Effects of Alternative Cassava and Taro Feed on the Carcass and Meat Quality of Fattening Pigs Reared under Ecuadorian Backyard Systems
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Selection and Preparation of Animals
2.2. Preparation and Formulation of Diets
2.3. Procedure for Obtaining the Data
2.4. Statistical Analysis
3. Results
3.1. Pig Carcass Morphology
3.2. Fat Thickness and Content of Pig Carcass
3.3. Pork Quality Analysis
3.4. Morphometry Characteristics of Gastrointestinal Tract and Visceral Organs
3.5. Relationship between Carcass Measurements and Morphometry of Pigs’ Gastrointestinal Tracts
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ekpo, J.; Idorenyin, M.S.; Metiabasi, U.; Grace Idiong, C. Meat Quality and Sensory Evaluation of Pork from Pig Fed Pro-Vitamin A Cassava Leaf Meal, Pumpkin Stem and Moringa Leaf Meal as Dietary Supplements. J. Agric. Food Sci. 2022, 6, 10–23. [Google Scholar]
- FAO. Food and Agriculture Organization of the United Nations. Revisión del Mercado de la Carne; Índices de Precios de La Carne de La FAO; FAO: Rome, Italy, 2023. Available online: https://www.fao.org/worldfoodsituation/foodpricesindex/es/ (accessed on 13 August 2023).
- Asociación de Porcicultores del Ecuador-ASPE. Importancia Economica de la Porcicultura Valor Bruto de la Produccion. Ecuador. 2022. Available online: https://aspe.org.ec/wp-content/uploads/2022/09/DATOS_PORCICULTURA.pdf (accessed on 13 August 2023).
- Sagaró-Zamora, F.; Ferrer-Hernández, E. Alimentación Para Cerdos de Ceba En Condiciones Locales de Agricultura Familiar. Ciencia en su PC 2021, 1, 22–35. [Google Scholar]
- Valverde Lucio, A.; Gonzalez-Martínez, M.; Alcívar Cobeña, J.L.; Rodero Serrano, E. Characterization and Typology of Backyard Small Pig Farms in Jipijapa, Ecuador. Animals 2021, 11, 1728. [Google Scholar] [CrossRef]
- Sanz, J.G.; Peris, C.; Torres, A. Productividad de las Explotaciones Porcinas en Sistemas Intensivos; Generalitat Valenciana: Madrid, Spain, 1994. [Google Scholar]
- Herrera, K.; Monar, G. Proyecto de Inversión para la Construcción de una Granja en Vinces, Provincia de Los Ríos que se Dedique al Cuidado, Crianza y Comercialización de Ganado Porcino. Bachelor’s Thesis, Higher Polytechnic School of the Litoral, Guayaquil, Ecuador, 2006. Available online: https://www.dspace.espol.edu.ec/bitstream/123456789/56540/1/D-CD35652%20HERRERA%20-%20MONAR.pdf (accessed on 13 August 2023).
- Segarra Zenteno, E.; Salinas Cueva, L.; López Crespo, G. Calidad de la canal de cerdos en la industria porcina de ecuador (Artículo de Revisión). Rev. Ecu. Cien. Anim. 2018, 2, 118–132. [Google Scholar]
- Mader, C.J.; Montanholi, Y.R.; Wang, Y.J.; Miller, S.P.; Mandell, I.B.; McBride, B.W.; Swanson, K.C. Relationships among measures of growth performance and efficiency with carcass traits, visceral organ mass, and pancreatic digestive enzymes in feedlot cattle. J. Anim. Sci. 2009, 87, 1548–1557. [Google Scholar] [CrossRef] [PubMed]
- Tous, N.; Esteve, E.; Lizardo, R.; 3tres3.com. Nutrición y Grasa Intramuscular: Efecto del Ácido Linoleico Conjugado y la Vitamina A. 2012. Available online: https://www.3tres3.com/latam/articulos/nutricion-y-grasa-intramuscular-efecto-del-cla-y-la-vitamina-a_11189/ (accessed on 13 August 2023).
- Abu, O.A.; Olaleru, I.F.; Omojola, A.B. Carcass characteristics and meat quality of broilers fed cassava peel and leaf meals as replacements for maize and soyabean meal. J. Agric. Vet. Sci. 2015, 8, 41–46. [Google Scholar]
- Hasan, F.; Zendrato, D.P.; Hanafi, N.D.; Sadeli, A.; Daulay, A.H. The Utilization of Cassava By-Products as Complete Feed on Physical and Chemical Meat Quality of Weaning Male Crossbred Landrace Pigs. J. Phys. Conf. Ser. 2020, 1542, 012002. [Google Scholar] [CrossRef]
- Sánchez, E.; Navarro, C.; Sayas, M.; Sendra, E.; Fernández, J. Efecto de las condiciones ante mortem y post mortem sobre los factores que determinan la calidad de la carne. In Bienestar Animal y Calidad de Carne, 1st ed.; Mota, D., Guerrero, I., Trujillo, M.E., Eds.; BM Eds: Mexico City, Mexico, 2010; pp. 329–349. [Google Scholar]
- Cheng, Q.; Sun, D.W.; Scannell, A.G. Feasibility of water cooking for pork ham processing as compared with traditional dry and wet air cooking methods. J. Food Eng. 2005, 67, 427–433. [Google Scholar] [CrossRef]
- Tomažin, U.; Batorek-Lukač, N.; Škrlep, M.; Prevolnik-Povše, M.; Čandek-Potokar, M. Meat and Fat Quality of Krškopolje Pigs Reared in Conventional and Organic Production Systems. Animal 2019, 13, 1103–1110. [Google Scholar] [CrossRef]
- Castrillón, H.; Wilson, E.; Fernández, J.A.; Restrepo, L. Determination of PSE (pale, soft and exudative) meat in pork carcasses. Vitae 2005, 12, 23–28. [Google Scholar]
- Campion, D. Sistemas de Producción Porcina y su Incidencia en la Calidad. 2013. Available online: https://repositorio.uca.edu.ar/handle/123456789/455 (accessed on 13 August 2023).
- Rybarczyk, A.; Bogusławska-Was, E.; Dłubała, A. Effect of Bioplus Yc Probiotic Supplementation on Gut Microbiota, Production Performance, Carcass and Meat Quality of Pigs. Animals 2021, 11, 1581. [Google Scholar] [CrossRef] [PubMed]
- Jonsäll, A.; Johansson, L.; Lundström, K. Sensory quality and cooking loss of ham muscle (M. biceps femoris) from pigs reared indoors and outdoors. Meat Sci. 2001, 57, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Sundrum, A.; Henning y Butfering, L. Efectos de las dietas en la granja para la producción porcina orgánica sobre el rendimiento y la calidad de la canal. 3tres3 2012, 78, 1199–1205. [Google Scholar]
- Agudelo Quintero, J.; Mesa-Granda, M. Eficiencia Productiva En Cerdos de Levante Alimentados Con Materias Primas Alternativas de Países Tropicales: Meta-Análisis. Intropica 2022, 17, 114–132. [Google Scholar] [CrossRef]
- Valverde Lucio, A.; Gonzalez-Martínez, A.; Rodero Serrano, E. Utilization of Cooked Cassava and Taro as Alternative Feed in Enhancing Pig Production in Ecuadorian Backyard System. Animals 2023, 13, 356. [Google Scholar] [CrossRef] [PubMed]
- Negreyeva, A.N.; Babushkin, V.A.; Gagloev, A.C. The influence of nontraditional feed in the fattening pig’s diet on meat quality. Int. J. Pharm. Res. 2018, 10, 706–714. [Google Scholar]
- Agdeppa-Namoco, R.P.; Chene, K.; Gican, P. Alternative Feed Rations for Grower Stage Backyard Swine. Mindano. J. Sci. Technol. 2012, 10, 93–106. [Google Scholar]
- Cerisuelo, A.; Castellóa, L.; Moseta, V.; Martíneza, M.; Hernández, P.; Piquera, O.; Gómeza, E.; Gasac, J.; Lainez, M. The Inclusion of Ensiled Citrus Pulp in Diets for Growing Pigs: Effects on Voluntary Intake, Growth Performance, Gut Microbiology and Meat Quality. Livest. Sci. 2010, 134, 180–182. [Google Scholar] [CrossRef]
- Brandalise, F.; Martín Grillo, R.; Pinto, L.A.; Serrano, E.A.; Sánchez, M.I. Conceptualización, Caracterización y Registro de la Agricultura Familiar. La Experiencia de Panamá; FAO: Panama City, Panama, 2017; Available online: https://www.fao.org/documents/card/en/c/c90b1aa7-f532-4fed-a2eb-a004461bcd71 (accessed on 13 August 2023).
- AGROCALIDAD. Programa Nacional Sanitario Porcino. Control y Erradicación de la Peste Porcina Clásica por Zonificación en el Ecuador. 2012. Available online: https://www.agrocalidad.gob.ec/wp-content/uploads/2020/05/d1.pdf (accessed on 13 August 2023).
- Muñoz-Ron Paola, I.; Elizabeth, S.; Ii, S.-C.; Fabricio, A.; Iii, L.-P.; Poma Iv, J. Diagnosis of the production, comercialization, and consumption of pig products in Sachas, Orellana Diagnóstico da produção, comercialização e consumo de produtos suínos no cantão de Sacha, Orellana. Polo del Conocimiento 2020, 4, 1–10. [Google Scholar]
- Hernández Yeltsin, R.J. Caracterización del manejo zootécnico del cerdo criollo (Sus scrofa domesticus) en el área rural del municipio de Río Blanco, Matagalpa, 2013. Ph.D. Thesis, Universidad Nacional Agraria Facultad de Ciencia Animal, Sistemas Integrales de Producción Animal, Rivas, Nicaragua, 2013. [Google Scholar]
- UNICEF, Desnutrición Crónica Infantil. Uno de los Mayores Problemas de Salud Pública en Ecuador. 2018. Available online: https://www.unicef.org/ecuador/sites/unicef.org.ecuador/files/2021-03/Desnutricion-Cronica-Infantil.pdf (accessed on 13 August 2023).
- Yapura, S. Importancia del Maíz en la Producción Animal. Veterinaria Digital. 2021. Available online: https://www.veterinariadigital.com/articulos/importancia-del-maiz-en-la-produccion-animal/ (accessed on 13 August 2023).
- Suárez Guerra, L.; Mederos Vega, V. Revisión Bibliográfica apuntes sobre el cultivo de la yuca (Manihot Esculenta Crantz). Tendencias actuales. Cultivos Tropicales 2011, 32, 27–35. [Google Scholar]
- Aragadvay-Yungán, R.G.; Núñez-Torres, O.P.; Velástegui-Espín, G.P.; Villacís-Aldaz, L.A.; Guerrero-López, J.R. Uso de harina de colocasia esculeta l., en la alimentación de cerdos y su efecto sobre parámetros productivos. J. Selva Andin. Anim. Sci. 2016, 3, 98–104. [Google Scholar] [CrossRef]
- Sánchez, J.; Caicedo, W.; Aragón, E.; Andino, M.; Bosques, F.; Viamonte, M.I.; Ramírez de la Ribera, J.L. La inclusión de la Colocasia esculenta (papa china) en la alimentación de cerdos en ceba. Rev. Electron. Vet. 2018, 19, 1–6. [Google Scholar]
- Kaensombath, L. Taro leaf and stylo forage as protein sources for pigs in Laos: Biomass yield, ensiling and nutritive value. Bachelor’s Thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2012. [Google Scholar]
- Lan, L.T.T.; Hung, L.T.; Thu, N.T.A.; Loc, H.T.; Liang, J.B.; Thiet, N.; Ngu, N.T. Effects of substituting taro (Colocasia esculenta) wastes silage in diets on growth and nutrient digestibility in pigs. J. Anim. Health Prod. 2021, 9, 112–118. [Google Scholar]
- Quiñónez, R.; González, C.; Polanco, D.; Perdomo, B.; Araque, H. Evaluación de diferentes tipos de deshidratación de raíz y follaje de yuca amarga (Manihot esculenta) sobre su composición química. Zootec. Trop. 2007, 25, 43–49. [Google Scholar]
- Ricaurte, F.A. La Yuca Como Alternativa en la Alimentacion de Cerdos en la Etapa de ceba Granja los Laureles Vereda Tacarimena Municipio el Yopal Casanare; Universidad Nacional Abierta y a Distancia: Yopal, Colombia, 2014. [Google Scholar]
- Carbajal Basilo, D.S.; Otarola Gamara, A. Efecto del Tiempo de Cocción en la Reducción de Oxalatos en Harina de dos Variedades Depituca (Colocasia Esculenta). Universidad Nacional Daniel Alcides Carrión Facultad de Ciencias Agropecuarias Escuela de Formación Profesional de Industrias Alimentarias. 2019. Available online: http://repositorio.undac.edu.pe/bitstream/undac/2555/1/T026_70137643_T.pdf (accessed on 13 August 2023).
- Phoneyaphon, V.; Preston, T.R. Protein-enriched cassava (Manihot esculenta Crantz) root as replacement for ensiled taro (Colocasia esculenta) foliage as source of protein for growing Moo Lat pigs fed ensiled cassava root as basal diet. Livest. Res. Rural Dev. 2016, 28. [Google Scholar]
- AGROCALIDAD. Instructivo para el Sacrificio y Disposición Final de Animales. Agencia Ecuatoriana de Aseguramiento de la Calidad del Agro. Ministerio de Agricultura, Ganadería, Acuacultura y Pesca; 2013. Available online: https://www.agrocalidad.gob.ec/wp-content/uploads/2020/05/bi3.pdf (accessed on 13 August 2023).
- Galián Jiménez, M. Características de la Canal y Calidad de la Carne, Composición Mineral y Lipídica del Cerdo Chato Murciano y su Cruce con Ibérico. Efecto del Sistema de Manejo. Bachelor’s Thesis, University of Murcia, Murcia, Spain, 2007. [Google Scholar]
- Nieto, R.; Lara, L.; García, M.A.; Vílchez, M.A.; Aguilera, J.F. Effects of dietary protein content and food intake on carcass characteristics and organ weights of growing iberian pigs. Anim. Sci. 2003, 77, 47–56. [Google Scholar] [CrossRef]
- de Souza, T.C.R.; Landín, G.M.; García, K.E.; Barreyro, A.A.; Barrón, A.M. Cambios nutrimentales en el lechón y desarrollo morfofisiológico de su aparato digestivo. Vet. Mex. 2012, 43, 155–170. [Google Scholar]
- Maclean, W.; Harnly, J.; Chen, J.; Chevassus-Agnes, S.; Gilani, G.; Livesey, G.; Warwick, P. Food energy–Methods of analysis and conversion factors. In Food and Agriculture Organization of the United Nations Technical Workshop Report; The Food and Agriculture Organization: Rome, Italy, 2003; Volume 77, pp. 8–9. Available online: https://www.fao.org/3/Y5022E/y5022e00.htm (accessed on 13 August 2023).
- Schinckel, A.P.; De Lange, C.F.M. Characterization of growth parameters needed as inputs for pig growth models. J. Anim. Sci. 1996, 74, 2021–2036. [Google Scholar] [CrossRef]
- Conde-Aguilera, J.A.; Aguinaga, M.A.; Lara, L.; Aguilera, J.F.; Nieto, R. Carcass traits and organ weights of 10-25-Kg body weight iberian pigs fed diets with different protein-to-energy ratio. Anim. Feed Sci. Technol. 2011, 164, 116–124. [Google Scholar] [CrossRef]
- Pardo Domínguez, Z. Efectos Fisiológicos y Productivos del Estrés por Calor en el Cerdo Ibérico y Posibles Estrategias Nutricionales para Mitigarlo. Bachelor’s Thesis, University of Granada, Granada, Spain, 2022. [Google Scholar]
- Romo-Valdez, J.; Silva-Hidalgo, G.; Gaxiola, H.R.G.; Valdez, A.R.; Romo-Rubio, J. Estrés por calor: Influencia sobre la fisiología, comportamiento productivo y reproductivo del cerdo. Abanico Veterinario 2022, 12, 29. [Google Scholar]
- Linares, V.; Linares, L.; Mendoza, G. Caracterización etnozootécnica y potencial carnicero de Sus scrofa “cerdo criollo” en Latinoamérica. Sci. Agropecu. 2011, 2, 97–110. [Google Scholar] [CrossRef]
- Castillo, L. Principales Razas Porcinas y Cruzamientos. Instituto Nacional de Investigación Agropecuaria. 1984. Available online: https://repositorio.iniap.gob.ec/bitstream/41000/1317/1/INIAP%20%20Bolet%c3%adn%20Divulgativo%20139.pdf (accessed on 13 August 2023).
- Chávez Narváez, M.M. Evaluación del Crecimiento y Grasa Dorsal del Cerdo Criollo del Cantón Guamote Provincia de Chimborazo. Bachelor’s Thesis, Polytechnic Higher School of Chimborazo, Riobamba, Ecuador, 2022. Available online: http://dspace.espoch.edu.ec/bitstream/123456789/17515/1/17T01754.pdf (accessed on 13 August 2023).
- González, C.; Vecchionacce, H.; Díaz, I.; Ortiz, V. Utilización de harina cruda de raíz de yuca (Manihot Esculenta C.) y harina cruda de cormos de ocumo chino (Colocasia esculenta) en la alimentación de cerdos). Arch. Latinoam. Prod. Anim. 1997, 5 (Supl. 1), 277–279. [Google Scholar]
- Aguilar Martínez, R.J. Inclusión de Harina de Follaje y Raíz de Yuca (Manihot esculenta Crantz) en Cerdos en Desarrollo y su Efecto Sobre el Comportamiento Productivo y Morfometria del Tracto Gastointestinal. Bachelor’s Thesis, Universidad Nacional Agraria, Managua, Nicaragua, 2017. Available online: https://repositorio.una.edu.ni/id/eprint/3533 (accessed on 23 September 2023).
- Manjarrez, B.; Arteaga, C.; Robles, A.; Avila, E.; Shimada, A. Valor nutritivo de una combinación de harina de yuca (Manlhot eaculenta) con puliduras de arroz, como sustituto de maiz en la alimentación de pollos y cerdos. Tlle. Pec. Uex. 1974, 25, 58–63. [Google Scholar]
- Aro, S.O.; Akinjokun, O.M. Meat and carcass characteristics of growing pigs fed microbially enhanced cassava peel diets. Arch. Zootec. 2012, 61, 23–25. [Google Scholar] [CrossRef]
- Kaensombath, L.; Lindberg, J.E. Effect of replacing soybean protein by taro leaf (Colocasia esculenta (l.) schott) protein on growth performance of exotic (Landrace × Yorkshire) and native (Moo Lath) Lao pigs. Trop. Anim. Health Prod. 2012, 45, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Caicedo, W.; Rodríguez, R.; Lezcano, P.; Vargas, J.C.; Uvidia, H.; Valle, S.; Flores, L. Effect of taro tubers silage (Colocasia Esculenta (L.) Schott) on the morphometry of the gastrointestinal tract of growing pigs. Cuban J. Agric. Sci. 2017, 51, 183–190. [Google Scholar]
- Taysayavong, L.; Lindberg, J.E.; Ivarsson, E. Digestibility, nitrogen retention, gut environment and visceral organ size in Moo Lath and Large White growing pigs fed un-fermented and fermented cassava root pulp and soybean pulp. Livest. Res. Rural. Dev. 2018, 30. [Google Scholar]
- Ly, J.; Almaguel, R.; Lezcano, P.; Delgado, E. Miel rica o maíz como fuente de energía para cerdos en crecimiento. Interdependencia entre rasgos de comportamiento, digestibilidad rectal y órganos digestivos. Rev. Com. Prod. Porc. 2014, 21, 66–69. [Google Scholar]
- Fitzsimons, C.; Kenny, D.A.; McGee, M. Visceral organ weights, digestion and carcass characteristics of beef bulls differing in residual feed intake offered a high concentrate diet. Animal 2014, 8, 949–959. [Google Scholar] [CrossRef]
- Gabriel Ortega, J.; Valverde, L.A.; Indacochea, G.B.; Castro, P.C.; Vera, T.M.; Alcívar, C.J.; Vera, V.R. Diseños Experimentales: Teoría y Práctica para Experimentos Agropecuarios, 2nd ed.; Ortega, J.G., Lucio, A.L., Eds.; Grupo Compás: Jipijapa, Ecuador, 2021; Available online: http://142.93.18.15:8080/jspui/handle/123456789/625 (accessed on 13 August 2023).
- Asmus, M.D.; DeRouchey, J.M.; Tokach, M.D.; Dritz, S.S.; Houser, T.A.; Nelssen, J.L.; Goodband, R.D. Effects of lowering dietary fiber before marketing on finishing pig growth perfor-mance, carcass characteristics, carcass fat quality, and intestinal weights. J. Anim. Sci. 2014, 92, 119–128. [Google Scholar] [CrossRef]
Ingredients 1 | Phase | |||||
---|---|---|---|---|---|---|
Growth | Fattening | |||||
T1 (Control) | T2 (32%) | T3 (42%) | T1 (Control) | T2 (32%) | T3 (42%) | |
Corn (kg) | 23.64 | 9.55 | 4.55 | 23.64 | 9.55 | 6.36 |
Protein concentrate (kg) 2 | 13.18 | 16.36 | 17.27 | 11.36 | 15.00 | 16.36 |
Rice powder (kg) | 8.18 | 4.55 | 4.09 | 10.00 | 5.91 | 3.18 |
Cooked cassava (kg) | 7.27 | 9.55 | 7.27 | 9.55 | ||
Cooked taro (kg) | 7.27 | 9.55 | 7.27 | 9.55 | ||
Red palm oil (kg) | 1 | 1 | 1 | 1 | 1 | 1 |
Salt (g) | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
Crude protein (%) | 17.35 | 17.35 | 17.35 | 15.30 | 15.29 | 15.29 |
Gross energy (kcal/kg) | 3098 | 3079 | 3077 | 3084 | 3079 | 3094 |
Traits 1 | Quinindé | Río Chico | Location (L) | Treatment (T) | L × T | ||||
---|---|---|---|---|---|---|---|---|---|
Treatments 2 | |||||||||
T1 (Control) | T2 (32%) | T3 (42%) | T1 (Control) | T2 (32%) | T3 (42%) | ||||
LV (kg) | 66.98 ± 5.36 (17.87) c | 73.37 ± 4.32 (13.16) bc | 77.83 ± 3.29 (9.45) abc | 87.91 ± 1.12 (2.85) a | 79.58 ± 1.62 (4.57) abc | 81.35 ± 1.27 (3.49) ab | p < 0.01 | 0.200 | 0.051 |
HCW (kg) | 47.50 ± 4.75 (21.44) | 51.55 ± 2.95 (12.78) | 55.87 ± 3.73 (14.93) | 60.21 ± 0.61 (2.27) | 55.12 ± 2.44 (9.91) | 53.66 ± 1.75 (7.28) | 0.087 | 0.902 | 0.086 |
CY (%) | 0.71 ± 0.2 (6.38) | 0.70 ± 0.01 (2.58) | 0.72 ± 0.03 (8.36) | 0.69 ± 0.01 (1.96) | 0.69 ± 0.03 (9.55) | 0.66 ± 0.02 (6.06) | 0.083 | 0.867 | 0.506 |
CL (cm) | 62.00 ± 0.77 (2.79) b | 63.00 ± 1.14 (4.05) b | 63.00 ± 1.14 (4.05) b | 75.72 ± 2.40 (7.15) a | 74.72 ± 1.31 (3.89) a | 73.72 ± 2.10 (6.37) a | p < 0.01 | 0.943 | 0.670 |
FLL (cm) | 29.00 ± 1.32 (9.90) a | 29.80 ± 0.20 (4.05) a | 31.20 ± 0.58 (4.18) a | 28.97 ± 0.47 (3.66) abc | 27.07 ± 0.37 (3.15) bc | 27.72 ± 0.44 (3.45) c | p < 0.01 | 0.276 | p < 0.01 |
LL (cm) | 61.20 ± 1.71 (6.26) ab | 63.80 ± 1.32 (4.62) a | 63.00 ± 1.22 (4.35) ab | 57.6 ± 0.42 (1.64) bc | 54.96 ± 1.66 (6.76) c | 54.04 ± 0.99 (4.11) c | p < 0.01 | 0.744 | 0.082 |
HL (cm) | 43.60 ± 1.69 (8.67) a | 45.40 ± 0.81 (4.00) a | 43.40 ± 1.72 (8.86) a | 35.11 ± 0.54 (3.45) b | 33.58 ± 1.36 (9.05) b | 33.64 ± 0.99 (6.61) b | p < 0.01 | 0.712 | 0.427 |
HP (cm) | 75.40 ± 1.91 (5.67) a | 69.60 ± 1.81 (5.80) ab | 74.20 ± 1.69 (5.08) ab | 74.13 ± 1.26 (3.79) ab | 68.18 ± 2.42 (7.93) ab | 67.08 ± 1.67 (5.57) b | p < 0.05 | p < 0.05 | 0.209 |
FSP (cm) | 14.60 ± 0.40 (6.13) b | 14.40 ± 0.51 (9.92) b | 14.80 ± 0.20 (3.02) b | 15.82 ± 0.27 (3.78) a | 15.28 ± 0.58 (8.48) a | 14.84 ± 0.30 (4.54) b | p < 0.05 | 0.554 | 0.332 |
LW (kg) | 5.46 ± 0.30 (12.48) bc | 5.26 ± 0.44 (18.86) c | 5.96 ± 0.40 (14.98) abc | 6.74 ± 0.06 (2.00) a | 6.65 ± 0.17 (5.61) ab | 6.68 ± 0.12 (4.11) ab | p < 0.01 | 0.467 | 0.478 |
HW (kg) | 13.89 ± 0.38 (6.15) | 15.96 ± 1.5 (21.00) | 17.34 ± 1.13 (14.59) | 17.30 ± 0.31 (4.02) | 15.54 ± 1.15 (16.53) | 15.22 ± 0.70 (4.11) | 0.712 | 0.760 | p < 0.05 |
FW (kg) | 10.66 ± 0.46 (9.64) ab | 8.80 ± 0.68 (17.38) b | 10.72 ± 0.61 (12.66) ab | 12.09 ± 0.28 (5.22) a | 11.25 ± 0.49 (9.80) a | 10.98 ± 0.57 (11.56) ab | p < 0.01 | 0.054 | 0.141 |
RW (kg) | 5.65 ± 0.35 (14.04) | 4.86 ± 0.38 (17.46) | 5.7 ± 0.6 (23.38) | 5.66 ± 0.05 (1.91) | 5.3 ± 0.22 (9.44) | 5.18 ± 0.20 (8.82) | 0.933 | 0.265 | 0.387 |
HDW (kg) | 4.63 ± 0.10 (5.84) b | 4.64 ± 0.12 (5.87) b | 4.68 ± 0.29 (13.80) b | 6.18 ± 0.28 (10.08) a | 5.26 ± 0.50 (21.08) ab | 5.02 ± 0.43 (19.24) ab | p < 0.01 | 0.201 | 0.162 |
FTW (kg) | 1.11 ± 0.03 (5.84) | 1.09 ± 0.06 (11.87) | 1.11 ± 0.04 (8.06) | 1.26 ± 0.07 (13.31) | 1.16 ± 0.11 (21.49) | 1.09 ± 0.06 (11.33) | 0.262 | 0.425 | 0.472 |
Traits 1 | Quinindé | Río Chico | Location (L) | Treatment (T) | L × T | ||||
---|---|---|---|---|---|---|---|---|---|
Treatments 2 | |||||||||
T1 (Control) | T2 (32%) | T3 (42%) | T1 (Control) | T2 (32%) | T3 (42%) | ||||
DBT1 (cm) | 2.07 ± 0.24 (26.02) | 1.23 ± 0.08 (15.21) | 1.86 ± 0.23 (27.99) | 2.30 ± 0.36 (34.71) | 1.71 ± 0.23 (30.39) | 1.81 ± 0.24 (29.89) | 0.276 | p < 0.05 | 0.569 |
DBT2 (cm) | 2.34 ± 0.25 (23.46) a | 1.70 ± 0.81 (40.57) ab | 1.82 ± 0.23 (27.89) a | 0.91 ± 0.03 (6.32) bc | 0.88 ± 0.10 (24.66) bc | 0.86 ± 0.08 (20.66) c | p < 0.01 | 0.199 | 0.267 |
DBT3 (cm) | 1.52 ± 0.21 (31.13) | 1.35 ± 0.29 (48.08) | 1.54 ± 0.07 (9.66) | 1.28 ± 0.14 (23.55) | 1.16 ± 0.14 (27.47) | 1.37 ± 0.13 (20.46) | 0.176 | 0.494 | 0.980 |
LF (cm) | 1.56 ± 0.26 (37.01) | 1.26 ± 0.13 (22.51) | 1.32 ± 0.06 (9.68) | 0.94 ± 0.23 (55) | 1.11 ± 0.3 (60.1) | 1.09 ± 0.14 (29.42) | 0.057 | 0.953 | 0.486 |
HF (cm) | 1.51 ± 0.26 (38.45) a | 1.45 ± 0.26 (40.03) a | 1.41 ± 0.07 (10.43) ab | 1.30 ± 0.25 (25.49) ab | 0.73 ± 0.09 (25.9) b | 0.92 ± 0.22 (53.87) b | p < 0.01 | 0.245 | 0.421 |
Traits 1 | Quinindé | Río Chico | Location (L) | Treatments (T) | L × T | ||||
---|---|---|---|---|---|---|---|---|---|
Treatments 2 | |||||||||
T1 (Control) | T2 (32%) | T3 (42%) | T1 (Control) | T2 (32%) | T3 (42%) | ||||
H % | 64.46 ± 2.74 (9.51) bc | 62.56 ± 2.94 (10.51) c | 69.34 ± 2.35 (7.57) abc | 73.8 ± 0.45 (1.36) a | 72.96 ± 0.38 (1.18) ab | 76.41 ± 1.86 (5.44) a | p < 0.01 | 0.054 | 0.714 |
CP % | 17.37 ± 0.81 (10.40) c | 18.11 ± 0.66 (8.11) c | 18.93 ± 0.22 (2.54) bc | 21.51 ± 0.63 (6.54) ab | 23.33 ± 0.77 (7.43) a | 19.23 ± 1.16 (13.45) bc | p < 0.01 | 0.097 | p < 0.01 |
IMF % | 2.98 ± 0.60 (45.26) | 2.71 ± 0.21 (17.7) | 1.75 ± 0.11 (14.69) | 3.13 ± 0.50 (35.75) | 2.21 ± 0.66 (66.83) | 2.88 ± 1.26 (97.73) | 0.631 | 0.513 | 0.484 |
Ash % | 0.86 ± 0.05 (12.12) b | 0.82 ± 0.04 (10.77) b | 0.88 ± 0.04 (10.88) b | 1.42 ± 0.07 (10.48) a | 1.50 ± 0.04 (5.76) a | 1.48 ± 0.07 (10.38) a | p < 0.01 | 0.756 | 0.531 |
pH | 5.76 ± 0.05 (1.93) ab | 5.61 ± 0.02 (0.98) ab | 5.80 ± 0.08 (2.92) a | 5.54 ± 0.04 (1.78) bc | 5.34 ± 0.04 (1.78) c | 5.57 ± 0.08 (3.06) abc | p < 0.01 | p < 0.01 | 0.924 |
DM % | 34.8 ± 2.80 (18.00) ab | 37.44 ± 2.94 (17.57) a | 30.66 ± 2.35 (17.12) abc | 26.2 ± 0.45 (3.83) bc | 27.04 ± 0.38 (3.17) bc | 23.59 ± 1.86 (17.62) c | p < 0.01 | 0.061 | 0.727 |
Traits 1 | Quinindé | Río Chico | p | ||||||
---|---|---|---|---|---|---|---|---|---|
Treatments 2 | Location (L) | Treatment (T) | L × T | ||||||
T1 (Control) | T2 (32%) | T3 (42%) | T1 (Control) | T2 (32%) | T3 (42%) | ||||
SW (kg) | 0.12 ± 0.01 (21.22) b | 0.14 ± 0.02 (32.97) ab | 0.15 ± 0.02 (26.07) ab | 0.22 ± 0.05 (46.47) ab | 0.28 ± 0.06 (49.08) a | 0.23 ± 0.02 (18.95) ab | p < 0.01 | 0.523 | 0.608 |
LW (kg) | 1.17 ± 0.03 (5.46) b | 1.29 ± 0.04 (6.3) b | 1.24 ± 0.04 (6.42) b | 1.41 ± 0.09 (14.46) b | 1.41 ± 0.10 (16.51) b | 1.76 ± 0.04 (4.6) a | p < 0.01 | p < 0.05 | p < 0.05 |
PW (kg) | 0.13 ± 0.6 (13.55) b | 0.12 ± 0.01 (24.59) b | 0.12 ± 0.01 (14.65) b | 0.13 ± 0.003 (6.54) b | 0.16 ± 0.01 (16.38) a | 0.16 ± 0.01 (12.17) a | p < 0.01 | 0.420 | 0.089 |
FEWL (kg) | 1.32 ± 0.34 (56.88) b | 2.08 ± 0.37 (39.99) a | 1.73 ± 0.22 (27.93) ab | 1.73 ± 0.03 (3.26) ab | 1.37 ± 0.16 (25.48) b | 1.65 ± 0.06 (8.51) ab | p < 0.05 | 0.742 | 0.168 |
ESW (kg) | 0.48 ± 0.01 (5.89) b | 0.53 ± 0.03 (13.35) b | 0.51 ± 0.03 (12.23) b | 0.79 ± 0.03 (8.61) a | 0.44 ± 0.07 (35.06) b | 0.85 ± 0.03 (6.72) a | p < 0.01 | p < 0.01 | p < 0.01 |
FSIW (kg) | 2.17 ± 0.36 (37.26) | 2.79 ± 0.43 (34.19) | 2.70 ± 0.28 (23.2) | 2.01 ± 0.1 (11) | 2.58 ± 0.09 (7.83) | 2.98 ± 0.21 (15.77) | 0.793 | p < 0.05 | 0.423 |
ESIW (kg) | 1.27 ± 0.06 (11.38) | 1.37 ± 0.04 (6.64) | 1.40 ± 0.07 (11.94) | 1.23 ± 0.04 (7.82) | 1.50 ± 0.12 (18.11) | 1.56 ± 0.07 (9.82) | 0.257 | p < 0.05 | 0.433 |
FCEW kg) | 0.46 ± 0.07 (35.18) c | 0.60 ± 0.08 (30.97) bc | 0.76 ± 0.04 (10.97) ab | 0.82 ± 0.05 (12.86) a | 0.62 ± 0.04 (15.34) ab | 0.68 ± 0.03 (8.37) ab | p < 0.05 | 0.066 | p < 0.05 |
ECEW (kg) | 0.12 ± 0.01 (15.66) c | 0.13 ± 0.01 (13.28) bc | 0.15 ± 0.01 (12.09) ab | 0.15 ± 0.01 (10.54) ab | 0.17 ± 0.01 (13.15) a | 0.14 ± 0.1 (10.10) ab | p < 0.01 | 0.11 | p < 0.01 |
FPRW (kg) | 0.23 ± 0.02 (22.48) c | 0.25 ± 0.01 (10.2) c | 0.25 ± 0.01 (5.98) bc | 0.39 ± 0.02 (12.30) a | 0.34 ± 0.03 (17.52) ab | 0.38 ± 0.03 (15.58) a | p < 0.01 | 0.719 | 0.228 |
EPRW (kg) | 0.19 ± 0.01 (15.8) b | 0.22 ± 0.01 (6.48) b | 0.21 ± 0.01 (12.66) b | 0.32 ± 0.02 (16.98) a | 0.25 ± 0.02 (21.43) ab | 0.25 ± 0.02 (13.81) ab | p < 0.01 | 0.318 | p < 0.05 |
FCOWL (kg) | 2.28 ± 0.27 (26.84) b | 2.62 ± 0.07 (6.07) ab | 2.00 ± 0.10 (10.68) b | 3.09 ± 0.12 (8.96) a | 3.12 ± 0.2 (14.47) a | 3.30 ± 0.16 (10.77) a | p < 0.01 | 0.348 | 0.077 |
ECOW (kg) | 0.87 ± 0.03 (8.35) c | 0.94 ± 0.04 (10.25) bc | 0.91 ± 0.02 (4.76) bc | 1.19 ± 0.12 (23.13) abc | 1.38 ± 0.18 (29.46) a | 1.34 ± 0.09 (15.53) ab | p < 0.01 | 0.494 | 0.504 |
TWTF (kg) | 6.43 ± 0.85 (29.67) c | 8.37 ± 0.61 (16.3) bc | 7.51 ± 0.50 (14.92) c | 9.93 ± 0.08 (1.83) b | 10.57 ± 0.15 (3.1) ab | 12.20 ± 0.47 (8.67) a | p < 0.01 | p < 0.01 | 0.074 |
TWTE (kg) | 2.93 ± 0.10 (7.38) c | 3.19 ± 0.06 (4.28) bc | 3.16 ± 0.10 (7.34) bc | 3.67± 0.16 (9.66) ab | 3.74 ± 0.21 (12.73) ab | 4.13 ± 0.12 (6.69) a | 0.068 | p < 0.01 | 0.095 |
Traits 1 | HW (kg) | RW (kg) | DBT1 (cm) | LF (cm) | HF (cm) | P (%) | IMF (%) | LW (kg) | ESIW (kg) | ECEW (kg) | ECOW (kg) | TWTE (kg) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
HCW (kg) | 0.77 ** | 0.85 ** | 0.35 | −0.01 | 0.06 | 0.20 | −0.02 | 0.19 | 0.03 | 0.13 | −0.01 | 0.16 |
HW (kg) | 0.48 * | 0.16 | 0.02 | 0.19 | 0.24 | 0.00 | 0.19 | 0.03 | 0.09 | −0.05 | 0.15 | |
RW (kg) | 0.29 | 0.12 | 0.04 | −0.01 | −0.04 | 0.02 | −0.09 | 0.01 | −0.17 | −0.02 | ||
DBT1 (cm) | −0.17 | −0.06 | −0.07 | 0.19 | 0.31 | −0.01 | 0.18 | −0.03 | 0.19 | |||
LF (cm) | −0.41 * | −0.13 | −0.16 | −0.30 | −0.09 | −0.24 | −0.42 * | −0.27 | ||||
HF (cm) | −0.38 * | −0.19 | −0.40 * | −0.5 ** | −0.13 | −0.39 * | −0.42 * | |||||
P (%) | −0.02 | 0.36 | 0.58 ** | 0.15 | 0.43 * | 0.50 ** | ||||||
IMF (%) | 0.135 | 0.01 | −0.09 | −0.01 | 0.04 | |||||||
LW (kg) | 0.74 ** | 0.78 ** | 0.48 ** | 0.92 ** | ||||||||
ESIW (kg) | 0.56 ** | 0.65 ** | 0.89 ** | |||||||||
ECEW (kg) | 0.41 * | 0.76 ** | ||||||||||
ECOW (kg) | 0.68 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valverde Lucio, A.; Gonzalez-Martínez, A.; Ortega, J.G.; Rodero Serrano, E. Effects of Alternative Cassava and Taro Feed on the Carcass and Meat Quality of Fattening Pigs Reared under Ecuadorian Backyard Systems. Animals 2023, 13, 3086. https://doi.org/10.3390/ani13193086
Valverde Lucio A, Gonzalez-Martínez A, Ortega JG, Rodero Serrano E. Effects of Alternative Cassava and Taro Feed on the Carcass and Meat Quality of Fattening Pigs Reared under Ecuadorian Backyard Systems. Animals. 2023; 13(19):3086. https://doi.org/10.3390/ani13193086
Chicago/Turabian StyleValverde Lucio, Alfredo, Ana Gonzalez-Martínez, Julio Gabriel Ortega, and Evangelina Rodero Serrano. 2023. "Effects of Alternative Cassava and Taro Feed on the Carcass and Meat Quality of Fattening Pigs Reared under Ecuadorian Backyard Systems" Animals 13, no. 19: 3086. https://doi.org/10.3390/ani13193086
APA StyleValverde Lucio, A., Gonzalez-Martínez, A., Ortega, J. G., & Rodero Serrano, E. (2023). Effects of Alternative Cassava and Taro Feed on the Carcass and Meat Quality of Fattening Pigs Reared under Ecuadorian Backyard Systems. Animals, 13(19), 3086. https://doi.org/10.3390/ani13193086