 49, 447–457. [Google Scholar] [CrossRef]
- PN ISO 4121; Sensory Analysis Methodology—Evaluation of Food Products by Methods Using Scales. Polish Committee for Standardization: Warsaw, Poland, 1998.
- Modzelewska-Kapituła, M.; Tkacz, K.; Nogalski, Z.; Karpińska-Tymoszczyk, M.; Draszanowska, A.; Pietrzak-Fiećko, R.; Purwin, C.; Lipiński, K. Addition of herbal extracts to the Holstein-Friesian bulls’ diet changes the quality of beef. Meat Sci. 2018, 145, 163–170. [Google Scholar] [CrossRef]
- StatSoft Inc. Statistica (Data Analysis Software System), version 13.3; TIBCO Software Inc.: Palo Alto, CA, USA, 2020. [Google Scholar]
- Scheirer, J.; Ray, W.S.; Hare, N. The analysis of ranked data derived from completely randomized factorial designs. Biometrics 1976, 32, 429–434. [Google Scholar] [CrossRef]
- Arthur, P.F.; Archer, J.A.; Johnston, D.J.; Herd, R.M.; Richardson, E.C.; Parnell, P.F. Genetic and phenotypic variance and covariance components for feed intake, feed efficiency, and other postweaning traits in Angus cattle. J. Anim. Sci. 2001, 79, 2805–2811. [Google Scholar] [CrossRef]
- Therkildsen, M.; Houbak, M.B.; Byrne, D.V. Feeding strategy for improving tenderness has opposite effects in two different muscles. Meat Sci. 2008, 80, 1037–1045. [Google Scholar] [CrossRef]
- Huuskonen, A.; Huhtanen, P. The development of a model to predict BW gain of growing cattle fed grass silage-based diets. Animal 2015, 9, 1329–1340. [Google Scholar] [CrossRef] [PubMed]
- Jennings, J.S.; Meyer, B.E.; Guiroy, P.J.; Andy Cole, N. Energy costs of feeding excess protein from corn-based by-products to finishing cattle. J. Anim. Sci. 2018, 96, 653–669. [Google Scholar] [CrossRef]
- Reynolds, C.K.; Tyrrell, H.F.; Reynolds, P.J. Effects of diet forage-to-concentrate ratio and intake on energy metabolism in growing beef heifers: Whole body energy and nitrogen balance and visceral heat production. J. Nutr. 1991, 121, 994–1003. [Google Scholar] [CrossRef]
- McGilchrist, P.; Alston, C.L.; Gardner, G.E.; Thomson, K.L.; Pethick, D.W. Beef carcasses with larger eye muscle areas, lower ossification scores and improved nutrition have a lower incidence of dark cutting. Meat Sci. 2012, 92, 474–480. [Google Scholar] [CrossRef] [PubMed]
- Ijaz, M.; Zhang, D.; Hou, C.; Mahmood, M.; Hussain, Z.; Zheng, X.; Li, X. Changes in postmortem metabolites profile of atypical and typical DFD beef. Meat Sci. 2022, 193, 108922. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, D.; Marti, S.; Verdú, M.; González, J.; Font-i-Furnols, M.; Devant, M. Characterization of three different mediterranean beef fattening systems: Performance, behavior, and carcass and meat quality. Animals 2022, 12, 1960. [Google Scholar] [CrossRef]
- Sami, A.S.; Augustini, C.; Schwarz, F.J. Effects of feeding intensity and time on feed on performance, carcass characteristics and meat quality of Simmental bulls. Meat Sci. 2004, 67, 195–201. [Google Scholar] [CrossRef]
- Keller, M.; Kreuzer, M.; Reidy, B.; Scheurer, A.; Guggenbühl, B.; Luder, M.; Frank, J.; Giller, K. Effects on performance, carcass and meat quality of replacing maize silage and concentrate by grass silage and corn-cob mix in the diet of growing bulls. Meat Sci. 2022, 188, 108795. [Google Scholar] [CrossRef]
- Regulation (EC) No 1924/2006 of the European Parliament and of the Council of 20 December 2006 on Nutrition and Health Claims Made on Foods. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:404:0009:0025:En:PDF (accessed on 26 September 2023).
- Modzelewska-Kapituła, M.; Nogalski, Z. The influence of diet on collagen content and quality attributes of infraspinatus muscle from Holstein–Friesian young bulls. Meat Sci. 2016, 117, 158–162. [Google Scholar] [CrossRef]
- Honig, A.C.; Inhuber, V.; Spiekers, H.; Windisch, W.; Götz, K.-U.; Ettle, T. Influence of dietary energy concentration and body weight at slaughter on carcass tissue composition and beef cuts of modern type Fleckvieh (German Simmental) bulls. Meat Sci. 2020, 169, 108209. [Google Scholar] [CrossRef]
- Keady, T.W.J.; Gordon, A.W.; Moss, B.W. Effects of replacing grass silage with maize silages differing in inclusion level and maturity on the performance, meat quality and concentrate-sparing effect of beef cattle. Animal 2013, 7, 768–777. [Google Scholar] [CrossRef] [PubMed]
- Tkacz, K.; Modzelewska-Kapituła, M. Marinating and grilling as methods of sensory enhancement of sous vide beef from Holstein-Friesian bulls. Appl. Sci. 2022, 12, 10411. [Google Scholar] [CrossRef]
- Purslow, P.P.; Warner, R.D.; Clarke, F.M.; Hughes, J.M. Variations in meat colour due to factors other than myoglobin chemistry; a synthesis of recent findings (invited review). Meat Sci. 2020, 159, 107941. [Google Scholar] [CrossRef] [PubMed]
- Holman, B.W.B.; Hopkins, D.L. The use of conventional laboratory-based methods to predict consumer acceptance of beef and sheep meat: A review. Meat Sci. 2021, 181, 108586. [Google Scholar] [CrossRef]
- Destefanis, G.; Brugiapaglia, A.; Barge, M.T.; Dal Molin, E. Relationship between beef consumer tenderness perception and Warner-Bratzler shear force. Meat Sci. 2008, 78, 153–156. [Google Scholar] [CrossRef]
Specification | Grass Silage | Maize Silage | Triticale | Rapeseed Meal |
---|---|---|---|---|
Dry matter (DM, g/kg) | 285 | 322 | 875 | 878 |
Organic matter (g/kg DM) | 906 | 967 | 966 | 921 |
Crude protein (g/kg DM) | 121 | 88.9 | 122 | 383 |
NDF (g/kg DM) | 536 | 337 | 162 | 298 |
ADF (g/kg DM) | 314 | 196 | 41 | 212 |
ADL (g/kg DM) | 25.5 | 12.7 | ||
NFC (g/kg DM) | 194 | 508 | 629 | 237 |
pH | 4.23 | 3.56 | ||
Lactic acid (g/kg DM) | 43.6 | 27.5 | ||
Acetic acid (g/kg DM) | 12.5 | 6.6 | ||
Butyric acid (g/kg DM) | 0.09 | 0.08 | ||
N-NH3 (g/kg TN) | 75.9 | 33.9 | ||
UFV | 0.86 | 0.85 | 1.19 | 1.03 |
PDIN | 83 | 50 | 85 | 254 |
PDIE | 72 | 68 | 98 | 162 |
Specification | GS-I | GS-SI | MS-I | MS-SI |
---|---|---|---|---|
Grass silage | 50 | 70 | ||
Maize silage | 50 | 70 | ||
Triticale grain | 47 | 27 | 41 | 18 |
Rapeseed meal | 3 | 3 | 9 | 12 |
Dry matter (DM, g/kg FM) | 580 | 462 | 598 | 488 |
In g/kg DM | ||||
Organic matter | 934.6 | 922.6 | 962.4 | 961.3 |
Crude protein | 129.3 | 129.1 | 128.9 | 130.1 |
NDF | 353.1 | 427.8 | 261.7 | 300.8 |
ADF | 182.6 | 237.2 | 133.8 | 170.0 |
NFC | 399.7 | 312.7 | 533.2 | 497.2 |
UFV | 1.02 | 0.94 | 1.02 | 0.94 |
PDIN | 89.1 | 88.6 | 82.7 | 81.7 |
PDIE | 86.9 | 82.7 | 87.7 | 84.6 |
Traits | Silage Type (ST) | Feeding Intensity (FI) | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
Grass Silage | Maize Silage | Intensive (I) | Semi-Intensive (SI) | ST | FI | ST × FI | ||
Initial age (days) | 604.6 | 595.8 | 600.3 | 599.6 | 7.36 | 0.660 | 0.936 | 0.695 |
Initial live weight (kg) | 538.9 | 530.3 | 531.0 | 536.5 | 8.79 | 0.906 | 0.866 | 0.333 |
Final live weight (kg) | 699.9 | 704.5 | 723.8 | 680.7 | 7.97 | 0.748 | 0.005 | 0.068 |
Body weight gain (kg) | 161.2 | 174.5 | 191.9 | 143.8 | 3.22 | 0.114 | 0.000 | 0.082 |
Feeding period (days) | 120 | 120 | 120 | 120 | ||||
Average daily gain (kg) | 1.343 | 1.454 | 1.599 | 1.198 | 0.0500 | 0.117 | 0.000 | 0.044 |
Dry matter intake (kg) | 10.52 | 11.05 | 11.20 | 10.38 | 0.081 | 0.256 | 0.036 | 0.369 |
FCR (kg) | 7.83 | 7.60 | 7.02 | 8.66 | 0.068 | 0.328 | 0.045 | 0.653 |
Traits | Silage Type (ST) | Feeding Intensity (FI) | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
Grass Silage | Maize Silage | Intensive (I) | Semi-Intensive (SI) | ST | FI | ST × FI | ||
Age at slaughter (days) | 724.6 | 715.3 | 720.8 | 719.1 | 8.03 | 0.896 | 0.962 | 0.789 |
LW before slaughter (kg) | 642.2 | 650.0 | 673.8 | 618.4 | 9.13 | 0.618 | 0.001 | 0.160 |
Hot carcass weight (kg) | 359.4 | 369.2 | 385.3 | 345.7 | 5.44 | 0.570 | 0.002 | 0.236 |
Dressing percentage (%) | 55.96 | 56.80 | 57.18 | 55.91 | 0.130 | 0.603 | 0.031 | 0.528 |
Conformation score (pts) | 4.8 | 4.9 | 5.2 | 4.4 | 0.13 | 0.597 | 0.003 | 0.863 |
Fatness score (pts) | 5.5 | 5.8 | 6.4 | 4.9 | 0.28 | 0.538 | 0.008 | 0.391 |
Traits | Silage Type (ST) | Feeding Intensity (FI) | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
Grass Silage | Maize Silage | Intensive (I) | Semi-Intensive (SI) | ST | FI | ST × FI | ||
Chemical composition | ||||||||
Moisture (%) | 74.51 | 73.90 | 73.80 | 74.61 | 0.218 | 0.152 | 0.059 | 0.588 |
Protein (%) | 23.40 | 23.05 | 22.97 | 23.47 | 0.111 | 0.092 | 0.021 | 0.792 |
Fat (%) | 2.74 | 3.01 | 3.49 | 2.25 | 0.189 | 0.412 | 0.001 | 0.904 |
Ash (%) | 1.08 | 1.04 | 1.04 | 1.07 | 0.016 | 0.253 | 0.339 | 0.202 |
Physico-chemical properties | ||||||||
pH48h | 5.65 | 5.66 | 5.66 | 5.65 | 0.023 | 0.699 | 0.719 | 0.297 |
pH14d | 5.64 | 5.66 | 5.62 | 5.68 | 0.018 | 0.703 | 0.084 | 0.478 |
Free water (%) | 28.34 | 28.21 | 26.80 | 29.74 | 0.796 | 0.936 | 0.073 | 0.775 |
L* | 35.11 | 38.36 | 37.27 | 36.20 | 1.530 | 0.309 | 0.738 | 0.797 |
a* | 16.58 | 15.93 | 16.52 | 15.99 | 0.454 | 0.483 | 0.565 | 0.261 |
b* | 7.66 | 8.15 | 8.29 | 7.52 | 0.285 | 0.395 | 0.179 | 0.302 |
C | 23.66 | 20.30 | 20.73 | 23.23 | 1.206 | 0.166 | 0.298 | 0.266 |
h | 24.84 | 27.46 | 26.95 | 25.35 | 1.109 | 0.254 | 0.484 | 0.846 |
Cooking loss (%) | 34.21 | 30.54 | 30.58 | 34.17 | 2.295 | 0.440 | 0.450 | 0.443 |
WBSF (N) | 33.94 | 31.97 | 32.23 | 33.69 | 1.764 | 0.597 | 0.694 | 0.948 |
Traits | Silage Type (ST) | Feeding Intensity (FI) | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
Grass Silage | Maize Silage | Intensive (I) | Semi-Intensive (SI) | ST | FI | ST × FI | ||
Aroma | 7.1 | 7.1 | 7.0 | 7.2 | 0.11 | 0.741 | 0.487 | 0.971 |
Juiciness | 5.0 | 5.1 | 5.3 | 4.8 | 0.15 | 0.939 | 0.039 | 0.564 |
Tenderness | 5.6 | 5.5 | 5.8 | 5.3 | 0.18 | 0.914 | 0.041 | 0.606 |
Taste | 6.3 | 6.4 | 6.6 | 6.1 | 0.12 | 0.819 | 0.047 | 0.452 |
Overall acceptability | 6.4 | 6.2 | 6.6 | 5.9 | 0.13 | 0.341 | 0.012 | 0.861 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nogalski, Z.; Modzelewska-Kapituła, M.; Tkacz, K. Effects of Silage Type and Feeding Intensity on Carcass Traits and Meat Quality of Finishing Holstein–Friesian Bulls. Animals 2023, 13, 3065. https://doi.org/10.3390/ani13193065
Nogalski Z, Modzelewska-Kapituła M, Tkacz K. Effects of Silage Type and Feeding Intensity on Carcass Traits and Meat Quality of Finishing Holstein–Friesian Bulls. Animals. 2023; 13(19):3065. https://doi.org/10.3390/ani13193065
Chicago/Turabian StyleNogalski, Zenon, Monika Modzelewska-Kapituła, and Katarzyna Tkacz. 2023. "Effects of Silage Type and Feeding Intensity on Carcass Traits and Meat Quality of Finishing Holstein–Friesian Bulls" Animals 13, no. 19: 3065. https://doi.org/10.3390/ani13193065
APA StyleNogalski, Z., Modzelewska-Kapituła, M., & Tkacz, K. (2023). Effects of Silage Type and Feeding Intensity on Carcass Traits and Meat Quality of Finishing Holstein–Friesian Bulls. Animals, 13(19), 3065. https://doi.org/10.3390/ani13193065