Influence of Sex on Meat and Fat Quality from Heavy Alentejano Pigs Finished Outdoors on Commercial and High Fiber Diets
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Diets Analyses
2.3. Muscle and Fat Analyses
2.4. Muscle Antioxidant Status and Meat Oxidative Stability
2.5. Calculations and Data Analyses
3. Results
3.1. Tissue Physical—Chemical Composition
3.2. Muscle Fatty Acids Profile
3.3. Dorsal Subcutaneous Fat Fatty Acids Profile
3.4. Loin Antioxidant Status and Meat Oxidative Stability
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Echegaray, N.; Munekata, P.E.S.; Centeno, J.A.; Domínguez, R.; Pateiro, M.; Carballo, J.; Lorenzo, J.M. Total phenol content and antioxidant activity of different Celta pig carcass locations as affected by the finishing diet (Chestnuts or commercial feed). Antioxidants 2021, 10, 5. [Google Scholar] [CrossRef] [PubMed]
- Lebret, B.; Ecolan, P.; Bonhomme, N.; Méteau, K.; Prunier, A. Influence of production system in local and conventional pig breeds on stress indicators at slaughter, muscle and meat traits and pork eating quality. Animal 2015, 9, 1404–1413. [Google Scholar] [CrossRef] [PubMed]
- Bonneau, M. Use of entire males for pig meat in the European Union. Meat Sci. 1998, 49, S257–S272. [Google Scholar] [CrossRef]
- Gregory, N.G.; Grandin, T. Animal Welfare and Meat Science; Grandin, T., Ed.; CABI Publishing: New York, NY, USA, 1998; 298p. [Google Scholar]
- Babol, J.; Squires, E.J. Quality of meat from entire male pigs. Food Res. Int. 1995, 28, 201–212. [Google Scholar] [CrossRef]
- Škrlep, M.; Čandek-Potokar, M. Meat quality issues in entire male and immunocastrated pigs. In Proceedings of the 69th Annual Meeting of the European Federation of Animal Science, Dubrovnik, Croatia, 27–31 August 2018; p. 231. [Google Scholar]
- Porter, V. Spain and Portugal. In Pigs: A Handbook to the Breeds of the World, 1st ed.; Porter, V., Mountfield, T.J., Eds.; Cornell University Press: Ithaca, NY, USA, 1993; pp. 137–140. [Google Scholar]
- Muñoz, M.; Bozzi, R.; García, F.; Núñez, Y.; Geraci, C.; Crovetti, A.; García-Casco, J.; Alves, E.; Škrlep, M.; Charneca, R.; et al. Diversity across major and candidate genes in European local pig breeds. PLoS ONE 2018, 13, e0207475. [Google Scholar] [CrossRef] [PubMed]
- Martins, J.M.; Fialho, R.; Albuquerque, A.; Neves, J.; Freitas, A.; Nunes, J.T.; Charneca, R. Growth, blood, carcass and meat quality traits from local pig breeds and their crosses. Animal 2020, 14, 636–647. [Google Scholar] [CrossRef] [PubMed]
- Pugliese, C.; Sirtori, F. Quality of meat and meat products produced from southern European pig breeds. Meat Sci. 2012, 90, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Poklukar, K.; Čandek-Potokar, M.; Vrecl, M.; Batorek-Lukač, N.; Fazarinc, G.; Kress, K.; Weiler, U.; Stefanski, V.; Škrlep, M. The effect of immunocastration on adipose tissue deposition and composition in pigs. Animal 2021, 15, 100118. [Google Scholar] [CrossRef]
- Burgeon, C.; Font-i-Furnols, M.; Garrido, M.D.; Linares, M.B.; Brostaux, Y.; Sabeña, G.; Fauconnier, M.-L.; Panella-Riera, N. Can sensory boar taint levels be explained by fatty acid composition and emitted volatile organic compounds in addition to androstenone and skatole content? Meat Sci. 2023, 195, 108985. [Google Scholar] [CrossRef]
- Martins, J.M.; Varino, R.; Charneca, R.; Albuquerque, A.; Garrido, N.; Neves, J.; Freitas, A.; Costa, F.; Marmelo, C.; Ramos, A.; et al. Outdoor Finishing of Intact Male Portuguese Alentejano Pigs on a Sustainable High-Fiber Diet: Impacts on Blood, Growth, Carcass, Meat Quality and Boar Taint Compounds. Animals 2023, 13, 2221. [Google Scholar] [CrossRef]
- Pauly, C.; Spring, P.; O’Doherty, J.V.; Kragten, S.A.; Bee, G. Growth performance, carcass characteristics and meat quality of group-penned surgically castrated, immunocastrated (Improvac®) and entire male pigs and individually penned entire male pigs. Animal 2009, 3, 1057–1066. [Google Scholar] [CrossRef]
- Aluwé, M.; Heyrman, E.; Kostyra, E.; Żakowska-Biemans, S.; Almeida, J.; Citek, J.; Font-i-Furnols, M.; Moreira, O.; Zadinová, K.; Tudoreanu, L.; et al. Consumer evaluation of meat quality from barrows, immunocastrates and boars in six countries. Animal 2022, 16, 100455. [Google Scholar] [CrossRef] [PubMed]
- Zomeño, C.; Gispert, M.; Čandek-Potokar, M.; Mörlein, D.; Font-i-Furnols, M. A matter of body weight and sex type: Pig carcass chemical composition and pork quality. Meat Sci. 2023, 197, 109077. [Google Scholar] [CrossRef]
- Škrlep, M.; Tomašević, I.; Mörlein, D.; Novaković, S.; Egea, M.; Garrido, M.D.; Linares, M.B.; Peñaranda, I.; Aluwé, M.; Font-i-Furnols, M. The Use of Pork from Entire Male and Immunocastrated Pigs for Meat Products—An Overview with Recommendations. Animals 2020, 10, 1754. [Google Scholar] [CrossRef]
- Weiler, U.; Font-i-Furnols, M.; Tomasevič, I.; Bonneau, M. Alternatives to Piglet Castration: From Issues to Solutions. Animals 2021, 11, 1041. [Google Scholar] [CrossRef] [PubMed]
- Larzul, C. How to Improve Meat Quality and Welfare in Entire Male Pigs by Genetics. Animals 2021, 11, 699. [Google Scholar] [CrossRef] [PubMed]
- ISO-13903; Animal Feeding Stuffs—Determination of Amino Acids Content. International Organization for Standardization: London, UK, 2005.
- European Commission. Commission Regulation (EC) No 152/2009 of 27 January 2009 laying down the methods of sampling and analysis for the official control of feed. Off. J. Eur. Union 2009, L 54, 1–169. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International, 18th ed.; AOAC: Gaithersburg, MD, USA, 2006. [Google Scholar]
- ISO-6865; Animal Feeding Stuffs—Determination of Crude Fibre Content—Method with Intermediate Filtration. International Organization for Standardization: London, UK, 2000.
- ISO-6493; Animal Feeding Stuffs—Determination of Starch Content—Polarimetric Method. International Organization for Standardization: London, UK, 2000.
- Noblet, J.; Fortune, H.; Dupire, C.; Dubois, S. Digestible, metabolizable and net energy values of 13 feedstuffs for growing pigs: Effect of energy system. Anim. Feed. Sci. Technol. 1993, 42, 131–149. [Google Scholar] [CrossRef]
- ISO-12966-4; Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters. Part 4: Determination by Capillary Gas Chromatography. International Organization for Standardization: London, UK, 2015.
- ISO-1442; Meat and Meat Products—Determination of Moisture Content (Reference Method). International Organization for Standardization: London, UK, 1997.
- Folch, J.; Lees, M.; Stanley, G.H.S. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Alves, S.P.; Raundrup, K.; Cabo, Â.; Bessa, R.J.B.; Almeida, A.M. Fatty acid composition of muscle, adipose tissue and liver from Muskoxen (Ovibos moschatus) living in West Greenland. PLoS ONE 2015, 10, e0145241. [Google Scholar] [CrossRef]
- Lo Fiego, D.P.; Minelli, G.; Volpelli, L.A.; Ulrici, A.; Macchioni, P. Calculating the iodine value for Italian heavy pig subcutaneous adipose tissue from fatty acid methyl ester profiles. Meat Sci. 2016, 122, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Witting, L.A. Lipid peroxidation in vivo. J. Am. Oil Chem. Soc. 1965, 42, 908–913. [Google Scholar] [CrossRef] [PubMed]
- ISO-2917; Meat and Meat Products—Measurement of pH (Reference Method). International Organization for Standardization: London, UK, 1999.
- Hornsey, H.C. The colour of cooked cured pork. I.—Estimation of the nitric oxide-haem pigments. J. Sci. Food Agric. 1956, 7, 534–540. [Google Scholar] [CrossRef]
- Cava, R.; Estévez, M.; Ruiz, J.; Morcuende, D. Physicochemical characteristics of three muscles from free-range reared Iberian pigs slaughtered at 90 kg live weight. Meat Sci. 2003, 63, 533–541. [Google Scholar] [CrossRef] [PubMed]
- Woessner, J.F. The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid. Arch. Biochem. Biophys. 1961, 93, 440–447. [Google Scholar] [CrossRef] [PubMed]
- Etherington, D.J.; Sims, T.J. Detection and estimation of collagen. J. Sci. Food Agric. 1981, 32, 539–546. [Google Scholar] [CrossRef]
- Hill, F. The solubility of intramuscular collagen in meat animals of various ages. J. Food Sci. 1966, 31, 161–166. [Google Scholar] [CrossRef]
- CIE. Commission Internationale de l’Éclairage, 18th Session; CIE Publication: London, UK, 1976. [Google Scholar]
- Luciano, G.; Vasta, V.; Monahan, F.J.; López-Andrés, P.; Biondi, L.; Lanza, M.; Priolo, A. Antioxidant status, colour stability and myoglobin resistance to oxidation of longissimus dorsi muscle from lambs fed a tannin-containing diet. Food Chem. 2011, 124, 1036–1042. [Google Scholar] [CrossRef]
- Francisco, A.; Dentinho, M.T.; Alves, S.P.; Portugal, P.V.; Fernandes, F.; Sengo, S.; Jerónimo, E.; Oliveira, M.A.; Costa, P.; Sequeira, A.; et al. Growth performance, carcass and meat quality of lambs supplemented with increasing levels of a tanniferous bush (Cistus ladanifer L.) and vegetable oils. Meat Sci. 2015, 100, 275–282. [Google Scholar] [CrossRef]
- Wood, J.D.; Nute, G.R.; Richardson, R.I.; Whittington, F.M.; Southwood, O.; Plastow, G.; Mansbridge, R.; Costa, N.d.; Chang, K.C. Effects of breed, diet and muscle on fat deposition and eating quality in pigs. Meat Sci. 2004, 67, 651–667. [Google Scholar] [CrossRef]
- Trefan, L.; Doeschl-Wilson, A.; Rooke, J.A.; Terlouw, C.; Bünger, L. Meta-analysis of effects of gender in combination with carcass weight and breed on pork quality. J. Anim. Sci. 2013, 91, 1480–1492. [Google Scholar] [CrossRef] [PubMed]
- Juárez, M.; Clemente, I.; Polvillo, O.; Molina, A. Meat quality of tenderloin from Iberian pigs as affected by breed strain and crossbreeding. Meat Sci. 2009, 81, 573–579. [Google Scholar] [CrossRef] [PubMed]
- Bendall, J.R.; Swatland, H.J. A review of the relationships of pH with physical aspect of pork quality. Meat Sci. 1988, 24, 85–126. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.K. Factors affecting the quality of raw meat. In Meat Processing; Kerry, J.P., Kerry, J.F., Ledward, D., Eds.; Woodhead Publishing: Cambridge, UK, 2002; pp. 27–63. [Google Scholar]
- Leseigneur-Meynier, A.; Gandemer, G. Lipid composition of pork muscle in relation to the metabolic type of the fibres. Meat Sci. 1991, 29, 229–241. [Google Scholar] [CrossRef] [PubMed]
- Martins, J.M.; Silva, D.; Albuquerque, A.; Neves, J.; Charneca, R.; Freitas, A. Physical Activity Effects on Blood Parameters, Growth, Carcass, and Meat and Fat Composition of Portuguese Alentejano Pigs. Animals 2021, 11, 156. [Google Scholar] [CrossRef] [PubMed]
- Allen, P. Sex differences in fat composition. In Fat Quality in Lean Pigs: A Workshop in the CEC Programme of Coordination of Research on Animal Husbandry; Wood, J.D., Ed.; Meat Research Institute: Brussels, Belgium, 1984; pp. 145–160. [Google Scholar]
- Barton-Gade, P.A. Meat and fat quality in boars, castrates and gilts. Livest. Prod. Sci. 1987, 16, 187–196. [Google Scholar] [CrossRef]
- Lee, Y.B.; Kauffman, R.G.; Grummer, R.H. Effect of early nutrition on the development of adipose tissue in the pig. II. Weight constant basis. J. Anim. Sci. 1973, 37, 1319–1325. [Google Scholar] [CrossRef]
- Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.; Lorenzo, J.M. A comprehensive review on lipid oxidation in meat and meat products. Antioxidants 2019, 8, 429. [Google Scholar] [CrossRef]
- Pauly, C.; Luginbühl, W.; Ampuero, S.; Bee, G. Expected effects on carcass and pork quality when surgical castration is omitted—Results of a meta-analysis study. Meat Sci. 2012, 92, 858–862. [Google Scholar] [CrossRef]
- Serra, X.; Gil, F.; Pérez-Enciso, M.; Oliver, M.A.; Vázquez, J.M.; Gispert, M.; Díaz, I.; Moreno, F.; Latorre, R.; Noguera, J.L. A comparison of carcass, meat quality and histochemical characteristics of Iberian (Guadyerbas line) and Landrace pigs. Livest. Prod. Sci. 1998, 56, 215–223. [Google Scholar] [CrossRef]
- Wood, J.D.; Enser, M.; Whittington, F.M.; Moncrieff, C.B.; Kempster, A.J. Backfat composition in pigs: Differences between fat thickness groups and sexes. Livest. Prod. Sci. 1989, 22, 351–362. [Google Scholar] [CrossRef]
- Claus, R.; Weiler, U.; Herzog, A. Physiological aspects of androstenone and skatole formation in the boar—A review with experimental data. Meat Sci. 1994, 38, 289–305. [Google Scholar] [CrossRef] [PubMed]
- Corominas, J.; Ramayo-Caldas, Y.; Puig-Oliveras, A.; Estellé, J.; Castelló, A.; Alves, E.; Pena, R.N.; Ballester, M.; Folch, J.M. Analysis of porcine adipose tissue transcriptome reveals differences in de novo fatty acid synthesis in pigs with divergent muscle fatty acid composition. BMC Genom. 2013, 14, 843. [Google Scholar] [CrossRef] [PubMed]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef] [PubMed]
- Kouba, M.; Mourot, J. Effect of a high linoleic acid diet on Δ9-desaturase activity, lipogenesis and lipid composition of pig subcutaneous adipose tissue. Reprod. Nutr. Dev. 1998, 38, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Klingenberg, I.L.; Knabe, D.A.; Smith, S.B. Lipid metabolism in pigs fed beef tallow or high-oleic acid sunflower oil. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 1995, 110, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Mackay, J.; Pearce, M.C.; Thevasagayam, S.; Doran, O. Fatty acid composition and lipogenic enzyme protein expression in subcutaneous adipose tissue of male pigs vaccinated against boar taint, barrows, and entire boars. J. Anim. Sci. 2013, 91, 395–404. [Google Scholar] [CrossRef] [PubMed]
- Cronin, G.M.; Dunshea, F.R.; Butler, K.L.; McCauley, I.; Barnett, J.L.; Hemsworth, P.H. The effects of immuno- and surgical-castration on the behaviour and consequently growth of group-housed, male finisher pigs. Appl. Anim. Behav. Sci. 2003, 81, 111–126. [Google Scholar] [CrossRef]
- Leyton, J.; Drury, P.J.; Crawford, M.A. Differential oxidation of saturated and unsaturated fatty acids in vivo in the rat. Br. J. Nutr. 1987, 57, 383–393. [Google Scholar] [CrossRef]
- Wood, J.D.; Enser, M.; Fisher, A.V.; Nute, G.R.; Sheard, P.R.; Richardson, R.I.; Hughes, S.I.; Whittington, F.M. Fat deposition, fatty acid composition and meat quality: A review. Meat Sci. 2008, 78, 343–358. [Google Scholar] [CrossRef]
- Kouba, M.; Sellier, P. A review of the factors influencing the development of intermuscular adipose tissue in the growing pig. Meat Sci. 2011, 88, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Clarke, S.D. Polyunsaturated fatty acid regulation of gene transcription: A mechanism to improve energy balance and insulin resistance. Br. J. Nutr. 2000, 83, S59–S66. [Google Scholar] [CrossRef] [PubMed]
- Madeira, M.S.; Lopes, P.A.; Costa, P.; Coelho, D.; Alfaia, C.M.; Prates, J.A.M. Reduced protein diets increase intramuscular fat of psoas major, a red muscle, in lean and fatty pig genotypes. Animal 2017, 11, 2094–2102. [Google Scholar] [CrossRef] [PubMed]
- Wood, J.D.; Richardson, R.I.; Nute, G.R.; Fisher, A.V.; Campo, M.M.; Kasapidou, E.; Sheard, P.R.; Enser, M. Effects of fatty acids on meat quality: A review. Meat Sci. 2003, 66, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Christensen, K. In vitro studies on the synthesis of intramuscular fat in the Longissimus dorsi muscle of pigs. Livest. Prod. Sci. 1975, 2, 59–68. [Google Scholar] [CrossRef]
- Peinado, J.; Serrano, M.P.; Medel, P.; Fuentetaja, A.; Mateos, G.G. Productive performance, carcass and meat quality of intact and castrated gilts slaughtered at 106 or 122 kg BW. Animal 2011, 5, 1131–1140. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, M.; Gomez, F.E.; Ntambi, J.M. Lack of stearoyl-CoA desaturase-1 function induces a palmitoyl-CoA Δ6 desaturase and represses the stearoyl-CoA desaturase-3 gene in the preputial glands of the mouse. J. Lipid Res. 2002, 43, 2146–2154. [Google Scholar] [CrossRef] [PubMed]
- Bee, G.; Gebert, S.; Messikommer, R. Effect of dietary energy supply and fat source on the fatty acid pattern of adipose and lean tissues and lipogenesis in the pig. J. Anim. Sci. 2002, 80, 1564–1574. [Google Scholar] [CrossRef]
- Albuquerque, A.; Óvilo, C.; Núñez, Y.; Benítez, R.; López-Garcia, A.; García, F.; Félix, M.R.; Laranjo, M.; Charneca, R.; Martins, J.M. Comparative Transcriptomic Analysis of Subcutaneous Adipose Tissue from Local Pig Breeds. Genes 2020, 11, 422. [Google Scholar] [CrossRef]
- Andrés, A.I.; Cava, R.; Mayoral, A.I.; Tejeda, J.F.; Morcuende, D.; Ruiz, J. Oxidative stability and fatty acid composition of pig muscles as affected by rearing system, crossbreeding and metabolic type of muscle fibre. Meat Sci. 2001, 59, 39–47. [Google Scholar] [CrossRef]
- Hausman, G.J.; Dodson, M.V.; Ajuwon, K.; Azain, M.; Barnes, K.M.; Guan, L.L.; Jiang, Z.; Poulos, S.P.; Sainz, R.D.; Smith, S.; et al. BOARD-INVITED REVIEW: The biology and regulation of preadipocytes and adipocytes in meat animals. J. Anim. Sci. 2009, 87, 1218–1246. [Google Scholar] [CrossRef] [PubMed]
- Min, B.; Ahn, D.U. Mechanism of lipid peroxidation in meat and meat products—A review. Food Sci. Biotechnol. 2005, 14, 152–163. [Google Scholar]
- Chaijan, M.; Panpipat, W. Mechanism of Oxidation in Foods of Animal Origin. In Natural Antioxidants. Applications in Foods of Animal Origin; Banerjee, R., Verma, A.K., Siddiqui, M.W., Eds.; Apple Academic Press, Inc.: Boca Raton, FL, USA, 2016; pp. 1–37. [Google Scholar]
- Jerónimo, E.; Alves, S.P. Chapter 11—Lipid-derived oxidation products. In Food Lipids; Lorenzo, J.M., Munekata, P.E.S., Pateiro, M., Barba, F.J., Domínguez, R., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 231–253. [Google Scholar]
- Echegaray, N.; Pateiro, M.; Munekata, P.E.S.; Lorenzo, J.M.; Chabani, Z.; Farag, M.A.; Domínguez, R. Measurement of Antioxidant Capacity of Meat and Meat Products: Methods and Applications. Molecules 2021, 26, 3880. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhu, Y.; Hu, Z.; Wu, S.; Jin, C. Beetroot as a functional food with huge health benefits: Antioxidant, antitumor, physical function, and chronic metabolomics activity. Food Sci. Nutr. 2021, 9, 6406–6420. [Google Scholar] [CrossRef] [PubMed]
- Ciudad-Mulero, M.; Matallana-González, C.M.; Cámara, M.; Fernández-Ruiz, V.; Morales, P. Antioxidant phytochemicals in pulses and their relation to human health: A review. Curr. Pharm. Des. 2020, 26, 1880–1897. [Google Scholar] [CrossRef]
- Isabel, B.; López-Bote, C. Ácidos grasos, antioxidantes naturales y ejercicio: Factores que determinan la calidad de los productos del cerdo ibérico. In Proceedings of the II Jornadas El Cerdo Ibérico y sus Productos—Libro de Ponencias, Salamanca, Spain, 24–25 May 2000; pp. 2–10. [Google Scholar]
- Wood, J.D. Fat quality in pig meat. In Fat Quality in Lean Pigs: A Workshop in the CEC Programme of Coordination of Research on Animal Husbandry; Wood, J.D., Ed.; Meat Research Institute: Brussels, Belgium, 1984; pp. 9–14. [Google Scholar]
C | I | IExp | p-Value | ||||
---|---|---|---|---|---|---|---|
Mean | SE | Mean | SE | Mean | SE | ||
Moisture (g/100g) | 73.5 b | 0.2 | 74.4 a | 0.2 | 74.5 a | 0.2 | <0.001 |
Total protein (g/100g) | 22.6 | 0.1 | 22.3 | 0.2 | 22.3 | 0.1 | 0.175 |
Total intramuscular fat (g/100g) | 2.40 a | 0.10 | 1.94 b | 0.05 | 1.79 b | 0.09 | <0.0001 |
Total ashes (g/100g) | 1.18 | 0.01 | 1.19 | 0.01 | 1.18 | 0.02 | 0.798 |
pH (24 h post mortem) | 5.66 | 0.02 | 5.67 | 0.02 | 5.65 | 0.02 | 0.893 |
Total collagen (mg/g DM) | 15.2 b | 0.3 | 17.7 a | 0.4 | 17.7 a | 0.5 | <0.001 |
Soluble collagen (mg/g DM) | 4.05 | 0.19 | 4.29 | 0.15 | 4.18 | 0.13 | 0.548 |
Myoglobin content (mg/g) | 3.19 a | 0.09 | 2.75 b | 0.12 | 2.66 b | 0.11 | 0.003 |
Lightness (L*) | 36.4 b | 0.3 | 38.2 a | 0.4 | 38.5 a | 0.4 | 0.001 |
Redness (a*) | 18.5 | 0.5 | 17.9 | 0.7 | 17.8 | 0.6 | 0.665 |
Yellowness (b*) | 8.9 | 0.4 | 8.7 | 0.3 | 8.8 | 0.3 | 0.846 |
Chroma (C) | 20.6 | 0.7 | 19.9 | 0.6 | 19.9 | 0.6 | 0.661 |
Hue angle (H°) | 25.7 | 0.7 | 26.0 | 1.0 | 26.4 | 1.0 | 0.872 |
Saturation | 0.57 | 0.02 | 0.52 | 0.02 | 0.52 | 0.02 | 0.096 |
C | I | IExp | p-Value | ||||
---|---|---|---|---|---|---|---|
Mean | SE | Mean | SE | Mean | SE | ||
Moisture (g/100g) | 4.5 b | 0.3 | 8.5 a | 0.6 | 8.3 a | 0.5 | <0.0001 |
Total protein (g/100g) | 0.68 b | 0.12 | 2.06 a | 0.20 | 1.94 a | 0.19 | <0.0001 |
Total lipids (g/100g) | 94.1 a | 0.8 | 80.7 b | 3.4 | 83.3 b | 3.1 | 0.004 |
Lightness (L*) | 82.8 | 0.3 | 83.4 | 0.4 | 83.3 | 0.1 | 0.367 |
Redness (a*) | 2.22 | 0.14 | 2.24 | 0.20 | 2.37 | 0.14 | 0.771 |
Yellowness (b*) | 4.53 | 0.16 | 4.77 | 0.14 | 4.84 | 0.13 | 0.301 |
Chroma (C) | 5.05 | 0.20 | 5.29 | 0.19 | 5.39 | 0.18 | 0.425 |
Hue angle (H°) | 64.0 | 1.0 | 65.2 | 1.7 | 64.1 | 0.8 | 0.732 |
Saturation | 0.06 | 0.01 | 0.06 | 0.01 | 0.07 | 0.01 | 0.509 |
C | I | IExp | p-Value | ||||
---|---|---|---|---|---|---|---|
Mean | SE | Mean | SE | Mean | SE | ||
g/100 g of total fatty acids identified | |||||||
C14 | 1.03 a | 0.02 | 0.88 b | 0.02 | 0.91 b | 0.03 | <0.0001 |
C16 | 24.1 a | 0.2 | 22.7 b | 0.2 | 22.9 b | 0.3 | 0.001 |
C18 | 10.6 | 0.2 | 10.7 | 0.2 | 11.1 | 0.19 | 0.134 |
C20 | 0.111 | 0.004 | 0.110 | 0.006 | 0.113 | 0.005 | 0.904 |
Σ SFA | 36.3 a | 0.4 | 34.9 b | 0.2 | 35.6 a b | 0.4 | 0.021 |
C16:1 n-7 | 2.57 a | 0.03 | 2.02 b | 0.10 | 2.05 b | 0.09 | <0.0001 |
C16:1 n-9 | 0.44 b | 0.02 | 0.53 a | 0.03 | 0.51 a b | 0.03 | 0.048 |
C18:1 n-7 | 3.61 a | 0.04 | 3.13 b | 0.07 | 3.23 b | 0.05 | <0.0001 |
C18:1 n-9 | 41.4 a | 0.5 | 40.0 a | 0.3 | 38.2 b | 0.7 | 0.001 |
Σ MUFA | 48.2 a | 0.5 | 45.9 b | 0.4 | 44.3 b | 0.8 | <0.001 |
C18:2 n-6 | 11.4 b | 0.4 | 14.9 a | 0.3 | 15.7 a | 0.6 | <0.0001 |
C18:3 n-3 | 0.91 b | 0.02 | 1.01 a | 0.02 | 0.99 a | 0.01 | <0.001 |
C20:2 n-6 | 0.23 b | 0.01 | 0.30 a | 0.01 | 0.29 a | 0.01 | <0.0001 |
C20:4 n-6 | 2.06 | 0.12 | 2.07 | 0.09 | 2.20 | 0.16 | 0.658 |
C20:5 n-3 | 0.059 | 0.003 | 0.060 | 0.005 | 0.061 | 0.004 | 0.949 |
C22:5 n-3 | 0.190 | 0.015 | 0.164 | 0.008 | 0.164 | 0.013 | 0.254 |
C22:6 n-3 | 0.036 a | 0.005 | 0.009 b | 0.004 | 0.003 b | 0.002 | <0.0001 |
Σ PUFA | 15.5 b | 0.5 | 19.2 a | 0.4 | 20.2 a | 0.8 | <0.0001 |
Σ UFA | 63.7 b | 0.4 | 65.1 a | 0.2 | 64.1 a b | 0.5 | 0.021 |
Σ UFA/SFA | 1.76 b | 0.03 | 1.87 a | 0.02 | 1.81 a b | 0.03 | 0.023 |
Σ PUFA/SFA | 0.43 b | 0.02 | 0.55 a | 0.01 | 0.57 a | 0.03 | <0.0001 |
Σ n-3 | 1.25 | 0.02 | 1.32 | 0.02 | 1.31 | 0.03 | 0.103 |
Σ n-6 | 14.1 b | 0.5 | 17.8 a | 0.4 | 18.7 a | 0.8 | <0.0001 |
Σ n-6/n-3 | 11.3 b | 0.3 | 13.5 a | 0.3 | 14.2 a | 0.3 | <0.0001 |
Σ n-9 | 41.9 a | 0.5 | 40.6 a | 0.3 | 38.8 b | 0.7 | 0.002 |
SAT index † | 0.56 a | 0.01 | 0.53 b | 0.01 | 0.54 a b | 0.01 | 0.020 |
ATH index ‡ | 0.45 a | 0.01 | 0.41 b | 0.01 | 0.42 b | 0.01 | <0.001 |
Desaturation indexes | |||||||
C16:1/C16 | 0.106 a | 0.002 | 0.090 b | 0.004 | 0.096 b | 0.002 | 0.003 |
C18:1/C18 | 3.92 a | 0.09 | 3.75 b | 0.09 | 3.56 b | 0.14 | 0.083 |
Iodine value § | 66.1 b | 1.9 | 70.6 a | 0.4 | 69.5 a | 0.5 | <0.0001 |
Peroxidizability index ϕ | 22.2 b | 0.7 | 25.9 a | 0.6 | 25.0 a | 0.8 | 0.002 |
C | I | IExp | p-Value | ||||
---|---|---|---|---|---|---|---|
Mean | SE | Mean | SE | Mean | SE | ||
g/100 g of total fatty acids identified | |||||||
C14 | 1.27 a | 0.03 | 1.13 b | 0.03 | 1.23 a | 0.04 | 0.006 |
C16 | 24.5 a | 0.2 | 23.2 b | 0.3 | 23.3 b | 0.2 | <0.001 |
C18 | 13.6 a | 0.3 | 12.0 b | 0.2 | 11.6 b | 0.6 | 0.004 |
C20 | 0.22 | 0.01 | 0.20 | 0.01 | 0.19 | 0.01 | 0.067 |
Σ SFA | 40.2 a | 0.3 | 36.9 b | 0.4 | 36.6 b | 0.6 | <0.0001 |
C16:1 n-7 | 1.34 | 0.07 | 1.37 | 0.05 | 1.51 | 0.14 | 0.382 |
C16:1 n-9 | 0.28 b | 0.01 | 0.46 a | 0.03 | 0.41 a | 0.03 | <0.0001 |
C18:1 n-7 | 2.06 | 0.05 | 2.14 | 0.03 | 2.20 | 0.12 | 0.478 |
C18:1 n-9 | 47.1 b | 0.2 | 48.4 a | 0.3 | 48.3 a | 0.3 | 0.002 |
Σ MUFA | 50.9 b | 0.3 | 52.6 a | 0.3 | 52.7 a | 0.6 | 0.008 |
C18:2 n-6 | 6.4 b | 0.1 | 7.9 a | 0.2 | 8.0 a | 0.2 | <0.0001 |
C18:3 n-3 | 1.86 | 0.06 | 1.83 | 0.07 | 1.80 | 0.06 | 0.751 |
C20:2 n-6 | 0.41 b | 0.02 | 0.47 a | 0.01 | 0.46 a | 0.02 | 0.037 |
C20:5 n-3 | 0.007 a | 0.001 | 0.004 b | 0.001 | 0.003 b | 0.001 | <0.0001 |
C22:5 n-3 | 0.034 a | 0.001 | 0.016 c | 0.001 | 0.019 b | 0.001 | <0.0001 |
C22:6 n-3 | 0.010 | 0.001 | 0.008 | 0.001 | 0.008 | 0.001 | 0.140 |
Σ PUFA | 9.1 b | 0.1 | 10.3 a | 0.2 | 10.7 a | 0.2 | <0.0001 |
Σ UFA | 59.9 b | 0.3 | 63.1 a | 0.4 | 63.4 a | 0.7 | <0.0001 |
Σ UFA/SFA | 1.50 b | 0.02 | 1.71 a | 0.03 | 1.73 a | 0.05 | <0.0001 |
Σ PUFA/SFA | 0.23 b | 0.01 | 0.28 a | 0.01 | 0.29 a | 0.01 | <0.0001 |
Σ n-3 | 2.02 | 0.06 | 1.98 | 0.07 | 1.95 | 0.07 | 0.768 |
Σ n-6 | 6.9 b | 0.1 | 8.4 a | 0.2 | 8.6 a | 0.2 | <0.0001 |
Σ n-6/n-3 | 3.50 b | 0.17 | 4.20 a | 0.25 | 4.60 a | 0.22 | 0.004 |
Σ n-9 | 47.4 b | 0.2 | 48.9 a | 0.3 | 48.7 a | 0.3 | <0.001 |
SAT index † | 0.66 a | 0.01 | 0.58 b | 0.01 | 0.57 b | 0.02 | <0.0001 |
ATH index ‡ | 0.50 a | 0.01 | 0.44 b | 0.01 | 0.45 b | 0.01 | <0.0001 |
Desaturation indexes | |||||||
C16:1/C16 | 0.054 | 0.003 | 0.059 | 0.002 | 0.070 | 0.008 | 0.056 |
C18:1/C18 | 3.47 b | 0.09 | 4.04 a | 0.08 | 4.40 a | 0.30 | 0.001 |
Iodine value § | 59.2 b | 1.9 | 62.8 a | 0.4 | 63.5 a | 0.5 | <0.0001 |
Peroxidizability index ϕ | 11.4 b | 0.2 | 12.7 a | 0.2 | 12.6 a | 0.2 | <0.0001 |
C | I | IExp | p-Value | ||||
---|---|---|---|---|---|---|---|
Mean | SE | Mean | SE | Mean | SE | ||
Total phenols (mg tannic acid equivalents/g) | 0.56 a | 0.01 | 0.47 b | 0.02 | 0.45 b | 0.01 | <0.0001 |
TEAC (µmol Trolox equivalents/g) | 7.56 a | 0.38 | 6.12 b | 0.34 | 6.30 b | 0.36 | 0.017 |
FRAP (μmol Fe2+ equivalents/g) | 3.63 | 0.28 | 3.24 | 0.38 | 3.63 | 0.24 | 0.579 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martins, J.M.; Charneca, R.; Garrido, N.; Albuquerque, A.; Jerónimo, E.; Guerreiro, O.; Lage, P.; Marmelo, C.; Costa, F.; Ramos, A.; et al. Influence of Sex on Meat and Fat Quality from Heavy Alentejano Pigs Finished Outdoors on Commercial and High Fiber Diets. Animals 2023, 13, 3099. https://doi.org/10.3390/ani13193099
Martins JM, Charneca R, Garrido N, Albuquerque A, Jerónimo E, Guerreiro O, Lage P, Marmelo C, Costa F, Ramos A, et al. Influence of Sex on Meat and Fat Quality from Heavy Alentejano Pigs Finished Outdoors on Commercial and High Fiber Diets. Animals. 2023; 13(19):3099. https://doi.org/10.3390/ani13193099
Chicago/Turabian StyleMartins, José Manuel, Rui Charneca, Nicolás Garrido, André Albuquerque, Eliana Jerónimo, Olinda Guerreiro, Patrícia Lage, Carla Marmelo, Filipa Costa, Amélia Ramos, and et al. 2023. "Influence of Sex on Meat and Fat Quality from Heavy Alentejano Pigs Finished Outdoors on Commercial and High Fiber Diets" Animals 13, no. 19: 3099. https://doi.org/10.3390/ani13193099
APA StyleMartins, J. M., Charneca, R., Garrido, N., Albuquerque, A., Jerónimo, E., Guerreiro, O., Lage, P., Marmelo, C., Costa, F., Ramos, A., & Martin, L. (2023). Influence of Sex on Meat and Fat Quality from Heavy Alentejano Pigs Finished Outdoors on Commercial and High Fiber Diets. Animals, 13(19), 3099. https://doi.org/10.3390/ani13193099