Long-Term Feeding of Dairy Goats with 40% Artichoke by-Product Silage Preserves Milk Yield, Nutritional Composition and Animal Health Status
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Facilities
2.2. Experimental Design
2.3. Variables Analysed
2.4. Statistical Analysis
3. Results
3.1. Body Weight and Milk Performance
3.2. Milk Mineral Profile
3.3. Milk Fatty Acid Profiles
3.4. Plasmatic Metabolite Profiles
4. Discussion
4.1. Body Weight and Milk Performance
4.2. Milk Mineral Profile
4.3. Milk Fatty Acid Profile
4.4. Plasmatic Metabolites Profile
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Environment Action Programme to 2030—8th Environment Action Programme. Available online: https://environment.ec.europa.eu/strategy/environment-action-programme-2030_en (accessed on 13 November 2023).
- Russomano, K.L.; Van Amburgh, M.E.; Higgs, R.J. Utilization of byproducts from human food production as feedstuffs for dairy cattle and relationship to greenhouse gas emissions and environmental efficiency. J. Dairy Sci. 2012. [Google Scholar]
- van Zanten, H.H.; Mollenhorst, H.; de Vries, J.W.; van Middelaar, C.E.; van Kernebeek, H.R.; de Boer, I.J. Assessing environmental consequences of using co-products in animal feed. Int. J. Life Cycle Assess. 2014, 19, 79–88. [Google Scholar] [CrossRef]
- Bakshi, M.P.S.; Wadhwa, M.; Makkar, H.P.S. Waste to worth: Vegetable wastes as animal feed. CABI Rev. 2016, 1–26. [Google Scholar] [CrossRef]
- Fresh Artichoke Production and Top Producing Countries-Tridge. Available online: https://www.tridge.com/intelligences/artichoke/production (accessed on 13 November 2023).
- García-Rodríguez, J.; Ranilla, M.J.; France, J.; Alaiz-Moretón, H.; Carro, M.D.; López, S. Chemical Composition, In Vitro Digestibility and Rumen Fermentation Kinetics of Agro-Industrial By-Products. Animals 2019, 9, 861. [Google Scholar] [CrossRef] [PubMed]
- Monllor, P.; Romero, G.; Muelas, R.; Sandoval-Castro, C.A.; Sendra, E.; Díaz, J.R. Ensiling Process in Commercial Bales of Horticultural By-Products from Artichoke and Broccoli. Animals 2020, 10, 831. [Google Scholar] [CrossRef]
- Meneses, M.; Martínez-Marín, A.L.; Madrid, J.; Martínez-Teruel, A.; Hernández, F.; Megías, M.D. Ensilability, in vitro and in vivo values of the agro-industrial by-products of artichoke and broccoli. Environ. Sci. Pollut. Res. 2020, 27, 2919–2925. [Google Scholar] [CrossRef]
- Monllor, P.; Muelas, R.; Roca, A.; Bueso-Ródenas, J.; Atzori, A.S.; Sendra, E.; Romero, G.; Díaz, J.R. Effect of the Short-Term Incorporation of Different Proportions of Ensiled Artichoke By-Product on Milk Parameters and Health Status of Dairy Goats. Agronomy 2021, 11, 1649. [Google Scholar] [CrossRef]
- Monllor, P.; Muelas, R.; Roca, A.; Atzori, A.S.; Díaz, J.R.; Sendra, E.; Romero, G. Long-Term Feeding of Dairy Goats with Broccoli By-Product and Artichoke Plant Silages: Milk Yield. Qual. Composition. Anim. 2020, 10, 1670. [Google Scholar] [CrossRef]
- Fernández, C.; Sánchez-Séiquer, P.; Navarro, M.J.; Garcés, C. Modeling the voluntary dry matter intake in Murciano-Granadina dairy goats. In Sustainable Grazing, Nutritional Utilization and Quality of Sheep and Goat Products; Molina, A.E., Ben, S.H., Biala, K., Morand-Fehr, P., Eds.; CIHEAM: Zaragoza, Spain, 2005; pp. 395–399. [Google Scholar]
- Nudda, A.; Correddu, F.; Marzano, A.; Battacone, G.; Nicolussi, P.; Bonelli, P.; Pulina, G. Effects of diets containing grape seed, linseed, or both on milk production traits, liver and kidney activities, and immunity of lactating dairy ewes. J. Dairy Sci. 2015, 98, 1157–1166. [Google Scholar] [CrossRef]
- Spigarelli, C.; Zuliani, A.; Battini, M.; Mattiello, S.; Bovolenta, S. Welfare assessment on pasture: A review on animal-based measures for ruminants. Animals 2020, 10, 609. [Google Scholar] [CrossRef]
- Monllor, P.; Romero, G.; Atzori, A.S.; Sandoval-Castro, C.A.; Ayala-Burgos, A.J.; Roca, A.; Sendra, E.; Díaz, J.R. Composition, mineral and fatty acid profiles of milk from goats fed with different proportions of broccoli and artichoke plant by-products. Foods 2020, 9, 700. [Google Scholar] [CrossRef] [PubMed]
- Monllor, P.; Romero, G.; Sendra, E.; Atzori, A.S.; Díaz, J.R. Short-Term Effect of the Inclusion of Silage Artichoke By-Products in Diets of Dairy Goats on Milk Quality. Animals 2020, 10, 339. [Google Scholar] [CrossRef]
- INRA. Alimentation des Bovins, Ovins et Caprins; Jarrige, R., Ed.; INRA: Paris, France, 1988. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary neutral detergent fibre and non-starch polysacacharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-O.; Jeong, S.W.; Lee, C.Y. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem. 2003, 81, 321–326. [Google Scholar] [CrossRef]
- Liu, F.-X.; Fu, S.-F.; Bi, X.-F.; Chen, F.; Liao, X.-J.; Hu, X.-S.; Wu, J.-H. Physico-chemical and antioxidant properties of four mango (Mangifera indica L.) cultivars in China. Food Chem. 2013, 138, 396–405. [Google Scholar] [CrossRef]
- Menke, K.H.; Steingass, H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. 1988, 23, 103–116. [Google Scholar]
- Kramer, J.K.G.; Fellner, V.; Dugan, M.E.R.; Sauer, F.D.; Mossoba, M.M.; Yurawecz, M.P. Evaluating acid and base catalysts in the methylation of milk and rumen fatty acids with special emphasis on conjugated dienes and total trans fatty acids. Lipids 1997, 32, 1219–1228. [Google Scholar] [CrossRef]
- González-Arrojo, A.; Soldado, A.; Vicente, F.; Fernández Sánchez, M.L.; Sanz-Medel, A.; de la Roza-Delgado, B. Changes on levels of essential trace elements in selenium naturally enriched milk. J. Food Nutr. Res. 2016, 4, 303–308. [Google Scholar]
- Gravert, H.O. Dairy Cattle Production; Elsevier Science: New York, NY, USA, 1987; p. 234. [Google Scholar]
- Schau, E.M.; Fet, A.M. LCA studies of food products as background for environmental product declarations. Int. J. Life Cycle Assess. 2008, 13, 255–265. [Google Scholar] [CrossRef]
- Romeu-Nadal, M.; Morera-Pons, S.; Casteltratamiento, A.I.; López-Sabater, M.C. Comparison of two methods for the extraction of fat from human milk. Anal. Chim. Acta 2004, 513, 457–461. [Google Scholar] [CrossRef]
- Nudda, A.; McGuire, M.A.; Battacone, G.; Pulina, G. Seasonal variation in conjugated linoleic acid and vaccenic acid in milk fat of sheep and its transfer to cheese and ricotta. J. Dairy Sci. 2005, 88, 1311–1319. [Google Scholar] [CrossRef] [PubMed]
- Ulbricht, T.L.; Southgate, D.A. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef] [PubMed]
- Lock, A.; Garnsworthy, P. Seasonal variation in milk conjugated linoleic acid and Δ9-desaturase activity in dairy cows. Livest. Prod. Sci. 2003, 79, 47–59. [Google Scholar] [CrossRef]
- Criscioni, P.; Fernández, C. Effect of rice bran as a replacement for oat grain in energy and nitrogen balance, methane emissions, and milk performance of Murciano-Granadina goats. J. Dairy Sci. 2016, 99, 280–290. [Google Scholar] [CrossRef] [PubMed]
- Bendelja, D.; Dolenčić, I.; Prpić, Z.; Vnučec, I.; Samaržija, D. Urea concentration in goat milk: Importance of determination and factors of variability. J. Cent. Eur. Agric. 2020, 21, 707–721. [Google Scholar] [CrossRef]
- Bonanno, A.; Todaro, M.; Di Grigoli, A.; Scatassa, M.L.; Tornambè, G.; Alicata, M.L. Relationships between dietary factors and milk urea nitrogen level in goats grazing herbaceous pasture. Ital. J. Anim. Sci. 2008, 7, 219–235. [Google Scholar] [CrossRef]
- Pastorino, A.; Hansen, C.; McMahon, D. Effect of pH on the chemical composition and structure-function relationships of cheddar cheese. J. Dairy Sci. 2003, 86, 2751–2760. [Google Scholar] [CrossRef]
- Jonker, J.S.; Kohn, R.A.; Erdman, R.A. Using milk urea nitrogen to predict nitrogen excretion and utilization efficiency in lactating dairy cows. J. Dairy Sci. 1998, 81, 2681–2692. [Google Scholar] [CrossRef] [PubMed]
- Fievez, V.; Colman, E.; Castro-Monotoya, J.M.; Stefanov, I.; Vlaeminck, B. Milk odd- and branched-chain fatty acids as biomarkers of rumen function-An update. Anim. Feed. Sci. Technol. 2012, 172, 51–65. [Google Scholar] [CrossRef]
- Chilliard, Y.; Glasser, F.; Ferlay, A.; Bernard, L.; Rouel, J.; Doreau, M. Diet, rumen biohydrogenation and nutritional quality of cow and goat milk fat. Eur. J. Lipid Sci. Technol. 2007, 109, 828–855. [Google Scholar] [CrossRef]
- Chilliard, Y.; Lamberet, G. A Comparison with Cows and Human Milk. In Biochemical Characteristics of Goat Milk Lipids and Lipolytic System; Effect of Lipid Supplementation; Institut Technique des Produits Laitiers Caprins (ITPLC): Surgères, France, 2001; pp. 71–114. [Google Scholar]
- Rivas, J.; Rossini, M.; Colmenares, O.; Salvador, A.; Morantes, M.; Valerio, D. Effect of lactation on the metabolic profile of Canarian goats in the Tropics. In Proceedings of the 4th Symposium of the Latin American Association in Animal Science, Quevedo, Ecuador, 13–15 November 2014; pp. 125–132. [Google Scholar]
- Grummer, R.R. Impact of changes in organic nutrient metabolism on feeding the transition dairy cow. J. Anim. Sci. 1995, 73, 2820–2833. [Google Scholar] [CrossRef] [PubMed]
- Wankhade, P.R.; Manimaran, A.; Kumaresan, A.; Jeyakumar, S.; Ramesha, K.P.; Sejian, V.; Rajendran, D.; Varghese, M.R. Metabolic and immunological changes in transition dairy cows: A review. Vet. World 2017, 10, 1367–1377. [Google Scholar] [CrossRef] [PubMed]
- Baumgard, L.H.; Collier, R.J.; Bauman, D.E. A 100-Year Review: Regulation of nutrient partitioning to support lactation. J. Dairy Sci. 2017, 100, 10353–10366. [Google Scholar] [CrossRef] [PubMed]
Item | Diets | |
---|---|---|
C | AB | |
Ingredients (g/100 g DM) | ||
Alfalfa hay | 37.4 | 5.00 |
Oat | 16.0 | 14.0 |
Barley | 8.00 | 7.00 |
Corn | 9.30 | 8.00 |
Dried sugar beet pulp | 7.50 | 7.00 |
Sunflower meal | 3.40 | 3.00 |
Peas | 3.00 | 3.00 |
Cottonseed | 3.00 | 3.00 |
Soybean meal 44% | 4.50 | 2.5 |
Corn DDGS | 3.00 | 3.00 |
Sunflower seeds | 2.00 | 2.00 |
Beans | 1.40 | 1.10 |
Wheat | 1.00 | 1.00 |
Soy hulls | 0.50 | 0.40 |
Silage | - | 40.0 |
Cost (EUR/kg DM) | 0.32 | 0.28 |
Chemical Composition | ||
DM (g/kg FM) | 882 | 341 |
g/kg DM | ||
OM | 920 | 927 |
EE | 48.1 | 44.0 |
CP | 162 | 152 |
NDF | 369 | 444 |
ADF | 236 | 293 |
ADL | 64.1 | 63.4 |
TP | 3.33 | 9.28 |
IVDMD | 844 | 742 |
1 ME (Mcal/kg DM) | 2.49 | 2.38 |
VFA and Fermentative Metabolites (g/kg DM) | ||
Lactate | 0.00 | 74.7 |
Acetate | 0.00 | 5.90 |
Ethanol | 0.00 | 4.01 |
Ammonia N | 0.03 | 0.36 |
Mineral Profile | Diets | |
---|---|---|
C | AB | |
Na (g/kg DM) | 1.74 | 4.93 |
Mg (g/kg DM) | 2.34 | 2.20 |
K (g/kg DM) | 14.05 | 20.7 |
Ca (g/kg DM) | 7.30 | 4.67 |
P (g/kg DM) | 3.11 | 3.36 |
S (g/kg DM) | 2.88 | 2.30 |
Se (mg/kg DM) | 0.134 | <0.1 |
Zn (mg/kg DM) | 43.8 | 73.9 |
Cu (mg/kg DM) | 6.89 | 6.35 |
Fe (mg/kg DM) | 260 | 156 |
Mn (mg/kg DM) | 40.8 | 32.4 |
Fatty acid profile (g/100 g total fatty acids) | ||
C6:0 | 0.09 | 1.11 |
C12:0 | 0.15 | 0.06 |
C14:0 | 0.43 | 0.29 |
C16:0 | 16.6 | 15.88 |
C16:1 c9 | 0.32 | 0.28 |
C18:0 | 3.33 | 2.71 |
C18:1 c9 | 25.7 | 24.3 |
C18:1 c11 | 1.09 | 1.02 |
C18:2n6 | 44.9 | 41.2 |
C18:3n3 | 3.93 | 4.70 |
C20:0 | 0.51 | 0.40 |
C20:1n9 | 0.33 | 0.37 |
C22:0 | 0.58 | 0.42 |
C23:0 | 0.13 | 0.13 |
C24:0 | 0.36 | 0.41 |
SFA | 23.0 | 27.0 |
MUFA | 27.7 | 26.2 |
PUFA | 49.3 | 46.8 |
Variable | n | Diet | Significance | ||||
---|---|---|---|---|---|---|---|
C | AB | SEM | Diet | Week | Diet × Week | ||
BW (kg) | 22 | 44.0 | 42.9 | 0.463 | n.s. | *** | n.s. |
Milk yield (kg/day) | 22 | 2.13 | 2.21 | 0.067 | n.s. | *** | n.s. |
FCM (kg/day) | 22 | 2.42 | 2.45 | 0.084 | n.s. | *** | n.s. |
FPCM (kg/day) | 22 | 2.21 | 2.26 | 0.073 | n.s. | *** | n.s. |
Fat (%) | 22 | 4.57 | 4.40 | 0.122 | n.s. | *** | n.s. |
UDM (%) | 22 | 7.99 | 7.71 | 0.200 | n.s. | *** | n.s. |
TS (%) | 22 | 13.5 | 13.3 | 0.16 | n.s. | *** | n.s. |
NFTS (%) | 22 | 8.78 | 8.85 | 0.071 | n.s. | *** | n.s. |
Protein (%) | 22 | 3.48 | 3.47 | 0.061 | n.s. | *** | n.s. |
True protein (%) | 22 | 3.24 | 3.22 | 0.054 | n.s. | *** | n.s. |
Casein (%) | 22 | 2.82 | 2.84 | 0.050 | n.s. | *** | n.s. |
Whey protein (%) | 22 | 0.42 | 0.38 | 0.012 | * | *** | ** |
Lactose (%) | 22 | 4.44 | 4.52 | 0.030 | n.s. | *** | * |
Ash (%) | 22 | 1.01 | 0.928 | 0.018 | ** | *** | n.s. |
Milk urea (mg/L) | 22 | 773 | 687 | 15.3 | *** | *** | n.s. |
SCC (Log10 cell/mL) | 22 | 2.71 | 2.60 | 0.072 | n.s | *** | n.s. |
Variable | n | Diet | Significance | ||||
---|---|---|---|---|---|---|---|
C | AB | SEM | Diet | Week | Diet × Week | ||
Na (mg/kg) | 20 | 378 | 372 | 3.74 | n.s. | *** | n.s. |
Mg (mg/kg) | 20 | 135 | 131 | 0.978 | * | *** | n.s. |
P (mg/kg) | 20 | 1025 | 1037 | 16.0 | n.s. | *** | n.s. |
S (mg/kg) | 20 | 394 | 376 | 6.3 | n.s. | *** | n.s. |
K (mg/kg) | 20 | 1601 | 1610 | 14.6 | n.s. | *** | n.s. |
Ca (mg/kg) | 20 | 1208 | 1242 | 9.6 | * | *** | * |
Mn (µg/kg) | 20 | 46.5 | 67.4 | 3.31 | ** | *** | n.s. |
Fe (µg/kg) | 20 | 301 | 288 | 7.02 | n.s. | ** | n.s. |
Cu (µg/kg) | 20 | 72.4 | 85.2 | 2.52 | ** | *** | n.s. |
Se (µg/kg) | 20 | 17.18 | 15.56 | 0.263 | ** | *** | n.s. |
Zn (µg/kg) | 20 | 2624 | 3528 | 86.12 | *** | *** | *** |
Variable | n | Diet | Significance | ||||
---|---|---|---|---|---|---|---|
C | AB | SEM | Diet | Week | Diet × Week | ||
C4:0 | 20 | 1.34 | 1.39 | 0.019 | n.s. | *** | n.s. |
C6:0 | 20 | 1.86 | 1.85 | 0.055 | n.s. | n.s. | n.s. |
C7:0 | 20 | 0.028 | 0.031 | 0.002 | n.s. | n.s. | n.s. |
C8:0 | 20 | 2.41 | 2.42 | 0.021 | n.s. | *** | n.s. |
4-methyloctanoic acid | 20 | 0.019 | 0.018 | 0.001 | n.s. | * | n.s. |
4-ethyloctanoic acid | 20 | 0.015 | 0.018 | 0.002 | n.s. | n.s. | n.s. |
C9:0 | 20 | 0.042 | 0.041 | 0.002 | n.s. | n.s. | n.s. |
C10:0 | 20 | 8.10 | 8.24 | 0.071 | n.s. | * | n.s. |
C10:1 c9 | 20 | 0.027 | 0.029 | 0.003 | n.s. | ** | n.s. |
C11:0 | 20 | 0.236 | 0.245 | 0.004 | n.s. | *** | n.s. |
C12:0 | 20 | 3.74 | 3.71 | 0.034 | n.s. | *** | n.s. |
9-methyldodecanoic acid | 20 | 0.013 | 0.013 | 0.001 | n.s. | n.s. | n.s. |
iso C13:0 | 20 | 0.014 | 0.019 | 0.002 | * | n.s. | n.s. |
anteiso C13:0 | 20 | 0.040 | 0.041 | 0.002 | n.s. | *** | n.s. |
iso C14:0 | 20 | 0.052 | 0.072 | 0.003 | *** | n.s. | n.s. |
C14:0 | 20 | 8.49 | 8.45 | 0.046 | n.s. | *** | n.s. |
iso C15:0 | 20 | 0.156 | 0.187 | 0.003 | *** | * | n.s. |
anteiso C15:0 | 20 | 0.247 | 0.261 | 0.003 | ** | n.s. | n.s. |
C14:1 c9 | 20 | 0.124 | 0.121 | 0.003 | n.s. | *** | ** |
C15:0 | 20 | 0.751 | 0.803 | 0.007 | *** | *** | n.s. |
C15:1 | 20 | 0.083 | 0.078 | 0.002 | n.s. | ** | n.s. |
iso C16:0 | 20 | 0.202 | 0.230 | 0.003 | *** | *** | n.s. |
C16:0 | 20 | 23.9 | 24.5 | 0.101 | *** | *** | ** |
C16:1 t4 | 20 | 0.022 | 0.032 | 0.004 | n.s. | n.s. | n.s. |
C16:1 t5 | 20 | 0.026 | 0.035 | 0.004 | n.s. | *** | n.s. |
C16:1 t6–7 | 20 | 0.061 | 0.044 | 0.011 | n.s. | n.s. | n.s. |
C16:1 t9 | 20 | 0.182 | 0.141 | 0.011 | * | ** | n.s. |
C16:1 t10 | 20 | 0.020 | 0.022 | 0.002 | n.s. | * | n.s. |
C16:1 t11–12 | 20 | 0.066 | 0.055 | 0.005 | n.s. | * | n.s. |
C16:1 c7 | 20 | 0.228 | 0.226 | 0.005 | n.s. | *** | n.s. |
C16:1 c9 | 20 | 0.497 | 0.530 | 0.020 | n.s. | *** | n.s. |
C16:1 c10 | 20 | 0.032 | 0.036 | 0.002 | n.s. | *** | * |
C16:1 c11 | 20 | 0.023 | 0.025 | 0.002 | n.s. | n.s. | n.s. |
3.7.11.15-Tetramethyl-16:0 | 20 | 0.057 | 0.027 | 0.021 | n.s. | n.s. | n.s. |
Cyclo C17:0 | 20 | 0.050 | 0.091 | 0.003 | *** | ** | ** |
iso C17:0 | 20 | 0.341 | 0.361 | 0.004 | *** | ** | ** |
anteiso C17:0 | 20 | 0.325 | 0.315 | 0.005 | n.s. | * | n.s. |
C17:0 | 20 | 0.594 | 0.628 | 0.023 | n.s. | n.s. | n.s. |
C17:1 c6–7 | 20 | 0.045 | 0.046 | 0.002 | n.s. | n.s. | n.s. |
C17:1 c8 | 20 | 0.019 | 0.015 | 0.005 | n.s. | n.s. | n.s. |
C17:1 c9 | 20 | 0.143 | 0.153 | 0.007 | n.s. | * | n.s. |
Delta C17:2 | 20 | 0.021 | 0.028 | 0.009 | n.s. | n.s. | n.s. |
isoC18:0 | 20 | 0.042 | 0.042 | 0.003 | n.s. | n.s. | n.s. |
C18:0 | 20 | 14.1 | 14.4 | 0.146 | n.s. | *** | * |
C18:1 t4 | 20 | 0.035 | 0.025 | 0.002 | ** | * | n.s. |
C18:1 t5 | 20 | 0.034 | 0.027 | 0.002 | * | ** | n.s. |
C18:1 t6–8 | 20 | 0.417 | 0.301 | 0.009 | *** | *** | n.s. |
C18:1 t9 | 20 | 0.408 | 0.304 | 0.008 | *** | *** | * |
C18:1 t10 | 20 | 0.572 | 0.452 | 0.017 | *** | *** | * |
C18:1 t11 (vaccenic) | 20 | 2.13 | 1.37 | 0.059 | *** | *** | *** |
C18:1 t12 | 20 | 0.550 | 0.449 | 0.011 | *** | *** | n.s. |
C18:1 t13–14 | 20 | 0.963 | 0.692 | 0.195 | n.s. | * | n.s. |
C18:1 c9 | 20 | 18.9 | 19.6 | 0.223 | * | *** | * |
C18:1 c11 | 20 | 0.451 | 0.485 | 0.024 | n.s. | n.s. | * |
C18:1 c12 | 20 | 0.518 | 0.458 | 0.017 | ** | ** | n.s. |
C18:1 c13 | 20 | 0.120 | 0.095 | 0.007 | * | n.s. | n.s. |
C18:1 c14 | 20 | 0.493 | 0.429 | 0.009 | *** | *** | n.s. |
C18:1 c15 | 20 | 0.246 | 0.208 | 0.006 | *** | ** | n.s. |
C18:1 c16 | 20 | 0.023 | 0.021 | 0.002 | n.s. | n.s. | n.s. |
C18:2 t8.c13 | 20 | 0.138 | 0.121 | 0.006 | n.s. | n.s. | n.s. |
C18:2 t9.c12 | 20 | 0.027 | 0.030 | 0.003 | n.s. | n.s. | n.s. |
C18:2 t9.12 | 20 | 0.021 | 0.020 | 0.002 | n.s. | * | n.s. |
C18:2 t10.14 | 20 | 0.070 | 0.049 | 0.004 | ** | n.s. | n.s. |
C18:2 t11.c15 | 20 | 0.048 | 0.044 | 0.004 | n.s. | *** | n.s. |
C18:2 t11.15 | 20 | 0.012 | 0.011 | 0.003 | n.s. | n.s. | n.s. |
C18:2 t12.c15 | 20 | 0.030 | 0.029 | 0.003 | n.s. | n.s. | n.s. |
C18:2 c9.t12 | 20 | 0.321 | 0.288 | 0.004 | * | n.s. | n.s. |
C18:2 c9.t13 | 20 | 0.121 | 0.113 | 0.003 | *** | n.s. | * |
C18:2 c12.15 | 20 | 0.026 | 0.024 | 0.002 | n.s. | n.s. | n.s. |
C18:2n6 | 20 | 2.58 | 2.59 | 0.043 | n.s. | ** | n.s. |
CLA t9.c11 | 20 | 0.048 | 0.045 | 0.002 | n.s. | * | * |
CLA c9.t11 (rumenic) | 20 | 0.843 | 0.602 | 0.017 | *** | *** | *** |
CLA t10.c12 | 20 | 0.029 | 0.039 | 0.009 | n.s. | n.s. | n.s. |
CLA t12.14 | 20 | 0.020 | 0.022 | 0.003 | n.s. | * | n.s. |
C18:3n3 | 20 | 0.193 | 0.164 | 0.005 | *** | *** | *** |
C18:3n6 | 20 | 0.029 | 0.029 | 0.002 | n.s. | n.s. | n.s. |
C20:0 | 20 | 0.241 | 0.232 | 0.009 | n.s. | n.s. | n.s. |
C20:1 c5 | 20 | 0.021 | 0.020 | 0.001 | n.s. | * | n.s. |
C20:1 c9 | 20 | 0.015 | 0.016 | 0.002 | n.s. | n.s. | n.s. |
C20:1 c11 | 20 | 0.052 | 0.043 | 0.003 | * | * | n.s. |
C20:1 c15 | 20 | 0.016 | 0.018 | 0.001 | n.s. | n.s. | n.s. |
C20:2n6 | 20 | 0.038 | 0.038 | 0.003 | n.s. | n.s. | n.s. |
C20:3n6 | 20 | 0.021 | 0.018 | 0.0022 | n.s. | * | n.s. |
C20:3n9 | 20 | 0.079 | 0.073 | 0.0026 | n.s. | ** | n.s. |
C20:4n6 | 20 | 0.142 | 0.149 | 0.0067 | n.s. | n.s. | * |
C22:0 | 20 | 0.033 | 0.038 | 0.0022 | n.s. | n.s. | * |
C22:2n6 | 20 | 0.021 | 0.019 | 0.0046 | n.s. | n.s. | n.s. |
C23:0 | 20 | 0.023 | 0.403 | 0.0045 | * | n.s. | * |
C24:0 | 20 | 0.031 | 0.041 | 0.0059 | n.s. | n.s. | n.s. |
Variable | n | Diet | Significance | ||||
---|---|---|---|---|---|---|---|
C | AB | SEM | Diet | Week | Diet × Week | ||
SFA | 20 | 67.4 | 68.6 | 0.169 | *** | ** | * |
MUFA | 20 | 27.5 | 26.6 | 0.168 | ** | ** | ** |
PUFA | 20 | 4.93 | 4.64 | 0.064 | ** | *** | * |
UFA | 20 | 35.9 | 34.6 | 0.12 | *** | ** | ** |
OBCFA | 20 | 3.29 | 3.46 | 0.026 | *** | *** | n.s. |
∑CLA | 20 | 0.954 | 0.726 | 0.019 | *** | *** | *** |
SFA/UFA | 20 | 2.08 | 2.19 | 0.017 | *** | ** | ** |
SCFA | 20 | 13.8 | 14.03 | 0.115 | n.s. | *** | n.s. |
MCFA | 20 | 40.8 | 41.6 | 0.146 | *** | *** | * |
LCFA | 20 | 45.3 | 44.3 | 0.183 | *** | *** | n.s. |
n3 | 20 | 0.193 | 0.164 | 0.005 | *** | *** | *** |
n6 | 20 | 2.83 | 2.85 | 0.043 | n.s. | ** | n.s. |
N6/n3 | 20 | 15.6 | 17.7 | 0.432 | ** | *** | *** |
AI | 20 | 2.02 | 2.09 | 0.018 | ** | *** | * |
TI | 20 | 3.045 | 3.20 | 0.016 | *** | * | *** |
DI C14:0 | 20 | 0.015 | 0.014 | 0.0003 | n.s. | *** | ** |
DI C16:0 | 20 | 0.048 | 0.047 | 0.001 | n.s. | * | ** |
DI C18:0 | 20 | 1.84 | 1.75 | 0.039 | ** | *** | ** |
Variable | n | Diet | Significance | ||||
---|---|---|---|---|---|---|---|
C | AB | SEM | Diet | Week | Diet × Week | ||
Glucose (mg/dL) | 22 | 50.9 | 51.3 | 0.72 | n.s. | * | n.s. |
Cholesterol (mg/dL) | 22 | 103.7 | 99.7 | 1.74 | n.s. | * | n.s. |
Urea (mg/dL) | 22 | 46.0 | 37.6 | 0.77 | *** | *** | * |
BHB (mmol/L) | 22 | 0.50 | 0.42 | 0.021 | * | *** | n.s. |
NEFA (mmol/L) | 22 | 0.56 | 0.60 | 0.031 | n.s. | *** | n.s. |
Haematocrit (%) | 22 | 30.7 | 30.6 | 0.32 | n.s. | *** | n.s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monllor, P.; Zemzmi, J.; Muelas, R.; Roca, A.; Sendra, E.; Romero, G.; Díaz, J.R. Long-Term Feeding of Dairy Goats with 40% Artichoke by-Product Silage Preserves Milk Yield, Nutritional Composition and Animal Health Status. Animals 2023, 13, 3585. https://doi.org/10.3390/ani13223585
Monllor P, Zemzmi J, Muelas R, Roca A, Sendra E, Romero G, Díaz JR. Long-Term Feeding of Dairy Goats with 40% Artichoke by-Product Silage Preserves Milk Yield, Nutritional Composition and Animal Health Status. Animals. 2023; 13(22):3585. https://doi.org/10.3390/ani13223585
Chicago/Turabian StyleMonllor, Paula, Jihed Zemzmi, Raquel Muelas, Amparo Roca, Esther Sendra, Gema Romero, and José Ramón Díaz. 2023. "Long-Term Feeding of Dairy Goats with 40% Artichoke by-Product Silage Preserves Milk Yield, Nutritional Composition and Animal Health Status" Animals 13, no. 22: 3585. https://doi.org/10.3390/ani13223585
APA StyleMonllor, P., Zemzmi, J., Muelas, R., Roca, A., Sendra, E., Romero, G., & Díaz, J. R. (2023). Long-Term Feeding of Dairy Goats with 40% Artichoke by-Product Silage Preserves Milk Yield, Nutritional Composition and Animal Health Status. Animals, 13(22), 3585. https://doi.org/10.3390/ani13223585